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1, lntroduction Lo

The quas1potent1al approach to ‘the quantum fleld theory, propo—' ',

‘rsed by Logunov and Tavkhehdze/]-/ ‘has been successfu].ly apphed

; to problems of quantum electrodynamlcs by Faustov/2/ and’ Faustov"'v:' T

’»and Tuhtyaev/3/ They calculated hlgher order correctlons {up to

"‘-,~s1xth order in'the couplmg constant) to the energy levels of posxt-. :

: ronlum and hydrogen atom, constructlng the : qua51potent1al with - the

i help of the matrlx elements of the scatterxng matrlx on the mass shell.An'
; 1nvest1gat10n of the off—mass-she].l correctlon to the’ quasxpotentlal ’
. has been done by De51m1rov and Mateev for: the cases of electron— '
:,j',p051tron/4/ and electron—proton/5/ mterachons. s HERY '_ W
, : A new, manlfestedly cmrlant version ‘of the qua51potent1al a8 )
approach has’ been proposed by Kadyshevsky/6/ A generahzatlon
- of this approach to partlcles with spin 1/2 and- pseudoscalar 1nterac—'
tion has been done by Kadyshevsky and Mateev/7/ S -‘
i The present paper is an. 1n1t1al step in the appllcatlon ‘of the
: quaSLpotentzal approach of Kadyshevsky to systems of - particles - :
thlch 1nteract electromagnetzcally. It 15 devoted to ‘two basic scatte-
’ rmg processes ‘-electron-posztron and Compton scatterlng. Its aim - o
k »tls to. glve the - necessary tools for 1nvest1gat1ng electrodynamlcs, such_ o
Iy 'as dlagram rules, equatlons for ‘the : scatterlng matrlx and the wave’
’ functlons, the spm structure of the quasxpotentlal ‘We stress ‘on
)‘fsome spec1f1c features appearmg because of the zero mass of the

‘photon. Some first. apphcatlons, such as constructmg the quaszpoten-f

& - tlal in second order of the coupllng constant ‘are also made. b -




descrlbmg electron-posxtron and. photon-electron systems are const—

- structures of the quasxpoten‘ual 1n both cases of elctron-posxtron

magnetlc 1nteractlon I—Iamlltoruan are obtamed In Sechon 3 quasl—

poten‘ual equahons for the scattermg amplltude and ‘the wave functlon '

ructed Some specmc propertles of these equatr.ons, connected with.:

4

the zero mass of the photon are dlSCUSSGd In Sechon 4 the spm— e

and photon-electron lnteract.lons are obtamed In Sechon 5 the " quasx—‘

potent1al for the electron-posntron system has been calculated in

lowest order of perturbatlon theory, ‘and a compamson of its off ener—-
gy shell terms is made: w1th the off’ mass shell ternis of the - corres-‘.‘ -

o pondmg qua51potent1a1 in’ the approach of Logunov and Tavkhehdze.‘ .

A useful gu.lde to the" nota‘uons used in- the present paper 1s j"

g1ven in the Appendlx to ref. /7/

PPN

Interactlon

N In thlS sectlon we brleﬂy scetchx/ the way in whlch the dlag— R

ram, rules correspondlng to the electromagnetlc xnterac‘uon Harmltoruan

»A;*,H'(s;,,)_;g., !,ll(x)y ¢(x)A (x)

'can be obtalned In .eq. (1) U (x) ‘are the ﬁeld Operators of the
electrons and the p051trons, and A x) of the electromagne‘ac field, -

We mtroduce, aﬁer refs /6/ and/7/ the m.atmx R(/\K Ak ),

‘In’ Sec‘aon 2 the dlagram techruque rules m the case “of electro—‘,' :

‘ 2 Dlagram Rules in the Vase of Electromagnehc T

E ’,,iwhere A ‘is_an’ arbltrary un1t t.lme-hke four: vector and k andkT 0

are scalar parameter. R('\K Ax ) defmes the off—energy shell conti- .

nuatlon of the scatterlng matrlx. On the energy. shell (VVthh is deﬁ-» -

ned by =0 ).we have/G/

x/’l‘he procedure of developmg dlagram techruque is worked
‘out- in detail, on’ the’ ‘example  of 1nteract.lon Hamittonian .~

: H(x) g+ ¢(x)y ¢(x)lxkin ref/7/




T being connected with S -matrix in the usual way
S=l+|T L : ‘ ‘ o (3)

The matrix R(t\K Ak’ ) satisfies the equatlon (/ 6/ and the refe-

- rences threln)

. » o y 1 o dry )
R(I}K.I\K )=‘ —H (AK"\'I\K ) —E-"— f H(,\K—AK‘?.E—:E_.,R(,\«Kl',\K ), . (4)
where H(p.)’ is the Fourier-transform of the interaotion H’amiltonian
'= -1 ) : . : [
H(p) = [e p"H(x)dx. - , (5) -

After ihvéstigation of the first order terms in the coupling  constant
we . get the ‘rules for the graphical deseription of the particles in

the initial and the' final states, \;vhich are snmrﬂarized in Table I,
Moreover, in any vertex we add an incoming and an .outgoing dotted
spurion line (or quasxpartlcle lme) which carry four momentum, corres-
pondingly. Ak and Ak’ so that a four-momentum conservation
holds ref, l6,7], ) o v ,

The graphical representatlon of the partlcles in the 1ntermed1ate
states we obtam when consider the structure of the hlgher order in
~the coupling constant terms of R(Ax,Ak’). The resg.tts are presen—
“ted in Table I, , e o

The rules of constructing the matrix elements are the same
as those:in ref,/?/, with evident changes in accordance with Tables '
 and IL . I e

It was demostrated in refs./6 7/ that the most covenient choice‘
of A" is in the direction of the total momentum of the phys1ca1
incoming or outgomg part:cles o i e )

9, 49, - p!+p2
(a2 2 To a0 V2
\/.(q1+q2) \/(p!+p2)

A=

(6)
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Parhcularly, w1th this choice of )\ the matrix and wave function . -
have 51mplest form, o T . [

In the_ca’setof electromagnetic interactlon .one has, to be care- !
ful when uses.: A from eq.. (6) The reason can be easily under-
stood: if we COYlSldel" the vertex on E‘1g. 1, where the particles with .
‘momenta . 1, and q, are ‘incoming or - outgo1ng. Such - vertices give '
contrxbuhon to the exchange. (anruhllat.lon) type dlagrams In the vertex

we have the - four-momentum conservatlon law

: ) Fig,1.
~l)‘K1+q.1+_q2.—§)‘1K"k= 0. . : } ‘ - (?)

The particle momentum 9, the antiparticle with momentum' q,

and  the par'tlcle that carnes the mteractmn with momentum k - are
on the mass shell. Let us. con51der first the case when

"From eq. (7) it- fo]_lows that the dlrechon of A can be choosen
»arbltr‘ary,_: and in ‘partlcular as in eq. (6). In this . latter case we have,

from eq. (6)

Ak, =k AVE )=k DR o @)

and takmg 'into‘naeceunt that A%-1:

K —K’+\/?q =mp. o SR . ; . (9)
Let now I '~0 )y as it is \in the case of quantum electrodynam1cs \

where’ the photon is the ﬁeld which carry the mterachon. It fo]_lows
then eqs. (9) and (8) that k =0 , which is impossible. Eq. (7) exhibits
the fact tha"t".such‘ inconsistency happens only when A - is chosen

as iri"‘eq'.'(6),band of course when k2 =0 X/, There exist two ways

Note. th‘at this difficulty does not happen in the case of Cemp-
ton scattering (m this -case the photon is incoming or outgoing
particle and does not appear alone in 1ntermed1ate states)

i
I« g e 8

s



to orvercorne this difficu.lty - either to choose A different from eq,(6)
and leave the photon in the 1ntermead1ate states on the mass shell
k*=0 | or to choose A in accordance mth (6), but formally to pres-
cribe a mass my £0 to the photon, ie, to regard it, throughout the
calculation of the rhatrix elements, off its mass shell, Because of the
extreme convenience which creates a choice of A in the direc-
tion of the total momentum of the incoming and outgoing particles

we shall choose the second way. At the end of theca.lcu.la—
-tion after passing on the energy-shell « =x’=0 we shall vp’ut also

m}',=O to obtain the m'_atrix element of the physical amplitude,

3. Relativistic Quasipotential Equation in the Case
of Electron-Positron and Photon-Electron

Scattering

The form of the quasipotential equations depends on the spin
of the external partlcles. Therefore, in the case of electron—p051t-
ron scattering in the centre of mass system, taking into account

(6) the quasipotential equauon for the scattering matnx 1s written

in the form/ 7/

T (5, §)=VE (3,818 )+ «
K, ) KoYy Q )
T (120) -
: p > o
AT v (BUKGE) o, _ .
(4n) PRy FaPy f__k& E (E -E —i¢)

where E - VK +m?. The quasipotential V is the sum of all the
irreducible connected corresponding to the interaction. Hamiltonian

glven by eq. (1) The definition of irreducible and connected graph .

is given.in ref./7/, -
Eq. (10) can- be written in two-component form
t (r.q) ¢ X =ka;13’k ('P'q;Eq)(ﬁk Xt

: Tk
Tykgily x Ky ¥, 171" 272 1 2



R dk - Yykgs (k,q)dy. X
+1__s IV iy (kG B ) == Lplgte Sy 2 le
. (am” 1hdiadg VE24m2 Ek(Ek —Eq'—if )

@

If we define the wave function of the electron-positron system,

corresponding to the continuous spectrum by +

e YISV
8 VP Em by xy +

v, (p )y
y (12
t 1kl K, (5 9) ¢k1x X,

8mE (E —E ~ie)
PP q

+

we obtain the quasipotential wave equation
E_(E~E )¢, (p),,, -
(13)

1 i

= 4 . -——v
@r) Vk2im?

, (PGB v, (0,

HE R g

In order to evaluate the equation for photon-electron scattering
amplitude and wave function we have to introduce some notations,
Let us de hote the matrix element, corresponding to the set of all
irreducible graphs, dt—;-scribing Compton scattering off the energy

shell, with

V=

(20) 8 (Ak+q+k ~p —k ;—Ak") 70 :
LA ol b Ml L Okop ke, A7)

I3
V2 q02kio 2po2k 20 (14)

(271)48(/\K/'+q+ k. —p-k —Ax") -
= ! 2. u 2 (p)v
. a ar

\/2q02km2p0 Zky,

‘ (A,p, k_ lg,k WAk u"5q)
; Bo 2 1 . B

where the content of the indices "a‘ and is

10
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Vi T e v o9

e, ( i-= 0,1,2,3) being the pdlarization vectors of the photons |
in- the initial (e_) and the final state (e ) ,

Let us repr‘esent Y graphically with ]
L KzT : ‘ K
V= ZPeabeed Voo

. <
T %
k ,r k ,o
V= A K \ Ak’ .
Psi q, v

For the Compton scéttering amplitude off the energy shell we put:
B . * Al

;(211)45()\K+q-j-k —p —k _-Ak? '
! 2 T;va ()\K'p,kzl 9.k, Ak") =

T=
\/2q02k 1ol2p02k"‘!9 "
(16)
(277)48()\K+‘q+k1_.p_k , - A PO o -
= R ——— u ‘;(p)Taﬁ;Ba (Ax,p,k zlqlkx’)"‘ , )uﬁ(q).
\/2q02k10 2po 2k20 ’
" (27)

Tarﬁa= (_éﬂ enT )y Taﬁ (-~

and graphically -

kzr
T = Ak T Ak’
P qV

11



Then we can write the following gfaphical equation:

. 13

R K2

» ., X
et ¢ S
< —

J R

Using the rules of the diagram techniques (see: Section 2) we get
the integral equation: )

(27)" 8( Ak + q+k, —p —k,-A«")

T'? ()\K,p,k2|q.k1, Ak’ )=
e pv
\/2q02p02km2k20 - f

. .
(27) 5()\(K+q+k1—p—k2-)tx') ra '
V#V()\K,p,kzlq ,kl,)\x')+
\/2q02l’ 02kyp 2k 4 ‘ '

-

3.
@r)°

.4

J8(Ax+ L+ k—p -—kz-)tK{)S()\K+q f Zf—k=Ax "W

8 ‘ ,
(@7) 2 \/2q02po2k10 2k

! n ' m mn, (+) a5
x uf L Vg, (4 kpikyll ko de)y” (CDg 867 STs (¢ m)x

dx P
X — ———eou—1y T

LY
27 e 58 (Akyy €, k] gk, Ak )“B(q)'

. After simple calculations, applying’ the completness condition for

Dirac spinors and the relation:

o
mn

£ s ngPlg P, Pze P, e Py : : (19)

P . m n
PP,

we obtain

12 ‘ i . .



. TO
T™% (Akyp kglak,  Ac’)=V
pv

v (Ax ’Pakzlq ’kly Ak T )=
W . .

_x v P kg 10 e EO0E)8 (2 m)dE0(, )3 KAk x
PP (2n) P2 - , 0 (20)
51 | ny 35 12 .

X K1+q+k1—z -k =Axk )—Kl—_-i—c-—!Tp 1,()\Kl , 2,k lq .kl.)\K ).

Eq. (20) is our quasipotential equation in a covariant form, In the

centre .of mass system we have:

p+k2 =0

’ =0
q+ kI

. L+k =0

2 2 . — - 2
sp=(p+k2)=(po+k2°) =(Vpi+rmi+Vp %2=(Ep+Ek )
~ 2

S (21) -
, s -
= (q +k1)2=(qo+km)=(\/q2+m2+\/q'~’).2=(Eq+Ekl )2

| - _,
s =(ks0) =(korty)= (\/_k_im2+\/_k_2)v=(Ek +E, ).

If in eq. (20) we pass to CMS, choose ) from eq. (6) and perform

the integrations over «, and g f(or k) we obtain the qua51poten-

tial equatlon in 1ts most covenient for apphcat.lon form:

To
T#V (p.q)-ayV #V(p,q,Eq. K )=

. PO - o
, . - T (k, @) » 22
_2 ¥ Vrpl(l;"k;Eq"Ek) dk pyVv . ( )
(4'77?"14’2. sz \/E-2+m2 E k(\/-é--l-( ._\/g- —ie)
q

13



Passing then to two-component spinors

Taﬁyﬁz ¢t'u by ‘  ‘"
| (23)

we get the quasipotential equation for the Compton scattering in two-

component form:

(29)

2 S : > t (l—c".q_.)?S
-2 é v. (pk;E ,E ) _,dk il ! .
“ vkin® EVE —Vs, -ie)

3
~

(for brevﬂ:y we have omitted the photon polanzatlon indices).
The wave function of the photon—electron system we define

as:? R

. .
¢q (P)i - (2":1)8(p_q) rp_'3+m 2‘75'— . by p.q) P, . (25)
4mE (Vs —\/s —l() '

With the help of eqgs. (25) and (24) we obtam the  quasipotential wave

equation:
B, Vs -v& —ioy ¢ -- 2, & g KB LB W (0 (26)
a P [} q ) i (4") - \/k—-z_'_ m2 ‘

Compton scattering is a very special case of scattering of particles
with different masses, namely when one of them is massless., The na-
ture of this pi'ocess is, therefore, purely relativistic ana it is clear !
that such notions as reduced mass are meaningless, Conséquenﬁy

the procedure proposed in ref./8/ can not be applied and we do not

14



know a way  to ihterprete the scattering ‘of a massless particle and
a particle with mass as a scattering of one’ effective particle in a
quasipotential field. Of course it 'is’ highly desirable to investigaté
in more deta11 this case and to try to find such an mterpretat.lon

or to show that it is impossible, The’formahsm of introducing rela-
tivistic  r -space .developed in ref./9/, can be formally applied on
the hyperboloid of the particle with mass (we have done already

-

this when we- defined the wave function (25))

/
4, The Spin Stmétgre of the Quasipotential

a) Electron-Positron System

The spin’ structure of ‘the quasipotential in this case is the
‘same as in the case of nucleon-antinucleon . system/7/ Therefore

the quasipotenhal can be written in the form:

@)

(27) &

Vv, 1P01® + v, (1 “ono® +na P @17 )4
) LY
+V3 o'’ ®n0(2) +V, Z-o(l)® t. 0@ &
+Vym -0(‘)®m .0 @
m @ 8 @
+ VLo "@u-0 "+m-o ® Lo ),
where f, m, n is a bésis of unit vectors defined "by
L= %(p +9q )v
1 (20
=-B-[(p+q)><(p><q)] ~

=lc-(p><q) ‘ ) S

15



AB.C are normalizing factors and V,(i=1,2,3,..6) . are scalar. func-
/tLQn,s,ﬁof the invariant variables Lia»Spts, V »8,=s  andi K +x 7.
- The first five are even d. functions of S, =8, .. and the last odd func~"

tion of this variable,
b) Compton Scattering

Let us first ‘consider thé spin structure of the quasipotential
connected with the photon. The quasipotential is a second range
tensor as a function of the polarization indices of the initial and

5
the final states. of the photon and can be written as:
V=V ) : (29)

where we forget for a while about the spinor indices of the electron.
Let now KLM and N be a set  of orthogonal four-vectors,

which we choose in the form:

K=kl+k2; L=k2 —kl=)t(f<—l<')+q—p-

k . )
M=p+q——l(r(p+q)k‘-r[‘2 (p+q)-h(x-»—x ) (30)
A Apﬁp
N =e M#LVKP
Let us introduce:
ey =l_' . e@__N_ (31)
V-’ V-N?
' ¢} @
One can easily check that e and e have the following proper-
ties: X
[c(l) ]2=[‘ (2) ]2 =_1’ 6(1)-((2)=0

(329

16



(D 2)- ) . -
Therefore, we can use the vectors e and € to describe the po-

larization properties of the quasxpotentlal

‘Taking into account the gauge invariance of the quasmoten;

tial, the ‘tensor V™ can be decomposed in the usual manner/lo/

' 1 1 (2
v70,=f (()(()+f‘(()((2)+
1 7 a 2 7 [e4
( 2 1 2) 2) (1) : 33
fa[c:”c(z)+e() e T4t [(l)c()-—e()c;)]. ‘ (339

(43 7 . (4 4 7 (44 7

Y

The m\mmance under. space reﬂectxons shows us that f, and f,

have to be scalars and f, and f, pseudoscalars (note that e(®

is a wvector, but € is an axial). Therefore: the spln—structure of-
f, ' fqa ofy. 'ahd f4

in the space of the electron spin should
- be:

Lo
»
. . .

(39

Vs (Aa,+Ba K) ;vf'f4= Ys('h +B‘4‘K« X

;
.

where K= yl’- K o Then v’ is decomposed‘to eight ‘structures: ‘"

~ o
VOV Te ,“’e‘”+v K é“ WLV T <2>e‘2 VKPP

= W @ @ Wy oy p o W@ @y ‘
+Vyry (e o ‘r‘o)*veys'x’(‘r,‘a*"r‘o,)+
S : (35)
(). @ @ Dy y o gD @ @y :
+V, 7, Cer) €g T, eo)+ o7 K(‘r“‘ o= €p € ).

hE

The form factors V; ,V,,.. V, are scalar functions. of the ‘
invariant. variables t  =(p—q)% s ,s ., x ~and &’ -of‘the form: ‘
’ . pa P’ a P . i .

17 SR .



V =V (t 2B A8 8 =B, K+K ). L
i i pra p 9 - p q ' .

(i<1,2,..8) a - ' (3.6);

If now we require also time inversion invariance we can obtain

&

some further information about V, .

Under time reversal we have:

kg k) (kg =k ) (Lo L) = (=L L)
(M M) - (M, =M) (Ng. N) =+ (Ng,=N)
L i (37)
s .8 . 8 ~s oa~(s —-s)
4 q P q 4 q

and it is easy to check that the structure‘s which are multiplied

by V,, \A WV, . Y » Vg and/ VV., do not change sign, but these
multiplied by V5_ and V, do change it, Therefore, inorder ¥ to be
‘ T-invariant, brcause of (36) and (37), V,,V, ,V,,V, ,V,and V.
have to be even functioné and V, and V,  odd functions of the
difference s,~s . ,On the énérgy.shell s, =s, Le. s, —s =0 and

V, and V, simply vanish and we have, as it should be, only

six spin structures of the quasipotential.

5. The Quasipotential in the Second Order of the
Coupling Constant

In this section we shall calculate the quasipotential for the

electron-positron system in the lowest (second) brder of the perturba-

tion theory.

18



The second order contribution to the quasipbténtial we obtain
as ‘a sum of the irreducible graphé on Fig, 2,

As usualyy we split V into two terms

v = vdir + vex ; » (38)
The graphs on the flI‘St row of Rig. 2 give the d1rect mteractmn
-V d1r and those.on the second row - the exchange interaction
-V Using the diagram techguque rules’ of .Sectlony 2, passing -

ex,*
to c.ms, and taking X ' in direction .of the total mor_nénturﬁ’kof the

" incoming particles, we obtain the following e&pressioné:

(211) SR e

22 e . X

die

° 0\/1 (k-x ) +my—t [‘E-(K+K’)+\/-Z-(K“K ) m "l

. ) 2 T
T : v g L
x¢+(yl)x+ (#2){ [(p0+m)(qo+m)+4pq + (pa) JRo 2y oM P2l él('i)

(p,+m g +m) ~ qg+m P +m
: .
, q . . , :
cild e —EL 0" )@1‘” P (2)x(pxq)] Yo .
i (po+m )(qa+m) i )
(39)
: ’ p m “q gHm o
+l2pg = — ELURLSERES LA AR
g+ m Lopgm
a @ i
_a.p® -q—a‘ -q,x/a‘ -‘p— -
‘ Pyt m 1 2‘
——-——1————0 (p xq)@a (pxq)+— o().q xa().q+
(p:+m)q +m) , S qgm 7
0 0 : ,
5™ @ ‘ >
t g p@o eple v Ix(v )
p,m o ] , _ o : .
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Fig,2,
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[— — 1 ]1 ¢ (u )x (u )x
'K*ﬂ-m},—\/ s e K+m +\/s '_;«‘*5“ e

g Ty .<£> i
v ’o_-pa'+A-———-—" (_______?q) - 1L @l +
.>"o+m- (Pofm)(q Q+m

» o a - T - 2'» » - B C
I N N X g']a“’@ ‘?’ :
Tgm ?o“,n * _}(po“n )(qo+m) o (40)

. '.f-j 'p , .\" R e 1). T e ’ . ".'
~+-2——(-’-——0 -q®a -q-!-2‘ 0(..,-p®0(2)-p-— - B
qotm. Toeipgm. e o o

L@ R Sy a@ AL
T e ‘(P +m )(q +m) (pxq) [U ®l ‘®’a_"“_::)] } ¢(V1,)x7.-$y?‘_).‘: SR I

,‘In low—energ,y' appromma‘uon, i.e, keeping terms ‘up to the’ order of
, A the ot

2. . el e Ll
v” /(;2 , or in our uruts up to ~_p_5 : .;and«"-i;, taking into account. -

e

s the "energy" conserva‘aon law
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Tt - ref /11/5 The off-shell mteractlon is~ ngen by the term. e

"wher'e"t=p-'-=tb;;f. On the energy she11|p|=lql and we obtaln the well :

- known formula for electron—posn‘ron mteractlon (see for mstance
‘ 3

.

p 2-q2 “(p -q 2)3
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It 1s mterest.mg to compare the off—shell contrlbuhon (44) to the

3 "
quaslpden‘ual mth the correspondmg off—shel.l contrlbu‘uon to the

\’quaSLpotentlal of Logunov and Tavk.hehdze, whzch was calcu.lated f S

in ref /4/ The dlfference between the two express10ns is due to,

o the dlfferent off—shell cont.mua‘uon m these cases '-‘ m the vers1on

e of Kadyshevsky the partlcles are- on the mass. she].l but of the‘

. 'energy shell wh:.le m the approach of” Logunov and Tavkhehdze 8
-they are off the mass but on the energy shell. Therefore, a11 the - v
conclusmns made 1n/4/ about the posn‘.romum energy levels are :
: vahs also m the present case.
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