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Summary 

A new met11od of analyzing the experimental data on kaon-. 
proton scattering is used to obtain an accurate determination of 
the real parts of the forward scattering amplitudes at · moderate 
energies. 

The method exploits the known analyticity properties of the 
scattering amplihde and experimental data in a limited energy range 
However,· unliket ccnventional dispersion relation calculations,· it 
requires no assu. nptions about the residues of the hyperon pole 
terms and the am :>litudes in the unphysical and asymptotic regions. 
A parameter describing the unknown asymptotic behaviour of the 
difference of the {- p and K + p total cross sections is determined. 
Its value favours a zero asymptotic limit for this difference but 
requires a slower approach to zero than that predicted by conver)­
tional Regge pole models which satisfy the Pomeranchuk theorem. 
The method can I >e used in principle to analytically continue the 
scattering amplitude from the physical region to the A pole. 
However, a suffic .. ently accurate model-independent determination of 
the KNAcoupling constant cannot be obtained in this way using 
the experimental c lata which exist at th~ present time. 



1. Introduction 
+ 

The real parts of the K - p forward scattering amplitudes 

have been predicted independently by many aufr: ors/
1

-
6

/ ,in terms 

of the experimentally known total cross sections according to a 

variety of dispersion relations. The motivations br such calcula­

tions are well known/
7 

/ and will not be discussed here in detail. 

Although the results of these calculations :1re generally in 

qualitative agreement with each other and with rr ost of the expe­

rimental data, there are some significant discrepo1ncies in their 

detailed structure, especially at energies of the order of a GeV 

(see, e.g., n.i" 28 of.r ref./
5

/). These discrepancies are mainly due 

to differences in the input data which are used, namely the set 

of experimental total cross section data, ·the moe els used to extra­

polate the imaginary parts of the scattering amplitudes into the 

unphysical and asymptotic regions, and the valu ~s of the K N A 

and K N I coupling constants. 

The importance of using a method which i!; not too sensi-

tive to the poorly known coupling constants and to the structure 

of the K- p amplitude in the unphysical region bE•low the elastic 

threshold has recently been stressed/
4

•
6

/. Nevertheless, all previous 

calculations, including those of refs/
4

•
6

/, have adopted specific 

parametrizations for the analytic continuation of the scattering 
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amplitude into the unphysical region. This analytic continuation 

is found to be rather unstable in practice, so that the structure 

of the amplitude ir" the unphysical region and hence also the 

corresponding predictions for the coupling constants {obtained by 

means of forward :iispersion relations) are very sensitive to the 

parametrization which is chosen/
7 f. 

All previous methods of calculating the real parts of the 

K:!: p forward scattering amplitudes, with one exception/
6

/, have 

also required the :~ossumption of some specific Regge model for 

the amplitudes at asymptotic energies. The results of such ana­

lyses are now subject to an additional uncertainty, since recent 

measurements of the 1\ p total cross section between 20 and 

55 GeV at SerpuknoJB/ are in poor agreement with the extrapola­

tions of most earli,:!r simple Regge pole fits to the data at lower 

energies. Although attempts to fit the new data have been made/9-
14

/, 

considerable ambi~ uity remains in the more sophisticated para­

metrizations,especially those including Regge cuts, so that there is 

a large uncertainly in the extrapolation of the amplitudes to higher 

energies. 

The new Serpukhov data/B/ have in fact raised serious 

doubts about the "Validity of the Pomeranchuk theorem for 

scattering. If the F omeranchuk theorem is violated, most of the 

conventional methois of calculating the real parts of the forward 

scattering amplitudi!S, based on dispersion relations with only one 

subtraction, would be invalid in principle. On the other hand, it 

has been noticed/
7

' 
15

/ that numerical calculations based on the 

standard dispersion relations with two subtractions/
2

/ involve 

unpleasantly stron~. cancellations among the various low-energy 

contributions. 



In the present paper we re-analyze all the :1vailable expe-
+ 

rimental data on the real and imaginary parts of ·he K- p forward 

scattering amplitudes by means of a new method which avoids 

the difficulties mentioned above. In this way we obtain a model­

independent !heoretical fit to the real parts of the amplitudes at 

moderate energies. Unlike all previous analyses, ::)Ur method re­

quires as input information only experimental data on the real 

and imaginary parts of the amplitudes in a finite interval of the 

physical region. No assumptions are required abcut the A and 

I poles and the amplitudes on the unphysical cut and in the 

asymptotic region. 

2. The Discrepancy Function 

+ 
We denote by f (w)=D (w)+iA (w)the forNardK-p scat-

-t. ± ± 
tering amplitudes in the laboratory frame, normalized so that the 

optical th?orem takes the form 

a (w)=477A (w)/k, 
+ + 

(1) 
- -

where k and w are the laboratory momentum an j energy of the 

kaon respectively. 

We now define the function 

~(w)=D_(w)-D (m )+ W+mK [I(w)+J(w)], 
+ K 

(2) 
71 

where 

-1 w a(w') 
H w > = (411 > P I [ ----.:1:...---

m 
K (w'-m )(w' +w 

K 

5 

a (w,) 
---- ]k'd w', (3) 

(w\ m )( w '-w I 
K 



J(w ) =- Im I 
f(w')dw' 

(4) 
S(W) ( cu ' + m K)( W , - W 

Here W is the h.ghest energy at which the total cross sections 

u + ( w ) are known experimentally, and S(W) denotes the semicircle 

-i~ the upper half of the complex w plane given by I w I = I 
Consider th·~ closed contour in the w plane consisting 

+ 
of the straight line joining the points -W +I£ and W +i £ ( £ -+ 0 ) 

and the semicircl•~ S(W). By applying Cauchy's theorem to the 

function 

f (w ') 
F (w';w )= --=------

(w '+m K)(w'-w) 
(5) 

around this canto ..tr and using the well known analyticity and 

crossing propertiE-s of £± (w) /?/, it is straightforward to show that 

1T 

rrX(Y) mK 

[ :: + I - l. 
Y=t\,I(w +m )( w -cu)w ( w'+m )(w'..;.w) 

Y K Y rrA K 

A (w')dw' 
Mw) 

W+ mK 

where 
2 2 2 

m -11 - m 
y P K 

(U = 
y 2n 

p 

X(Y)= g;[(my-mP)2 -m=] 

4m 2 
p 

and g Y is the K ;r coupling constant. 

6 

(6) 



If the validity of the Pomeranchuk theorem/ 
16

/ is assumed, 

then in the limit W -+ oo the relation obtained by ·~uating expres­

sions (2) and (6) reduces to a conventional disp·?rs!on relation for 
+ 

f_ (w) with one subtraction at the K p threshold energy. Howe\rer1 

the validity of the finite energy relation which w•~ obtain in this 

way for finite W is completely independent of th? asymptotic 

behaviour of the scattering amplitude, 

Let us suppose that the total cross sectior s are known 

experimentally in the range m K S. w ~ W , so that the integral I ( w ) 

defined by eq, (3) is determined for all w • We also assume for 

the moment that J ( w ) is known, at least at inte ~mediate energies 

w (our method of determining this contribution is described in sect, 

5). The term D + (m K ) may be evaluated in terms ~f the known K + p 

scattering length. Thts, if D± (cu ) is known experi nentally at some 

energy w , then !::J. ( +w) is determined from eq, (2) in terms of 

experimental information, ·applying the crossing t•elation D_ ( -w) = 

= D + (w) in the case of K + p scattering. Eq, ( 6), on the other 

hand, expresses !::J. (w) as a sum of unknown contributions from the 

ung,hysical region. In analogy with the terminolog r introduced by 

Hamilton et ai./
17

/ for a similar function, we refer to l'l (w) as the 

discrepancy function. 

3. The Conformal Mapping Method 

From eq, (6) it is clear that the discrepancy- function !::J. ( w) 

has relatively little structure over most of the en argy region 

1 w 1 > m K in which it can be determined directly f1 ·om experimental 

data, This is a consequence of the fact that !::J.( •rJ) at moderate or 

large values of I w I is expressed as a sum of c ~ntributions from 

relatively distant energies. Therefore we may expect that !::J. ( w ) 

7 



can be well descr: bed in terms of a small number of parameters, 

The essence of our method is the fact that, by virtue of eq. (2), 

a fit to ~(w) alsc· constitutes a fit to D± (w) • We obtain a rapid­

ly convergent expctnsion for the discrepancy function by means of 

a variant of a conformal mapping technique which has been appli­

ed previously to v':trious problems in high-energy physics and 

extensively discus.:;ed in the literature/
18

-
24

/. 

It follows fro n eq. ( 6) that the only singularities of ~ ( w ) in 

the w plane are two hyperon poles and the unphysical cut 

joining the branch points at w 
17 

A 

the new variable 

~ = y w - m K •• y w - w I 

yw - mK -· yw -w I 

and m • We now introduce· 
K 

(7) 

With an appropriat ~ choice of the square roots, eq. (7) represents 

a conformal mapping ~(w ) which transforms the entire cut (u plane 

into the unit circle I ~ I = 1 and its interiorx/. In particular, the 

pole at w = w I i~ transformed to the point ~ = 1, the K-p 

threshold at w = mK to the point ~ =- 1, and the unphysical cut 

for w < w <_ m K TTA -
to part of the unit circle. The region mK:Sw_5oo 

is mapped onto th~~ interval -1.:::: ~ ~ 0 , the region- oo < w< -m 
- - K 

onto a small portic•n of the positive real axis, and the pdnt W= w A 

onto a point on th ~ real axis at ~ = ~A "' 0, 36 • The point 

at infinity in the (J• plane corresponds to ~ = o • The resulting 

structure in the ~ plane is shown in fig. 1. 

x/The mapping which achieves this is not unique. A discus­
sion of the reasors for the choice of the particular form (7) is 
deferred until sect, 8. 

8 



Thus, the discr~= function AW, regankd-as a functio: . . - -·l 
of the new variable ~ , is analytic within the unit circle except 

for the pole at ~=~A . If this pole is removed e >cplicitly, the re-

sulting function may be expanded in a power series in the form 

(8) 

convergent for all I ~I < l. Our method is to determine as many 

coefficients of the expansion (8) as possible from the experimen­

tal knowledge of the discrepancy function, 

4, Evaluation of the Discrepancy Function 

We choose the cut-off energy W in eq, (3) to be 55 GeV, 

Numerical values of I ( w ) are calculated in terms of the existing 

experimental data on a + ( w ). References to the data up to 20 GeV 

can be found in ref./
7

/.- In addition, we use the S?rpukhov data/
8

/ 

on a_ (w) between 20 and 55 GeV, 

Unfortunately, the K + p total cross section r as not been 

measured above 20 GeV, However, the data at lo'IV'er energie.:::; 

indicate that a+ ( w ) is remarkably structureless and constant to 

within high accuracy from a few GeV up to 20 G·~V, so that it 

seems relatively safe to extrapolate its constant v':':l.lue to higher 

energies, Thus, we assume that a+ ( w) =( 17 ,3::'::_ 0,2) mb, between 
+ 

20 and 55 GeV, Some of the recent fits to the K - !' total cross 

sections, especially those including Regge cuts, predict a small 

rise in the value of a+ ( w ) within this energy range, typically 
/9 10 12 13/ . 

up to 1 mb ' ' ' , However, because of the r.:tpld conver-

gence of the integral l(w), an error of this order of magnitude 

9 



would not be serious; in fact, for the values of I w I of the order 

of a few GeV at 'vhich the discrepancy function may be evalua­

ted, such an erro· in the contribution to Hw) from the region 

w '> 20 GeV may be accurately compensated by an effective contri-

bution to the high-energy integral J( w) , whose form we describe 

in terms of free p ::trameters. 
+-

Since the K ""p total cross sections have been measured less 

accurately at enetgies close to threshold, we make use of theore­

tical parametrizati< m of the scattering data to calculate a + (w ) 

at low energies. f'or the integration over a+ (w) up to the kaon 

momentum k = ti64 MeV/c, as well as the term D + (m K) in 

eq. (2), we use the S -wave effective-range parameters determined 

from a recent analysis of K+ p scattering at low energies/25/. For 

the integration oVE•r a_ (w) up to k = 293 MeV/c, we use the 

parameters determined from a recent S- and P -wave multichannel 

analysis of the lo'I\T-energy K- p and K ~ p data/
26

/. other rece·nt 

parametrizations of these data/
2?/ give practically identical predic­

tions for a_ ( w) i '1 the low-energy physical region but lead to 

rather different ex:rapolations of the amplitude into the unphysical 

region. For our p1 trposes it is unimportant which parametrization 

is chosen, since our analysis does not require any information 

about the amplitud ? in the unphysical region. 

Values of I D )w )I may be obtained at many energies w 
- + 

by comparing extrapolations of experimental K- p elastic differen-

tial cross sectioru: to the forward direction with the corresponding 

optical limits deter mined from the total cross section data. For 

reasons discussec in the following section, we must avoid using 

values of the discrepancy function too close to the K -p elastic 

threshold or at energies which are too large in magnitude. We 

10 



therefore confine our analysis to values of D_ .'l.t momenta k 

between 0.3 and 5 GeV/c and values of D + at k < 5 GeV/c. 

We have made an extensive search of the litera .ure for experimen­
+ 

tal data on the angular distributions for K -p sea tering in these 

momentum r~nges. In this way we have determint!d the values of 

ID_ I at 54 momenta from 0.35 to 4.6 GeV/c and I D +I at 35 

ta from 0.778 to 4.6 GeV/cx/. As a rule, the si.~ns of D + 

momen-

are 

undetermined experimentally, although at many er ergies they have 

been fixed unambiguously by means of dispersion relations/
1

-
7

/. 

Our procedure for fixing the remaining signs of II + in our calcu­

lations is defined in detail in sect. 6. 

Reliable values of D + at low energies may be constructed 

with the aid of the effective range parameters foJ · K + p scattering. 

These parameters are now very well determined/
25

•
27

/ and permit 

a significantl:r more accurate evaluation of D + than the individual 

fixed-energy measurements of K + p scattering. We therefore supple­

ment our set of 89 experimental data points for D + I at higher 

momenta by 15 additional values of D + at equc:lly-spaced energies 

in the momentum range k < 0.55 GeV/c, calculated by means of 

the same effective range parameters/
25

/ which WI! use to evaluate 

the low-energy a+ (w ) contribution to the integral l(r.u ), Thus, 

provided that the signs of D ± and the values ol J ( w ) can be 

determined, the information summarized above lea ::is to a knowledge 

of the discrepancy function 11 ( w) at a total of 10 4 energies. 

x/Our complete compilation of the data on I[± 1. including some 
values which became available to us too late to be used in the 
present work, will appear elsewhere/28/. References to most of 
the data can be found in refs./6,7,29/. 

11 



5. The Parametrization 

We truncate the power series (8) for the function H( ~ ), 

retaining only the first N coefficients a 0 , a 1 , ••• , a N-l 

as free parameterE to be fitted to the values of the discrepancy 

function. The optimum value of N is determined by the ·usual 

statistical criteria. In addition, however, it is necessary to para­

metrize the unknmm energy dependence of the high-energy contri­

bution J ( w) • We do this by expanding the integrand in the defini-

tion of J (w) , eq. (4), in powers of w I w ' . Thus, 

J (w) "' I b () n 
n=O n 

(9) 

where 

f(w')dw' 
(10) b "'-1m J 

n S(W) , (n + I ) ( , 
w w + m 

K 

The series ( 9) converges for all I w I < W • As additional parameters 

for the fit, we takE! the first M coefficients b of this series. 
n 

From eq. (4) it is clear that the series (9) is rapidly convergent 

for I w I « W . In :>articular, J ( w) "' J (0) "'b for such energies, Thus, 
0 

only a small number of terms is required if the analysis is res-

tricted to energies sufficiently small in comparison with W 

To summarize our method, the procedure defined above 

amounts to a parametrization of the experimentally measurable 

function 

G(w) "'~ (w )-. 
w+m 
--~K-J(w) 

11 

12 

(11) 



in the form 

G (w) = 
l 00 00 

la~n-~~lb 
n=O n 1T n=O n 

n 
()) (12) 

Although we have established the existencE· of this repre­

sEntation, it is worth while to point out that neith•~r of the two 

series in eq, (12) would by itself be sufficient. 'Ihis is a conse-

quence of the analytic structure of G(w ) in the complex w plane. 

From eqs. (4), (6) and (11) it can be seen that G :w) has both 

the low-energy singularities (the hyperon poles a 1d unphysical 

cut) and the high-energy cut (with branch points at w =.:!: W ). In 

the energy region of interest to us, a series of he first type 

in eq. (12) cannot represent G(w) because of the high-energy 

singularities, while one of the second type cannot represent G ( w) 

because of the low-energy singularities. 

To ensure rapid convergence of each of th2 series in 

eq, (12), it is necessary to impose certain restrictions on the 

range of values of w over which the fit is made, Since the 

first series converges only within the unit circle in the ~ plane, 

we must exclude values of w corresponding to I .fl "' l , i.e. 

energies close to the K -P elastic threshold. Simil'lrly, since the 

second series converges only within the circle I c • I = W , we must 

exclude values near this limit. These consideratic•ns account 

for the restrictions on the range of w which were introduced 

in sect, 4, 

6, Fit to the Real Parts 

Our procedure is as follows, The function C ( w) defined 

above is known experimentally at various energies w , except 

for an ambiguity due to the unknown signs of [)± ( u) • We perform 

13 



a least-squares fit to the values of 'G ( w ) obtained by assuming 

a fixed set of signs for D± (w), in terms of a truncated expansion 

of the type (12) in which the N+M coefficients a 0 , ••• , aN_
1 

, 

b0 , ... , b M- 1 ar·~ treated as free parameters. Inverting eq. (2), 

we find in this way a fit to D± (w). The input and output signs of 

D ± (w) are then compared at each energy. If any of the assumed 

input signs disagr•~e with the corresponding output signs, these 

input signs are cranged (leading automatically to an improved fit 

with the same parnmeter values) and a least-squares fit is found 

using the new values of G(w). This procedure is iterated until 

all the correspond .ng input and output signs agree. 

The entire s ?quence of operations is carried out under 

various initial assumptions about the signs of D ± until it appears 

likely that a better final fit cannot be found. In this way we deter-

mine the set of signs for the D data which leads to the best 
t 

theoretical fit to tr:e entire data set. 

We have carried out the analysis for various numbers of para­

meters N and M in each of the two series. The first coefficient 

of the second series, h 0 , was found to be accurately and con.-

sistently determine<i by the various fits and its inclusion was nece­

ssary for an acce ::>table fit. The inclusion of h
1 

, however, gene­

rally gave only a slight inprovement and its numerical value was 

less consistently determined by the various fits. Therefore we con­

sider here in deta.l only those fits with M= l 

Whenever any of the experimental data points for D+ differed 

by more than five standard deviations from the corresponding final 

theoretical value ft om a particular fit, these points were rejected 

and the fit was re ::>eated without them. Two particular data points 

were repeatedly r•~jected by this criterion, namely the values of 

14 



I O_l at 2,0 GeV/c/30/ and I 0+ I at 1~455 GeV/c/
3 

L/, both of which 

have rather small errors. Th~ remaining experim?ntal points were, 

as a rule, within 3,5 standard deviations from th? theoretical predic­

tions. 

With 
2 

N = 1, 2, 3, 4, 5 our best fits have values of x equal 

to 105, 101, 62, 60 and 60 respectively. The indusion of further 

parameters does not give a substantial improve 'Tlent and in fact 

leads to unreasonably large errors and correlation coefficients for 

the parameter values. We have therefore chosen N = 4 as the 

optimum value, corresponding to a 5-parameter fJt, For our purpo­

ses the choice between the 4- and 5-parameter fits is unimportant, 

since their predictions for 0+ are practically identical within the 

entire energy range under consideration, 

Since 102 values of 0± are fitted, it ma.y appear that x2 

for our optimum fit is surprisingly small. This mHy be partly attribu­

ted to the fact that we constructed 15 values of 0 + from effective 

range theory. These values are certainly not st:Ltistically indepen­

dent, so that the true number of degrees of free:iom is somewhat 

smaller than the apparent number, Moreover, the two rejected points 

would have given rather large contribution to x 2 if they had been 

retained in the fit. 

Our predictions for 0± and a t"'Ot/ A+_ fc,r the 5-parameter 

fit, for kaon momenta k between 0.5 and 3,0 G ?V/c, are presen­

ted in table 1 in a form which may be comparee directly with 

the tabulated results of the most recent analysis of Martin and 

Perrin/6/. We have restricted k to the range i '1 which most of the 

interesting structure of 0± occurs. This is also the momentum 

range in which most of the experimental data e:xist and in which 

our series expansions are most rapidly converg ?nt. Over most of 

15 



this range, the res1.tlts for a ± from the 4- and 5-parameter fits 

differ by less than o.b1. 

Our predictior IS for D + over the entire momentum range are 

in excellent agreerr ent with those tabulated in rer/
6

/ and the corres­

ponding values of c + are within 5"/o of each other. Our results 

for D , like all earlier predictions, show the expected local struc-

tures in the energy dependence of D which are associated with 

the resonance peaks in the K-p total cross section. However, our 

values of D_ are on the whole, considerably more positive than 

those obtained frorr many of the earlier dispersion relation calcu-
/1-6/ lations • In particular, we find that D remains positive for all 

k > 0,55 GeV/c, whE·reas some of the earlier calculations predicted 

further changes of sign in this region, Since there is little ambi­

guity in the experinental total cross section data, such differences 

can be accounted for within the framework of conventional disper­

sion relations only by changes in the assumptions about the hype­

ron pole terms and the amplitudes in the unphysical and asymptotic 

regions, 

Even if we tcok the initial set of signs of D ± from any of the 

earlier predictions, our procedure led to either a fit similar to the 

one shown in table 1 or a distinct fit with significantly larger)( 2 
: 

It is interesting to 1ote, however, that we found a fit rather similar 

to that of Martin ard Perrin/
6

/ if all the signs of D +_ were const­

rained to be identical with the signs predicted by them. We point 

out that we obtained the expected results in all cases in which 

certain information about D + is known unambiguously from forward 

dispersion relations 11- 7
/. In -addition, we found an almost perfect 

fit to the accurately· known values of D (w) at low energies calcu­
+ 

from effective rangE~ theory. 
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From a recent phase shift analysis of the low-energy K + p · 

scattering data it was found/
32

/ that, in addition to the conven­

tional solution which we have used, it is possible to construct 

a family of alternative solutions which are characterized by a po­

sitive sign for D + (w) at low energies. To investi ?,ate this point, we 

repeated the analysis without using any values ::>f D (w) in the low-
+ 

energy region. Although the fit is less accurately determined in 

this case, it still requires D+ (w) < 0 at low en4 ~rgies and in fact 

favours values even more negative than for the conventional solu­

tion. We conclude that the K+ p scattering lengtr. is indeed nega­

tive and therefore we reject the alternative type of solution. 

Discrepancies between the experimental values of D_ and 

dispersion relation predictions have often been noticed/2
,4-6 / in 

the momentum region below 2 GeV/c, where many of the earlier 

theoretical predictions were too small in magnitude, In ref./6 / such 

a discrepancy at momenta just belcw 0.9 GeV/c was attributed 

largely to an inappropriate choice of the numbe ~ of terms of the 

Legendre polynomial series which was fitted to the K-p angular 

distributions in ref./
33

/. We find this explanation unconvincing, howe­

ver, since, in contrast with many earlier calcul.:.tions, we obtain 

a good fit to the entire data set. In fact, if we ..tse the values of 

I D_ I obtained in ref./
6

/ from a re-analysis of tr.e experimental 

data of ref./
33

/, instead of the originally reporte :i values, our best 

fit becomes som-:what poorer, Moreover, data on D _ from other 

independent experiments/
3

4-
36

/ near 0. 9 GeV/c are in good agree­

ment with the results of ref./
33

/ and with our fit. 
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7. Asymptotic Behaviour of the Scattering Amplitudes 

The parameter b 0 in our fit characterizes the asymptotic 

behaviour of the scuttering amplitudes. The value determined from 

the 5-parameter fit i; 

-2 
b = (-3.4 + 0.6) 'l;ev 

0 -
(13) 

As a measure of th= stability of this result, we may compare 
. -2 

it with the value J, 0 =(-3.6.:t..0.2) GeV obtained from the 4-para-

meter fit. The result (13) is of special interest, since any model 

for the asymptotic b =haviour of the scattering amplitudes gives 

a definite prediction for this parameter. 

By deforming lhe contour for the integration (10) into a path 

along the real axis for I w I > W and a semicircle at infinity, and 

neglecting terms of ::>rder mK I w' in the integrand, we obtain 

1 ""[a (w')- a (w')]dw' 
bo=---f --:---~----

477 w w, 
(14) 

in the case in which the Pomeranchuk theorem is satisfied. Accor­
+ 

ding to the conventi ::>nal Regge pole model, the K- p cross sec-

tion difference may be parametrized at high energies in the form 

c; -1 

a (w)- a (w)=2 I C (wlw ) 
- iJ I I 0 

(15) 

where a are the tr:1jectory intercepts, C1 are residue functions 
I 

and w0 is some fixed scale factor; the summation is usually 

taken over the p and w Regge poles. Substituting eq. ( 15) into 

(14), we obtain 

b o = _1_ I, 
217 

in fris case 
c, ( \1 I Wo ) a I -1 

·------
a -1 

I 
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Next we consider models of the asymptotic behaviour which 
t. violate the Pomeranchuk theorem. If the K p total cross sections 

tend to different asymptotic limits a± ( oo ) , it folic ws from a twice­

subtracted dispersion relation that the amplitude~ have the asympto­

tic form/16/ 

f Jw ) • 
w a_(oo J 

477 

a +( oo ) - a _ ( oo ) 

rra ( c5o ) 

where w 1 is some constant. 

fog ( ~ ) -- j ] ' 
WI 

. /15 37/ Consider first the extreme assumption • that 

a (w)=a (oo) 
+ + for I w I> W. 
- -

(17) 

(18) 

In this case it may by shown that the correct v.ilue of the contour 

integral (10) for the quantity b0 is obtained if the asymptotic 

form ( 17) is used, even though this form is not necessarily locally 

correct on the contour of integration. The argument is as follows. 

The contour integral (10) ma.y be deformed into 1he sum of an 

integration along the region W <I w I <U of the real axis and an 

integration over a semicircle of radius U • Let U be sufficiently 

large that the integrand is given correctly on tho~ semicircle in 

terms of the asymptotic form (17). This asymptoti:: form may also 

be used to evaluate the integral along the real uxis, since this 

integral involves only lm f _ , which is given ccrrectly (to within 

terms of order mK/ w ) by eq. (17). Thus the analytic function 

( 17) also leads to the correct result for the orig .nal contour. Sub­

stituting (17) into eq. (10), we find 

-I 
b = (4 11) [a ( oo ) - a ( oo ) ] fog ( W / w ) • 

0 - + I 
(19) 

19 



In more gener. :tl models which violate the Pomerancht.k theo­

rem, the amplitudes are described at high energies by a sum 

of conventional Reg5e pole terms and a term of the form (17). The 

expression for h 0 then becomes a sum of terms of the form 

(16) and (19). 

In table 2 we present the predictions for b 0 from various 

phenomenological models for extrapolating the high-energy K ±p 

scattering data to c symptotic energies. We also list the prediction 

for a_ ( oo)-a ~oo) from '~ach model to show the extent to which it 

violates the Ponera:1chuk theorem. In several analyses only the 

total cross sectioru= were parametrized directly, so that it was 

not clear what value to take for w
1 

in eq. (17). In these cases, 

however, the prediction for b 
0 

is not too sensitive to the value 

of w 
1 

and for definiteness we set w 1 = 1 GeV. 

As is obviou~• from eq. (14), models which satisfy the Pome­

ranchuk theorem ard give the usual inequality a_ ( w) '>a+ ( w) 

predict b 
0
<0. HowEver, we see from table 2 that all existing models 

of this type give values of b 0 several times smaller in magnitude 

than be result (13) obtained from our analysis. On the other 

hand, the componer:t of the amplitude which violates the Pomeran-

chuk theorem gives a positive contribution to h 0 , as is clear 

from 2q, ( 19), This accounts for the positive values of b 0 for 

the last three mode . .s listed in table 2. 

It may appear surprising that hd>O for such models, since 

in these cases the integrand of eq. ( 14) has the same sign as 

for models which sntisfy the Pomeranchuk theorem but is even 

larger in magnitude, However, it must be remembered that the repre­

sentation (14) break; down in this case and must be replaced by 

a contcur integral :;uch as expression (10), It is easy to verify, 

in fact, that for the asymptotic form (17) the negative (divergent) 
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integral (14) is completely compensated by a positive (divergent) 

value for the integral over the semicircular contcur at infinity. 

We conclude that our negative value of b0 strongly favours 

a zerb asymptotic limit u_ ( oo ) - u+ (oo) but require:; a considerably 

slower approach to this limit with increasing ene1·gy than that 

which is obtained from conventional Regge pole models. 

B. Alternative Conformal Mappings 

The conformal mapping (7), which tramsform:; the interval 

wi _< w s mK onto the unit circle I ~ I= 1 and the remainder of the 

cut plane into the interior of this circle is not th2 only one hav­

ing these properties. A one-parameter family of ~.uch mappings 7J(w) 

may be constructed by applying the additional trccnsformation 

~-A 
7J = ----. 

1- A {; 
(20) 

where A is a real parameter in the range -1 <A< 1 This transfor-

nation maps the interior Qf the unit circle into ih;elf, with {; =+ 1 

as fixed points. It is characterized by the fact frat the point at 

infinity in the w plane is mapped into the point 7J = - A and the 

point <;=A into the origin 71 =0. Eq. (20) reduces to the identity 

transformation for the special case A = 0 and 7 (w) then becomes 

simply the mapping which we have already used. We now present 

an argument in favour of using this particular rna pping. 

Consider the expansion 

(21) 
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in analogy with eq. \ 3), where H ( Tf) = ( Tf -Tf 1\ ) t1 ( Tf ) • It is well known 

that if H ( Tf ) is an an :llytic function whose sungularities mearest 

to the origin lie on the unit circle ITf I = 1, then the terms of the 

expansion (21) for laJ•ge n behave like K.,n, where K is some 

constant. In other words, the smaller the value of ITf I , the more 

rapidly the series (2:.) converges, at least asymptotically. Hence it 

is desirable to use c transformation for which the region of ener­

gies over which the fit is made is concentrated as close as pos­

sible to the origin in the Tf plane, in order to reduce to a minimum 

the importance of the higher-order terms of the series. 'I'he compari­

son of the characteristics of various mappings given in table 3 

shows that the one v lith ,\ = 0 is very close to the optimum accord­

ing to this criterion. 

As is evident from table 3, the geometric structure of the 

mapping Tf(w) is ve~r sensitive to the parameter ,\ • Therefore 

we obtain a strong consistency test by examining the stability 

of our results against small variations of this parameter. Repeating the 

5-parameter fit for ec ch of the two mappings defined by ,\ .. ~0.2, 

we found that all the qualitative features of the fit described in 

sec~· 6, such as the predicted signs of 0 + , were perfectly 

reproduced and that the variation in the ~lue of x 2 for the 

best fit was negligibl·:!. 'I'he numerical values found for a.± 

in these cases differ from those shown in table 1 by less than 0.06 

over mc:st of the energy range considered. Moreover, the predicti­

on for the parameter b0 varied from the value (13) by less than 

its statistical error. 'J'hus, our results are quite stable under 

variations of the mapping. 
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Finally, we briefly discuss a class of possible alternative 

mappings TJ (w) which could be used in connect.on with our 

method, One possibility is to map the larger inte1val of unphysical 

energies w A ;:;; w ~ m K onto the unit circle, so hat it becomes 

unnecessary to explicitly remove the A pole as in eq, ( 8), 'I'he 

appropriate mapping is obtained if the energy w I appearing in 

eq, (7) is replaced by w A • This mapping has two disadvantages, 

however, Firstly, we wish to study the possibilily of analytically 

continuing the amplitude from the physical region to the A pole 

(see sect. 9). For this purpose the A pole must be mapped into 

a point in the interior of the circle. Secondly, th ~ asymptotic 

convergence of the series representation for the discrepancy func­

tion is poorer in this case according to the crite·rion discussed 

above. 

A second variant of the conformal mapping is one which 

transforms only the unphysical cut for w rrA :S w ~ m K onto the 

unit circle. This corresponds to the replacement of w I by w rrA 

in eq. (7). The A and I poles are then both napped into the 

interior of the circle and it is necessary to add an additional 

factor (~- ~I ) in the definition of the function H ( ~ ), eq. (8), 

in order to remove the I pole explicitly. The p•)wer series expan­

sion in this case has the optimum rate of conve1·gence according 

to the criterion given above, However, this criterion Q.pplies only 

to the behaviour of the terms of the series as n · • "" , Because 

of the additional multiplicative factor (~-_{;I), the function which 

is fitted to the power series is likely to have more structure in 

the physical region than in the original case, so that a larger 

number of terms may be required for a good fit. In addition, there 

is a poorer separation of the A and I poles in this case, 

so that the possibility of continuing to the Apole appears less likely. 
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9. ~:ontinuation to the A Pole 

Since our parametrization is based on series which con­

verge at the A pole, it is possible in principle to use it to 

analytically continun the scattering amplitude from the physical 

region to this pole. In particular, from eq. (8) it follows that H(~A) 

is equal to the residue at the A pole in the variable ~ • Thus 

the corresponding residue - X(A) in the variable w , which is re­

lated in a simple w:ly to the coupling constant g A (see sect. 2), is 

given by 

(22) 

From our 5-p< Lrameter fit we found in this way the value 
2 

gA = 1.5+22, which, within the errors, is consistent with all other 

recent de~rmination:; of this coupling constan/
6

•
7

•
27

/. However, 

it is important to nc te that the value of gA , unlike the other 

predictions from our analysis which we have already discussed, 

is rather unstable vrith respect to variations of the number of 

parameters used in the fit as well as variations of the conformal 

mapping of the type described in the preceding section. We found 

that the variation in the value of gA among the various accep­

table fits is as larg ~ as .:!:_ 20. This suggest that, in addition to 

the purely statistica. error for a given fit, there is an additional 
2 

significant error in g A due to the truncation of the power series 

(8). By considering the rate of convergence of this series, we 

shall now show thai this is indeed the case. 

In table 4 we give the numerical values of the individual 

terms An ( ~ ) =an(; n of the power series ( 8) for our standard 5-pa-
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rameter fit ( N = 4) at various values of ~ • "l"early all of 

the experimental IC p data which are used in th ~ fit lie in the 

interval -0,2 < ~ < 0, while the entire K+ p physic:U region is 

contained in the interval 0 < t < 0,1, From th ~ numerical 

values of An (~), it is clear that the convergence of the series 

is good over most of the region in which the data are fitted, 

However, the convergence is already quite poor at the position 

of the A pole, t A = 0,360, where the terms /, 2 and A 3 

become comparable in magnitude, In fact, these 1 wo terms contri­

bute there with opposite signs, so that the partie! sum of the se­

ries for N "' 4 is extremely sensitive to the point at which it is 

truncated. Thus, it would be necessary to determine more terms 

of the power series in order to obtain a reliablE analytic continu-

ation to the A pole. This is not possible usin~ the experimental 

data which exist at the present time. 

10, Alternative Parametrizations 

We have already pointed out that the discrepancy function 

~(w) can be expressed as a sum of experimentally unknown 

contributions from the hyperon poles and the unphysical cut. 

This suggests that ~ ( w ) may be directly parame rized in terms 

of these unknown contributions. 

In order to obtain an independent check ol our results, 

we have also analyzed the experimental data by means of such 

parametrizations, In particular, the two hyperon pole terms in 

expression (6) for ~(w) were replaced by a sing!~ effective pole 

term whose residue vvas taken as a free parameter, The amplitude 

on the unphysical cut vvas replaced by either a sum of one or 
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two effective poles on the real axis, i.e., A _(w) = I B n 8 ( w -wn ) 

with B n and w n ( 1 = 1, 2) as free parameters, or by a sum 

of one such pole and a Breit-Wigner resonance formula to repre­

sent the effect of the Y ~ (1405) contribution, In addition, we allo­

wed one or two free coefficients in the series (9) for the asymp­

totic contribution to the discrepancy function. 

Only a small number of parameters could be determined 

from these fits, As expected, it was not possible to make an 

accurate determinat .on of the separate contributions from the hy­

peron pole terms a '1d the unphysical cut, since the values of 

the various parame :ers determined from the fits were highly corre­

lated, Nevetherless, we obtained satisfactory fits to the experimen­

tal data on the rea. parts of the scattering amplitudes using vari­

ous parametrization;; of the types described above. Different para­

metrizations with ar,proximately the same number of parameters 

led to similar fits, 

The details o · the resulting fits to the real parts, including 

the predicted signs , were all in excellent agreement with those 

obtained by the conformal mapping method, As before, we found 

that orily the single high-energy parameter b 0 was required, 

The values of b 0 and their statistical errors obtained from the 

various fits were irt excellent agreement with the previous result 

(13). The consisten:y of the results of this analysis with those 

of the conformal m.:o pping method provides further confirmation 

of their stability ani of the uniqueness of the fit, 

In conclusion, we have obtained an accurate and reliable 

model-independent determination of the real parts of the 

forward scattering amplitudes at moderate energies, as well as 

information about the asymptotic behaviour of the scattering ampli-
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tudes. However, the experimental data which are available at the 

present time do not permit a reliable analytic cc ntinuation of the 

scattering amplitude into the unphysical region. 
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Table 1 

The predictec. real parts D:t and the ratios ol. + := P /A • 
- ::t + 

A t;ypical er.t'Or tor ~ .. is ~0.02. 

k (GeV/c) Ot (Geli-1) "'.t 0_ (Gev-1) "'-
0.5 -2. ~ 9 -1.86 -0.90 -0.18 
0.6 -2.~3 ... 1.53 1.12 0.28 
0.7 -2.]9 -1.35 3.07 0.62 
0.8 -2.(5 -1.01 4.18 0.63 
0.9 -1.52 -0.74 4.80 0.60 
1.0 -1.53 -0.60 4.31 0.42 
1.1 -2.(5 -0.53 1.68 0.16 
1.2 -2.46 -0.54 1.86 0.21 
1.3 -2.E2 -0.57 2.73 0.32 
1.4 -3.21 -0.61 3.26 0.36 
1.s -3.45 -0.63 3.46 0.34 
1.6 -3.E6 -0.63 3.48 0.31 
1.7 -3.68 -0.63 3.50 0.30 
1.8 -4.10 -0.63 3.52 0.30 
1.9 -4-.32 -0.63 3.54 0.30 
2.0 -4.54 -0.63 3.62 0.29 
2.1 -4.74 -0.63 3.76 0.29 
2.2 -4.93 -0.62 3.89 0.29 
2.3 -5.12 -0.62 3.97 0.28 
2.4 -5.33 -0.62 4.01 0.28 
2.5 -5.55 -0.62 4.05 0.28 
2.6 -5.76 -0.62 4.09 0.27 
2.7 -5.96 -0.62 4.14 0.27 
2.13 -6.13 -0.62 4.20 0.26 
2.9 -6.39 -0.62 4.25 0.26 
3.0 -6.53 -0.62 4.31 0.26 
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WLJ2 

~ prediotiODS tv the p&Z'8118ter b f%ooa nr.lou JIOdela 
0 

tor the high-eDe1157 behaviour and the oo.rre1apond1 ng ftlua 

tor the &QIIlptotio 01"088 aeotion di.ttezoeDOe,. 

O"'_(oo) -~+(•o) bQ 
llet81'8DC8 and IIOdel (lib) (Ge,.-.a) 

Phil.l1pa aDd Jtarita [ ,SJ 0 -1.0 

Soluticm 1 

Dua et al. [ ~] o. -o.7 
llodels (a). (1) 

Barser aDd PII:Ul1ps [ 9] 0 -o.? 

RentgDol1 and V1ol1D1 [ U J 0 -1.~ 

Solution Ua 

Jackson [ 12) 0 -1.2 
lllode1 without ccm.stratJIU 

Barger aDd Ph1111ps [ 1~] 2.5 1.5 

.unowitt and Botell1 [ 14 J 2.1•o.~ - 1.4t0.~ 

Dambrais aDd Queen [ 15] ~.7!0.5 ~.o!o.4 
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TABLE 3 

Values of , correspond.i.Dg to various energies w, as 

a function of tb.e parameter ">- in the mapping defined 

by eqs. (7) and (20). 

-
').. 

-0.2 

0.0 

0.2 

1 GeV 2 tl-eV ±co -2 GeV -1 GeV WI\ 

0.07 0.15 0.20 0.23 0.26 0.52 

-0.13 -0.05 0.00 0.04 0.06 0.36 

-0.32 -0.25 -0.20 -0.17 -0.14 0.17 

TABLE 4 

Values (in fm units) of the individual tems 

An = ~En of the power series (8) for the 

5-param.eter fit (N=4) at various values of ~. 

~ Ao A1 A2 A3 

~0.05 0.0)9 ~0.007 0.016 :o.oo2 

~0.10 0.0)9 ~0.014 0.064 :o.on 

~0.20 0.039 ~0.027 0.256 ~0.106 

+o.36 0.0J9 ~0.049 0.830 :o.618 
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