





Summary

A new method of analyzing the experimental data on kaon-.
proton scattering is used to obtain an accurate determination of
the real parts of the forward scattering amplitudes at - moderate
energies,

The method exploits the known analyticity properties of the
scattering amplitWle and experimental data in a limited energy range
However, unlike cawentional dispersion relation calculations, it
requires no assu.nptions about the residues of the hyperon pole
terms and the amjlitudes in the unphysical and asymptotic regions.
A parameter describing the unknown asymptotic behaviour of the
difference of the (~p and K+p total cross sections is determined,
Its value favours a zero asymptotic limit for this difference but
requires a slower approach to zero than that predicted by convern-
tional Regge pole models which satisfy the Pomeranchuk theorem.
The method can be used in principle to analytically continue the
scattering amplitcle from the physical region to the A pole, ‘
However, a suffic.ently accurate model-independent determination of
the KNAcoupling constant cannot be obtained in this way using
the experimental clata which exist at the present time,



1, Introduction
The real parts of the K . p forward scattering amplitudes
have been predicted independently by many autl".ors/ 1-6/ An terms
of the experimentally known total cross sections according to a
variety of dispersion relations. The motivations for such calcula-

)

tions are well known and will not be discussed here in detail,

Although the results of these calculations are generally in
qualitative agreement with each other and with most of the expe-
rimental data, there are some significant discrepancies in their
detailed structure, especially at energies of the order of a GeV
(see, e.g., fig, 28 of'f r‘ef./5 )e These discrepancies are mainly due
to differences in the input data which are used, namely the set
of experimental total cross section data, the mocels used to extra-
polate the imaginary parts of the scattering amplitudes into the
unphysical and asymptotic regions, and the valu=ss of the KNA
and KN X coupling constants,

The importance of using a method which i not too sensi-
tive to the poorly known coupling constants and to the structure
of the K p amplitude in the unphysical region below the elastic
threshold has recently been stressed/ 4'6/. Nevertheless, all previous

14,6/

calculations, including those of refs, , have adopted specific

parametrizations for the analytic continuation of the scattering



amplitude into the unphysical region, This analytic continuation
is found to be ratiier unstable in practice, so that the structure
of the amplitude ir the unphysical region and hence also the
corresponding 'predictions for the coupling constants (obta.ined by
means of forward dispersion relations) are very sensitive to the
parametrization which is chosen/ 7/ .

All previous methods of calculating the real parts of the
K : p forward scattering amplitudes, with one exception/ 6/ ,» have
also required the assumption of some specific Regge model for
the amplitudes at asymptotic energies, The results of such ana~
lyses are now sulject to an additional uncertainty, since recent
measurements of the K p total cross section between 20 and
55 GeV at Serpulmox/ 8/ are in poor agreement with the extrapola-
tions of most earli:r simple Regge pole fits to the data at lower
energies, Although attempts to fit the new data hawve been made/ 9_14/ ,
considerable ambiguity remains in the more sophisticated para-
metrizations, especially those including Regge cuts, so that there is
a large uncertainly in the extrapolation of the amplitudes to higher
energies,

The new Serpukhov data/ 8/ have in fact raised serious
doubts about the validity of the Pomeranchuk theorem for K p
scattering, If the Fomeranchuk theorem is violated, most of thé
conventional methoils of calculating the real parts of the forward
scattering amplitudes, based on dispersion relations with only one
subtraction, would be invalid in principle, On the other hand, it
has been noticed/7'15/ that numerical calculations based on the
standard dispersion relations with two subtractions/2/ involve

unpleasantly strong, cancellations among the various low-energy

contributions,



In the present paper we re-analyze all the available expe-
rimental data on the real and imaginary parts of ‘he l(i p forward
scattering amplitudes by means of a new method which avoids
the difficulties mentioned above, In this way we obtain a model-
independent lheoretical fit to the real parts of the amplitudes at
moderate energies, Unlike all previous analyses, our method re-
quires as input information only experimental data on the real
and imaginary parts of the amplitudes in a finite interval of the
physical region, No assumptions are required abcut the A and
3 poles and the amplitudes on the unphysical cut and in the

asymptotic region,

2. The Discrepancy Function

+
We denote by f+ (w)=D+(m )+ i A+(m)the forvard K™ p scat-
tering amplitudes in the_ laboratory fram;, normalized so that the

optical tlkeorem takes the form

0 (w)=47A (0)/k, (2)
+ +

where k and o« are the laboratory momentum ani energy of the
kaon respectively,
We now define the function

A(0)=D_(0)=D_(n )+ —E [(o)+] (a)], (2)
where
Ho)=Gm P I e 2D e
g ((u"—mx)(w " to ) (o't mx)((u’-(u |



f (0o
Jo ) =-Im | S Nde . (a)

M (0 +m No '~ )

Here W is the highest energy at which the total cross sections

oc,(w) are known experimentally, and S(W) denotes the semicircle

-i:m the upper half of the complex ® plane given by o= W .
Consider the closed contour in the o plane consisting

of the straight line joining the points ~W+ie¢ and W+ie (e +0")

and the semicircl: S(W). By applying Cauchy’s theorem to the

function

f (o)

F(a)';a) )=- —

(o +m x)('co'-(u )

(5)

around this contoar and using the well known analyticity and
crossing properties of f{ +(a>) f2l , it is straightforward to show that

w+m 7 X(Y) "k Ao’ )Mo’
AMo) = [ , + = —1, (6
m v=AXw_ + mx)( o o) Q,”A( ©’+m o ~0)
where
ma_ll "'ma
Y K
@ = - ’
Y 2n
P
X(Y) = gy llny —n)" —my]

and g Y is the K pY coupling constant,



If the validity of the Pomeranchuk theorem/ L6/ is assumed,
then in the limit W -~ the relation obtained by equating expres-
sions (2) and (6) reduces to a conventional disparsion relation for
f_(w) with one subtraction at the K'p threshold energy. However,
the validity of the finite energy relation which we obtain in this
way for finite W is completely independent of th> asymptotic
behaviour of the scattering amplitude,

Let us suppose that the total cross sectiors are known
experimentally in the range m <o <W , so that the integrall(w)
defined by eq. (3) is determined for all o« ., We also assume for
the moment that J(w ) is known, at least at intermediate energies
© (our method of determining this contribution is described in sect.
5). The term D _(m,) may be evaluated in terms of the known K*p
scattering length, Thws, if D, (0 ) is known experinentally at some
energy o , then A (;o) -is determined from ec, (2) in terms of
experimental information, -applying the crossing relation D (-w)=
=D, (o) in the case of K*p scattering, Eq. (6), on the other
hand, expresses A(w)as a sum of unknown contributions from the
unphysical region. In analogy with the terminology introduced by
Hamilton et a]./ 17/ for a similar function, we refer to A(w) as the

discrepancy function,

3. The Conformal Mapping Method

From eq. (6) it is clear that the discrepancy function A ()
has relatively little structure over most of the en2rgy region
lo| >mg in which it can be determined directly fi'om experimental
data, This is a consequence of the fact that A( ) at moderate or
large values of lo] is expressed as a sum of contributions from

relatively distant energies. Therefore we may expect that A(w)



can be well described in terms of a small number of parameters,
The essence of our method is the fact that, by virtue of eq. (2),
a fit to A(w) alsc constitutes a fit to D, (o) . We obtain a rapid-
ly convergent expansion for the discrep;ncy function by means of
a variant of a conformal mapping technique which has been appli-
ed previously to various problems in high-energy physics and
extensively discussed in the Iiterature/ 18_24/.

It follows fron eq. (6) that the only singularities of A(w) in
the @ plane are two hyperon poles and the unphysical cut

joining the branch points at o -A and m_ . We now introduce-

the new wvariable

é—=‘/w-mK"‘/w —w3 . (7)

\/w —mK - \/co -@ s

With an appropriat> choice of the square roots, eq. (7) represents
a conformal mapping £(w ) which transforms the entire cut  plane
into the unit circle [£]|=1 and its interiorx/. In particular, the
pole at w=w g ic transformed to the point £=1, the K7p
threshold at @ =m_ to the point ¢=-1, and the unphysical cut
for © A So <my to part of the unit circle. The region m < <

is mapped onto the interval —1<¢ < 0 , the region - «w< w< —m
- - K

onto a small portion of the positive real axis, and the pdnt w=w A
onto a point on th= real axis at ¢ =&, ~ 0,36 . The point
at infinity in the « plane corresponds to £=0 . The resulting

structure in the £ plane is shown in fig, 1.

x/’l‘he mappirig which achieves this is not unique. A discus-
sion of the reasors for the choice of the particular form (7) is
deferred until sect, 8.



Thus, the discrepancy function A(f),regarded as a function
of the new variable ¢ , is analytic within the unit circle except
for the pole at ¢=¢ A - If this pole is removed explicilly, the re-

sulting function may be expanded in a power series in the form
H(£)=(&-¢ PA(E)=3Z o &7, (8)

n=0 n
convergent for all |£]<1l. Our method is to determine as many

coefficients of the expansion (8) as possible from the experimen-

tal knowledge of the discrepancy function,

4, Evaluation of the Discrepancy Function

We choose the cut-off energy W in eq. (3) to be 55 GeV,
Numerical values of [(w) are calculated in terms of the existing
experimental data on o (0 ). References to the data up to 20 GeV
can be found in ret‘./7 ._In addition, we use the S=arpukhov data/s/
on o_(0) between 20 and 55 GeV,

Unfortunately, the K+p total cross section ras not been
measured above 20 GeV, However, the data at lowver energies
indicate that ¢, (0w ) is remarkably structureless and constant to
within high accuracy from a few GeV up to 20 G«eV, so that it
seems relatively safe to extrapolate its constant value to higher
energies. Thus, we assume that o (o) =(17.3+0.2) mb, between

+
20 and 55 GeV, Some of the recent fits to the K~p total cross
sections, especially those including Regge cuts, predict a small
rise in the value of 0 (o) within this energy range, typically

b/9, 10,12,13/

up to 1 m . However, because of the rapid conver-

gence of the integral [(y), an error of this order of magnitude



would not be serious; in fact, for the values of lo]| of the order
of a few GeV at which the discrepancy function may be evalua-
ted, such an erro- in the contribution to l{w) from the region

0> 20 GeV may be accurately compensated by an effective contri-
bution to the high-energy integral J(w) , whose form we describe
in terms of free parameters.

Since the K tp total cross sections have been measured less
accurately at energies close to threshold, we make use of theore-
tical parametrization of the scattering data to calculate ¢, (o)
at low energies, Por the integration over o (w) wup to ;he kaon
momentum k = 664 MeV/c, as well as the term D+(m < in
eq. (2), we use thz § -wave effective-range parameters determined
from a recent analysis of K* p scattering at low energies/25/. For
the integration over o_(w) up to k= 293 MeV/c, we use the
parameters determined from a recent S— and P -wave multichannel
analysis of the lowv-energy K~ p and Kg p data/26/. Other recent
parametrizations of these data 27 give practically identical predic-
tions for o_ (w) in the low-energy physical region but lead to
rather different exrapolations of the amplitude into the unphysical
region, For our purposes it is unimportant which parametrization
is chosen, since our analysis does not require any information
about the amplitud> in the unphysical region,

Values of |D (m)l may be obtained at many energies o
by comparmg exirapolahons of experimental K p elastic differen-
tial cross sections to the forward direction with the corresponding
optical limits determined from the total cross section data. For
reasons discussec in the following section, we must avoid using
values of the discrepancy function too close to the K'p elastic

threshold or at energies which are too large in magnitude, We
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therefore corifine our analysis to values of D_ .t momenta k
between 0,3 and 5 GeV/c and values of D, at k<5 GeV/e,
We have made an extensive search of the literaure for experimen-
tal data on the angular distributions for Kip scatering in these
momentum ranges. In this way we have determined the values of
ID_| at 54 momenta from 0.35 to 4.6 GeV/c and ID,[ at 35 momen~
ta from 0,778 to 4.6 Gre\//cx/. As a rule, the sizns of D, are
undetermined experimentally, although at many er ergies th;y have
been fixed unambiguously by means of dispersion relations/l_7/.
Our procedure for fixing the remaining signs of I} | in our calcu-
lations is defined in detail in sect. 6. B

Reliable values of D, at low energies may be constructed
with the aid of the effective range parameters for K*p scattering,

[25,27/ and permit

These parameters are now very well determined
a significantl: more accurate evaluation of D, than the individual
fixed-energy measurements of K+p scattering, We therefore supple-
ment our set of 89 experimental data points for D, | at higher
momenta by 15 additional values of D at equell;r—spaced energies
in the momentum range k < 0,55 GeV/c, calculated by means of

[25]

the low-energy o, (o) contribution to the integral I(w ). Thus,

the same effective range parameters which we use to evaluate
provided that the signs of D, and the values of J(w) can be
determined, the information summarized above leads to a knowledge

of the discrepancy function A(w) at a total of 104 energies,

x/Our complete compilation of the data on |L +|, including some
values which became available to us too late to be used in the
present work, will appear elsewhere/28/, References to most of
the data can be found in refs,/6,7,29/,

11



5, The Parametrization

We truncate the power series (8) for the function H(¢),
retaining only the first N coefficients ag,a, ,...,a y_,
as free parameters to be fitted to the values of the discrepancy
function. The optimum value of N is determined by the -usual
stafistical criteria, In addition, however, it is necessary to para-

metrize the unknown energy dependence of the high-energy contri-

bution J(w). We do this by expanding the integrand in the defini-

tion of J(o) , eq. (4), in powers of w/w ’ . Thus,
J(w) = bnu , (9)
where
f (o0 )do”’
b =-Im [ ——= ) (20)

S(W) wr(n+1) ((L)’-f—lll )
K

The series (9) converges for all |o|< W. As additional parameters
for the fit, we take the first M coefficients bn of this series,
From eq. (4) it is clear that the series (9) is rapidly convergent
for ol W. In oartiéular, J o)~ J(O):bo for such energies, Thus,
only a small numker of terms is required if the analysis is res-
tricted to energies sufficiently small in comparison with W

To summarize our method, the procedure defined above
amounts to a parametrization of the experimentally measurable

function

Glw)=A(0)- 2% J(w) (12)

m
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in the form

Glo)=—t S a g™ CFmK 5y (12)

é‘_é‘An:O“ T n=0 n

Although we have established the existence: of this repre-
sentation, it is worth while to point out that neither of the two
series in eq. (12) would by itself be sufficient. This is a conse-
quence of the analytic structure of G(w } in the complex » plane,
From egs. (4), (6) and (11) it can be seen that G(w) has both
the low-energy singularities (the hyperon poles aid unphysical
cuf) and the high-energy cut (with branch points at ¢ =+ W ). In
the energy region of interest to us, a series of "he first type
in eq., (12) cannot represent G(w) because of the high-energy
singularities, while one of the second type cannot represent G(o)
because of the low-energy singularities,

To ensure rapid convergence of each of thz series in
eq. (12), it is necessary to impose certain restrictions on the
range of values of w over which the fit is made, Since the
first series converges only within the unit circle in the ¢ plane,
we must exclude values of ® corresponding to [£]=1 , i.e.
energies close to the K'p elastic threshold. Similarly, since the
second series converges only within the circle o] =W |, we must
exclude values near this limit. These considerations account
for the restrictions on the range of © which were introduced

in sect, 4,

6., Fit to the Real Parts

Our procedure is as follows, The function ((w)defined
above is known experimentally at various energies o , except

for an ambiguity due to the unknown signs of D+(0) . We perform

13
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i

a least-squares fit to the values of G(w) obtained by assuming

a fixed set of signs for Dy (o), in terms of a truncated expansion
of the type (12) in which the N+M coefficients a g, ..., a,_, ,
by .o s by are treated as free parameters, Inverting eq. (2),

we find in this way a fit to Dt (0). The input and output signs of
Di(w)are then conmpared at each energy. If any of the assumed
input signs disagree 'with the corresponding output signs, these
input signs are cranged (leading automatically to an improved fit
with the same parameter values) and a least-squares fit is found
using the new values of G(w). This procedure is iterated until

all the correspondng input and output signs agree,

The entire s=2quence of operations is carried out under
various initial assumptions about the signs of D + until it appears
likely that a better final fit cannot be found. In this way we deter-
mine the set of signs for the D + data which leads to the best
theoretical fit to the entire data s_,.et.

We have carried out the analysis for various numbers of para-
meters N and M in each of the two series. The first coefficient
of the second series, bo y, was found to be accurately and con-~
sistently determinel by the wvarious fits and its inclusion was nece-
ssary for an acceotable fit, The inclusion of bl , however, gene-
rally gave only a slight inprovement and its numerical value was
less consistently determined by the various fits, Therefore we con-
sider here in detal only those fits with M=1 .,

Whenever any of the experimental data points for D, differed
by more than five standard deviations from the corresponc_iing final
theoretical value from a particular fit, these points were rejected
and the fit was reojseated without them, Two particular data points

were repeatedly rejected by this criterion, namely the values of
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139/ apa Ib, | at 1:355 Gevic?Y, both of which

ID_] at 2,0 GeV/c
have rather small errors, The remaining experimantal points were,
as a rule, within 3,5 standard deviations from th= theoretical predic-~
tions,

With N = 1, 2, 3, 4, 5 our best fits have values of ¥  equal
to 105, 101, 62, 60 and 60 respectively, The inclusion of further
parameters does not give a substantial improvement and in fact
leads to unreasonably large errors and correlation coefficients for
the parameter values, We have therefore chosen N =4 as the
optimum value, corresponding to a 5-parameter fit, For our purpo-
ses the choice between the 4- and 5-parameter fits is unimportant,
since their predictions for Di are practically identical within the
entire energy range under consideration,

Since 102 values of D 4+ are fitted, it may appear that x2
for our optimum fit is surprisi;mgly small, This may be partly attribu-
ted to the fact that we constructed 15 values of D, from effective
range theory. These values are certainly not statistically indepen-
dent, so that the true number of degrees of freedom is somewhat
smaller than the apparent number, Moreover, the two rejected points
would have given rather large contribution to x¥2 if they had been
retained in the fit,

Our predictions for D and a+sD+/A+ fcr the 5-parameter
fit, for kaon momenta k be—tween 0.5 —an& 3.0- G 3V/c, are presen~
ted in table 1 in a form which may be comparec directly with
the tabulated results of the most recent analysis of Martin and
Perrin/ 6/ . We have restricted k to the range in which most of the
interesting structure of D, occurs. This is alsc the momentum
range in which most of th_e experimental data exist and in which

our series expansions are most rapidly convergant, Over most of
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this range, the results for a from the 4- and 5-parameter fits

differ by less than 0,01,

ES

Our predictions for D, over the entire momentum range are
in excellent agreerent with those tabulated in ref;/ 6/

are within 5% of each other. Our results

and the corres-
ponding values of ¢
for D_,like all earlier predictions, show the expected local struc-
tures in the energy dependence of D_ which are associated with
the resonance peals in the K—p total cross section, However, our
values of D_ are on the whole, considerably more positive than
those obtained from many of the earlier dispersion relation calcu-
lations/ 1_6/ . In particular, we find thatD _remains positive for all

k > 0.55 GeV/c, whereas some of the earlier calculations predicted
further changes of sign in this region, Since there is little ambi-
guity in the experirnental total cross section data, such differences
can be accounted for within the framework of conventional disper-
sion relations only by changes in the assumptions about the hype-
ron pole terms and the amplitudes in the unphysical and asymptotic
regions,

Even if we tcok the initial set of signs of D, from any of the
earlier predictions, our procedure led to either a f;t similar to the
one shown in table 1 or a distinct fit with significantly larger x? .

It is interesting to 1ote, however, that we found a fit rather similar
to that of Martin ard Perrin/s/ if all the signs of D+_ were const-
rained to be identical with the signs predicted by them, We point
out that we obtainel the expected resulis in all cases in which
certain information about D, is known unambiguously from forward
dispersion relations/1_7/. In—addition, we found an almost perfect

fit to the accurately known values of D (w) at low energies calcu~

from effective range theory.
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From a recent phase shift analysis of the low-energy K+p'

32/

tional solution which we have used, it is possille to construct

scattering data it was found that, in addition to the comnven-
a family of alternative solutions which are characterized by a po-
sitive sign for D+ (w) at low energies, To investizate this point, we
repeated the analysis without using any values of D+(w) in the low-
energy region, Although the fit is less accurately determined in
this case, it still requires D, (w) <0 at low energies and in fact
favours values even more negative than for the conventional solu-
tion, We conclude that the K+p scattering lengtl is indeed nega-
tive and therefore we reject the alternative type of solution,
Discrepancies between the experimental values of D_  and
dispersion relation predictions have often been noticed/ 2,4-6/ in
the momentum region below 2 GeV/c, where mary of the earlier

/6]

a discrepancy »at momenta just belaw 0.9 GeV/c was attributed

theoretical predictions were too small in magnitude., In ref, such
largely to an inappropriate choice of the number of terms of the
Legendre polynomial series which was fitted to the K™p angular

/33/. We find this explanation unconvincing, howe-

distributions in ref,
ver, since, in contrast with many earlier calculetions, we obtain
a good fit to the entire data set, In fact, if we ise the values of
[D_| obtained in ref./6/ from a re-analysis of the experimental
data of ref./ 33, instead of the originally reportel values, our best

fit becomes somewhat poorer, Moreover, data on D_. from other
/34-36/

33/

independent experiments near 0.9 GeV/c are in good agree-

ment with the results of ref, and with our fit

17



7. Asymptotic Behaviour of the Scattering Amplitudes

The parameter b, in our fit characterizes the asymptotic
behaviour of the scattering amplitudes., The wvalue determined from

the 5-parameter fit is
-2
b,=(-3.4 + 0.6)GeV . (13)

As a measure of th2 stability of this result, we may compare
it with the value 1 ,=(-3.6+0.2) GeV > obtained from the 4-para-
meter fit, The result (13) is of special interest, since any model
for the asymptotic bshaviour of the scattering amplitudes gives
a definite prediction for this parameter,

By deforming the contour for the integration (10) into a path
along the real axis for |o|>W and a semicircle at infinity, and

neglecting terms of order mg /w’ in the integrand, we obtain

1 = lo (@)= o (o)’

,

J

” [

bo=- (14)

=

in the case in which the Pomeranchuk theorem is satisfied. Accor-
+

ding to the conventional Regge pole model, the K™ p cross sec-

tion difference may be parametrized at high energies in the form

-1

o
o (@)= 0, (@)=22 C (o/a,) \ (1)

where a, are the trajectory intercepts, €; are residue functions
and 0, is some fixed scale factor; the summation is usually
taken over the p &nd o Regge poles, Substituting eq. (15) into

(14), we obtain in tris case

C, (W /q)% ™!

1 1 @y

b =13 . 16

0o =5 3 —— (16)
i
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Next we consider models of the asymptotic behaviour which
violate the Pomeranchuk theorem, If the Ktp total cross sections
tend to different asymptotic limits o, (=) , it follcws from a twice-

subtracted dispersion relation that the amplitudes. have the asympto-

16/

tic form
wa_(""} /4 (un )—0’ (un)
fo)= [—= = fog (—) —.il, (17)
4nm 7m0 (&) o,
where @ ; is some constant, _
. . [15,37/
Consider first the exireme assumption that
a+(w)=ai_(oc) for Jw|> W. (18)

In this case it may by shown that the correct viilue of the contour
integral (10) for the quantity b, is obtained if the asymptotic
form (17) is used, even though this form is not necessarily locally
correct on the contour of integration, The argument is as follows,
The contour integral (10) may be deformed into the sum of an
integration along the region W<|w|<U of the real axis and an
integration over a semicircle of radius U . Let U be sufficiently
large that the integrand is given correctly on the semicircle in
terms of the asymptotic form (17). This asymptotic form may also
be used to evaluate the integral along the real axis, since this
integral involves only Im f _ , which is given ccrrectly (to within
terms of order m /o ) by eq. (17). Thus the analytic function
(17) also leads to the correct result for the orig nal contour. Sub-

stituting (17) into eq. (10), we find

by=tm [o_(w)=0 (=)]lg(W/ o ). (19)

19



In more general models which violate the Pomeranchuk theo-

rem, the amplitudes are described at high energies by a sum

of conventional Regze pole terms and a term of the form (17). The
expression for b, then becomes a sum of terms of the form
(16) and (19).

In table 2 we present the predictions for b, from various
phenomenological mociels for extrapolating the high-energy K ip
scattering data to esymptotic energies, We also list the prediction
for o_(=)—0 () from 2ach model to show the extent to which it
violates the Panerainchuk theorem. In several analyses only the
total cross sections were parametrized directly, so that it was
not clear what valus to take for in eq. (17). In these cases,

1
however, the prediction for b, is not too sensitive to the value

of o, and for definiteness we set w, = 1 GeV.

As is obvious: from eq. (14), models which satisfy the Pome-
ranchuk theorem ard give the usual inequality o_ (o) >0 (o)
predict b <0. However, we see from table 2 thatall existing models
of this type give values of b o Several times smaller in magnitude
than tie result (13) obtained from our analysis, On the other
hand, the componert of the amplitude which violates the Pomeran-
chuk theorem gives a positive contribution to b, , as is clear
from =q. (19). This accounts for the positive values of b, for
the last three modes listed in table 2,

It may appear surprising that by>0 for such models, since
in these cases the integrand of eq. (14) has the same sign as
for models which satisfy the Pomeranchuk theorem but is even
larger in magnitude. However, it must be remembered that the repre-
sentation (14) breals down in this case and must be replaced by

a contaur integral :such as expression (10). It is easy to wverify,

in fact, that for the asymptotic form (17) the negative (divergent)

20



integral (14) is completely compensated by a positive (divergent)
value for the integral over the semicircular contcur at infinity.
We conclude that our negative value of b, strongly favours
a zero asymptotic limit 0_( oo )—0+(°°) but requires a considerably
slower approach to this limit with increasing energy than that

which is obtained from conventional Regge pole inodels,

8, Alternative Conformal Mappings

The conformal mapping (7), which tramsforms the interval
wy <o < myg onto the unit circle | |=1 and the remainder of the
cut plane into the interior of this circle is not thz only one hav-
ing these properties. A one-parameter family of siuch mappings (o)
may be constructed by applying the additional treinsformation

E-A
M=, (20)

1-A ¢
where A is a real parameter in the range -1<A <1 , This transfor-
nation maps the interior of the unit circle into itself, with ¢ =+ 1
as fixed points, It is characterized by the fact trat the point at
infinity in the © plane is mapped into the point =-A and the
point £=A into the origin 5 =0. Eq. (20) reduces to the identity
transformation for the special case A = 0 and j(w) then becomes
simply the mapping which we have already used, We now present
an argument in favour of using this particular mapping,

Consider the expansion

H(p) =Sa 5" (21)
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in analogy with eq. \3), where H(7)=(7-74)A(y). It is well known
that if H(p) is an analytic function whose sungularities mearest

to the origin lie on the unit circle |7} =1, then the terms of the
expansion (21) for large n behave like K", where K is some
constant, In other words, the smaller the value of 7|, the more
rapidly the series (2:) converges, at least asymptotically., Hence it
is desirable to use & transformation for which the region of ener-
gies over which the fit is made is concentrated as close as pos-
sible to the origin in the 7 plane, in order to reduce to a minimum
the importance of the higher-order terms of the series. The compari-
son of the characteristics of various mappings given in table 3
shows that the one vith A=0 is very close to the optimum accord-
ing to this criterion,

As is evident from table 3, the geometric structure of the
mapping 7{w) is ver sensitive to the parameter A ., Therefore
we obtain a strong consistency test by examining the stability _
of our results é.gainsr small variations of this parameter, Repeating the
5-parameter fit for eech of the two mappings defined by A =+0.2,
we found that all the qualitative features of the fit described in

sect. 6, such as the predicted signs of D were perfectly

+ 0
reproduced and that the variation in the \z;.lue of xa for the
best fit was negligibl2, The numerical wvalues found for @,

in these cases differ from those shown in table 1 by less than 0.06
over mast of the energy range considered, Moreover, the predicti-
on for the parameter b, varied from the value (13) by less than
its statistical error. 7hus, our resulis are quite stable under

variations of the mapping,
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Finally, we briefly discuss a class of possible alternative
mappings 7(w) which could be used in connecton with our
method, One possibility is to map the larger inteival of unphysical
energies (uAS(u <m onto the unit circle, so tarat it becomes
unnecessary to explicitly remove the A pole as in eq. (8). The
appropriate mapping is obtained if the energy @ 3 appearing in
eq. (?) is replaced by o A+ This mapping has two disadvantages,
however, Firstly, we wish to study the possibility: of analytically
continuing the amplitude from the physical region to the A pole
(see sect. 9). For this purpose the A pole must be mapped into
a point in the interior of the circle. Secondly, th2 asymptotic
convergence of the series representation for the discrepancy func-
fion is poorer in this case according to the criterion discussed
above,

A second variant of the conformal mapping is one which
transforms only the unphysical cut for w S @ <m_ onto the
unit circle, This corresponds to the replacement of ©y by @\
in eq. (7). The A and I poles are then both napped into the
interior of the circle and it is necessary to add an additional
factor (£ - fz) in the definition of the function H(£), eq. (8),
in order to remove the X pole explicitly, The power series expan-
sion in this case has the optimum rate of convergence according
to the criterion given above, However, this criterion applies only
to the behaviour of the terms of the series as n+»x , Because
of the additional multiplicative factor (f—fz), the function which
is fitted to the power series is likely to have more structure in
the physical region than in the original case, sp that a larger
number of terms may be required for a good fit, In addition, there
is a poorer separation of the A and 3 poles in this case,

so that the possibility of continuing to the Apole appears less likely.

23



9, Continuation to the A Pole

Since our parametrization is based on series which con-
verge at the A pole, it is possible in principle to use it to
analytically continue: the scattering amplitude from the physical
region to this péle. In particular, from eq. (8) it follows that H(§, )
is equal to the residue at the A pole in the variable € , Thus
the corresponding residue —X(A)in the variable ® , which is re-
lated in a simple way to the coupling constant g, (see sect, 2), is

given by

~X(A)=H ) Ud d . 22
(€, w/ ¢>§= e (22)

From our S-parameter fit we found in this way the wvalue
2
BA = 15422, which, within the errors, is consistent with all other

recent determinations of this coupling constant/6’7’27/

. However,
it is important to ncte that the value of g2A » unlike the other
predictions from our analysis which we have already discussed,
is rather unstable vith respect to variations of the number of
parameters used in the fit as well as variations of the conformal
mapping of the type described in the preceding section, We found
that the wvariation in the value of g“’A among the wvarious accep-
table fits is as larg= as + 20. This suggest that, in addition to
the purely statistica. error for a given fit, there is an additional
significant error in gj\ due to the truncation of the power series
(8). By considering the rate of convergence of this series, we
shall now show that this is indeed the case.

In table 4 we give the numerical values of the individual

terms A_(€) =a ¢" of the power series (8) for our standard 5-pa-
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rameter fit ( N = 4) at various values of ¢ . Nearly all of

the experimental K p data which are used in thz fit lie in the
interval -0.2 <£ < 0, while the entire K+p physical region is
contained in the interval 0 < ¢ < 0,1, From th2 numerical
values of A (£), it is clear that the convergence of the series
is good over most of the region in which the data are fitted,
However, the convergence is already quite poor at the position
of the A pole, ¢, = 0.360, where the terms /, and A,
become comparable in maghnitude, In fact, these two terms contri~
bute there with opposite sighs, so that the partiel sum of the se-
ries for N=4 is extremely sensitive to the point at which it is
truncated. Thus, it would be necessary to determine more terms
of the power series in order to obtain a reliable analytic continu-
ation to the A pole, This is not possible using the experimental

data which exist at the present time.

10, Alternative Parametrizations

We have already pointed out that the discrepancy function
Al(w) can be expressed as a sum of experimentally unknown
contributions from the hyperon poles and the unphysical cut.
This suggests that A(w ) may be directly paramerized in terms
of these unknown contributions.

In order to obtain an independent check of our results,
we have also analyzed the experimental data by means of such
parametrizations, In particular, the two hyperon pole terms in
expression (6) for A(w) were replaced by a singl=s effective pole
term whose residue was taken as a free parameter, The amplitude

on the unphysical cut was replaced by either a sum of one or
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two effective poles on the real axis, i.e., A _{0)=2 B & (a)—a)n )

with B, and o, ( 1 = 1,2) as free parameters, or by a sum

of one such pole and a Breit-Wigner resonance formula to repre-
sent the effect of the Y § (1405) contribution, In addition, we allo-
wed one or two free coefficients in the series (9) for the asymp-
totic contribution to the discrepancy function,

Only a small number of parameters could be determined
from these fits, As expected, it was not possible to make an
accurate determinat.on of the separate contributions from the hy-
peron pole terms and the unphysical cut, since the wvalues of
the various parameers determined from the fits were highly corre-
lated, Nevetherless, we obtained satisfactory fits to the experimen-
tal data on the rea. parts of the scattering amplitudes using wvari-
ous parametrizations of the types described above. Different para-
metrizations with approximately the same number of parameters
led to similar fits,

The details o! the resulting fits to the real parts, including
the predicted signs, were all in excellent agreement with those
obtained by the conformal mapping method. As before, we found
that only the single high-energy parameter b, was required.

The values of b, and their statistical errors obtained from the
various fits were ir. excellent agreement with the previous result
(13), The consistenzy of the results of this analysis with those
of the conformal me pping method provides further confirmation
of their stability anl of the uniqueness of the fit,

In conclusion, we have obtained an accurate and reliable
model-independent determination of the real parts of the Kip
forward scattering amplitudes at moderate energies, as well as

information about the asymptotic behaviour of the scattering ampli-
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tudes, However, the experimental data which are available at the

present time do not permit a reliable analytic ccntinuation of the

scattering amplitude into the unphysical region,
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Table 1

/A,

oy, 5'4;

Dt and the ratios

The predictel. real parts

*o.02,

A typical error for o, is

o, D (cev1)

D, (Gev~1)

k (GeV/c)

—0018

-0.90

~I.86
«], 53
-I.35
-I.0I
~0.74
-0.60
-0.53
~0.54
-0.57
-0.61I
~0.63
~0.63

.29

A
-2

005

0.28
0.62
0.63
0.60
0.42
0.I6
0.21
0.32
0.36
0.34
0.31I
0.30
0.30
0.30
0.29
0.29
0.29
0.28
0.28
0.28
0.27
0.27
0.26
0.26
0.26

:3

0.6

I.12.
3.07
4,18
4,80
4,31
1.68
1.86
2.73
3.26
3.46
3.48
3.50
3,52
3.54
3,62
3.76
3.89
3.97
4,01
4,05
4,09
4,14
4,20
4,25
4,31

-2.19
~-2.(5
-I.¢2
-I.3
-2.C5
=2.46

0.7
0.8

I.0
I.1
I.2

I.3
I.4
I.5

-3.c1
-3.45
-3.€6

I.6
I.7

-0.63
~0.63
-0.63
~-0.63
-0.62
-0.62
-0.62
-0.62
-C.62
-0.62

-4.10
-4.32
~4,54
-4 74

1.8

I.9

2.0
2.1
2.2

-5.12
~5.33
-5.55
-5.76
-5.95
-6.13
-6.39
~5.53

2.3
2.4
2.5

2.6
2.7
2.8

_0062
~(0.62

2.9
3.0
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ZABLE 2

The predictions for the parameter bO from various models
for the high-energy behaviour and the correnponding values
for the asymptotic cross section differense.

O_(®) = ¢ () b,
Reference and model (mb) (Gev2)
Phillips and Rarita [ 38] o =160
Solution 1
Dass et al. [ 39) 0. =0,7
Nodels (a), (1)
Barger and Phillips [ 9] 0 =047
Restignoll and Violini [ 11] o -1.3
Solution IIa
Jackson [12] 0 1,2
lodel without constratnts
Barger and Phillips [13] 2.5 1,5
Arnowitt and Rotelli [1a] 2.1%0.3 1.4%0,3

Dumbreis and Queen [ 15] 3.7%0.5 3.0%0.4
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Values of 7 corresponding to various energies <, as
a function of the parameter A in the mapping defined
by eqs. (7) and (20).

N 1 GeV 2 eV Too -2 GeV ~1 GeV  w,

-0.2 0.07 0.I5 0.20 0.23 0.26 0.52
0.0 -0.I3 -=0.05 0.00 0.04 0.06 0.36
0.2 =0.32 =0.25 =-0.20 -0.I7 =0.I4 0.1I7

TABLE 4

Values (in fm units) of the individual terms
Ay = ay ED  of the power series (8) for the

S5~-parameter fit (N=4) at various values of §.

fo.05 ¢.059  f0.007  0.0I6  0.002

t0.10 0.03¢ t0.014 0.064 0.013

+ 1

0.20 0.039 $0.027 0.256 $0.106

0.36 0.059 0,049 0.830 $0.618
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