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1, Introduction

The problem of the construction of the two-point Green
functions in the theories with rapidly increasing spectral functions
was investigated by many authors in a lot of works during last
fifteen years/ 1- 5/; Further for brevity we shall call these func-
tions the super-propagators, following Salam’s terminology/ll . The
first and one of the interesting works in that domain was the
S, Okubo’s paperj 2/. It was as early as 1954 year, In the follow-
ing years many authors often returned to different aspects of
this problem/ 3-5/ « In their papers a few methods of the construc-
tion of the super-propagators have been suggested, which satisfy
the conditions of causality and unitarity of the § -matrix. So far
as the special work' of the author of this paper was dedicated
to the review of all these methods, we shall not discuss it, but
shall study a problem. closely connected with a subsequent deve-
lopment of our method,

In a paper’/4/ exact expressions for the super-propagators
of the scalar particles with zero rest mass have been obtained,
Further the problem of generalization of these calculations on the

massive case naturally arose, It is quite obvious that all the
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calculations in the massive case are very complicated, There is
no hope to obtain here the exact results contrary to the massless
case., However, we can obtain approximate expressions for the
super—propagators which can be successfully used in certain
domains of the values of the momentum, It was made in paper/5/,
for instance, where one obtained an approximate expression for
the super-propagator well describing its behaviour for the large
values of the momentum as well as location of all its thresholds.
Yet the analytical structure of the super-propagator in the coup-
ling constant g is reproduced inexactly in that approximation,

The calculations performed in this paper clearly show that
in the massive and the massless cases the super-propagators essen-
tially differ from each other not only by their dependence upon the
momentum of particles (if interaction is nonlocal, even asymptotics
for the large momenta of such super-propagators are strongly
different ), but also by the analytical structure in
the coupling constant g . Really, if the super-propagator
in the case of the massless particles has only a logarithmic branch
point with respect to g for g =0 in the momentum space, in the
massive case it has much more complicated nonanalyticity in the
coupling constant.

In addition to the elucidation of the general analytical struc-
ture of the super-propagator in the coupling constant for the
massive particles, an expression obtained for the super-propaga-
tors, can be used for describing it for small values of the momen-

tum and the coupling constant g .



2, Super-Propagator of Massive Scalar Particles

In the conﬁgurahon space the super-propagator of scalar

particles can be written in the form' /4 5/
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g is the coupling constant and a(n) is the coefficient charac-
terizing some concrete interaction of scalar particles,
Using the results obtained in paper‘/5/ we go over to the

momentum space, Here we have for the super-propagator
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In the region p2<0 @ (p) can be represented in the form of the

integral
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where K, (r) and Jl(lP-Jr) are Bessel functions, |p| =V -p“
m

/s/

suggested a procedure of an approximate calculation of this

and 0<a <1 ,
The integral (4) cannot be taken exactly. In paper one
integral, which perfectly: described the asymptotical behaviour

of the super-propagator for large values of the momentum, Now



we show how one can get the expression for the 3 (p)., which
correctly reproduces the behaviour of the super—propagator for
small values of the momentum (near the values of the first thres-
holds ~ 4 m2, 9 m2. 16 m2...) and the .coupling constant «

In other words, we want to construct some modification of the
usual perturbation theory with expansion in constant # , when
words " n -order in « ", mean that our expressmn has the form
k" f(«x ,p2 ) , where function f(« ,p 2) can depend on fk ,
besides P2 .

Calculating " n-order in « " we shall use the following

approximate expression for the super-propagator
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In this exbression " n —order in k " is most near " n -order
in kK " of the exact formula (4)., Other "orders in « " are devia-

ted from similar orders of the formula (4) the more, the further they
are away from value n .
After theée general comments we are engaged in calcula-

ting the "second", "third" and "fourth orders in X ",

3,"The Lowest Orders in « "

Let us calculate "the second order in «x " 'of the super
propagator 3 (p). For that we rewrite formula (5) in the form
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and I'(z) is the gamma function, We calculated the integral (?),
using the representation of the Bessel function _] (.LE.L, ) by
a power series, With the help of these expressions we can write

"the second order in x " in the form

- . (-] (_L2 )k
OD(p) = _‘ﬁ—(,,,( 323 —4m2?2 h, . (8)
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Here C is the Euler constant and the integrals are the residues
at the zero. Inserting (9') and (9") into (8) and summing up
the series (see Appensix) we finally get the expression for

mhe second order in « " of the super-propagator (p2 <0) =

——
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The formula (10) differs from the well-known expression for the
scalar loop only by that, the former containe a term with evident~

Iy nonanalytical dependence on the coupling constant fn —<m2

SR
Let us consider "the third order in x ". The function
§,(p) used for the calculation of "the ' ‘»? order in « " differs
from the foregoing function & (p) by that its integrand con-



tains b, (lel .,z ) instead of b, ("‘11!;l ,z) . The function b 3(-l-l’-l—,z')
m m . m
is equal to
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Using again the representation of the Bessel function J, (l'ELr)
by the series and one of the functions K, (r) by the -integral
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we can take the integral over r
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Withe the help of this formula we come to the following expres-

sion for the 53 (p)
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Taking into account that 8 < a we obtain for "the third order

in «" of the super-propagator
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Unfortunately, f, (pa) is not expressed in the elementary func-
tions, what is the case for "the second order in2 k", Therefore
we do not sum the series in the powers of (—4'52—) .

Let us also consider"the fourth order in «x ", in order to
observe the change of the analytical structure of the super-pro-
'pagator .in the coupling constant when passing from order to order,

The function b4(-—LEL, z ) has the form
m

b (LeLay o oar s Tk y, el (17)
m m

0
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Representing the two functions K (r ) by integrals and the
function J, (—'l-nl:-l— r) by a series we get for the P4 (p)
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Here the inequality 28<a takes place, From (18) we obtain the

following ' expression for "the fourth order in « " of the super-

propagator

. ) 2
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The function f4(p2 ) does not depend upon the coupling constant
Basing on this investigation of the super-propagator in
"the first four orders in « " we can conclude that the super

propagator has, in general, the form of the following series
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where ¢(:> (_pa— ) is the polynomial of the k -power in

m
( pz )-and f ., (p?) is a function of p? which is indepen-

dent of the coupling constant « .,

From formula (20) one can see that the nonanalyticity in
the coupling constant of the massive super-propagator has a
very complicated form, Here - can exist‘ even the essential

sinsularity. with respect to X for « =0

4, Conclusion

In the approximate formulae for the super-propagators,
obtained in papexJ/ 5/,' the nonanalyticity in the coupling constant
has simpler form, Namely, the super-propagator had only a lo-
garithmic branch point with respect ‘;o « , This is explained
by the fact that a very crude approximation for the function

K, (r) has been used in the above-mentioned paper
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which has permitted: to describe well the super-propagator beha-
viour for the large values of the momentum and correctly re-
produce .their structure in the momentum of the particles: (the
position of the ‘thresholds). However, in order to obtain a correct
dependence of the super-propagator upon the coupling constant,
it is necessary to take a more strict approximation for the
function Ky (r) , which takes into account in particular the pre-
sence of the logarithmic dependence of the K, (r ) on r .
Notice in conclusion that in a recent interesting paper
A, Salam and J. Strathdee/ 1 , using our method’/4/, have investiga-
ted the problem of the unitarity of the S§ -matrix in higher per-
turbation orders in the "major" coupling constant in theories with
nonpolynomial Lagrangians, These authors considered both the
massless and the massive cases. In connection with the latter
we remark that they make on incorrect assumption about the ana-
Iytical structure of the super-propagator in the coupling constant «.Na-
mely, their assumption, that the massive super-propagator has
only a simple logarithmic branch point with respect to « |, is

wrong, which follows from the calculations presented here,

Appendix

Let us consider the series

_ N s LM _5 kL () C(k+D) A1
Ala) - '\2-,E T (3/2) ? “a)* ) A1

Using for the integral reprzsentations
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T(k) = fd o e (A
0
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and summing up the series we get
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Let us make the replacement of the variables: s = s and
v o=y 4rs. Now we can easily take the integral over
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Calculating this last integral we definitively - obtain
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