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The study of finite energy sum rules /1-4/ and their solutions 

leads to construction of dual amplitudes for the elastic and quasi­

elastic scattering processes of hadrons /5-9/. 

In the papers t10, 11t a method of constructing dual amplitudes 

with arbitrary numbers of interacting particles was developed. Re­

cently a number of papers have been published, concerned with 

the formulation of a diagram technique for such amplitudes /12/. The 

diagram technique is built up by using a possibility of factor.ization 

in the external momenta, through a set of an infinite number of ope­

rators which obey oscillator type commutators. The use of this in­

finite set of operators leads to an infinite degeneration of the resi­

ques of the single poles in the scattering amplitude, thus making 

the physical interpretation ·rather complicated. So a problem arises 

to factorize the dual amplitudes in terms of a finite oscillator type 

operators. 

In the present paper we show that the tactorization With a 

finite set of oscillators could be done by applying the method of 

coherent states /13/ to describe the two-particle resonance systems. 

1. Factorization of the Dual "Four Point" Function 

Let us consider the elastic scattering of two scalar particles 

with masses m • We denote by P1 ' p2 ' q I 
q 

2 
the momen-

ta of the particles (.Fig. 1). 

~ 
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p, ~' ;:a:,. 
Fig. 1. 

The Veneziano amplitude, as is known, is represented by the 

Euler beta function: 

1 -a(•) -a(t) 

8 (I - a ( s ) , 1 -a ( t )) = f dx x (l - x ) (1.1) 
0 

where a (s) and a ( t) are linear Regge traJectories in the s -

and t -channels, respectively: 

a(s)=a's +a (0) a ( t) = a ' t + a ( 0) . (1.2) 

Expressing now the 

(p
1

, q 
1

) we obtain: 

- variable in terms of the scalar product 

a(t)=2a'(p q)-~+ 1, 
I I 

where ~=1-a(2m 2 ) , 0 <~< 1 0<a(2m 2)< 1 

te the formula ( 1.1) in the following form 

00 ll 

8(1-a(s), 1-a(t))= I r(l--a(t))(-1) -...:1--

n=O r(l-a(t)-n)n! 1 +n -a(s) 

the residue of the function ( 1.1) in the pole a ( s) = n + 1 

r O--a(t}}(-1t 

r 0-a ( t)-n)n! 

co s {) = ~ p; tj,J 

\-+ II -+ l PI q 1 

.-

(-1(r(-2a'(p 1 q 1 )+~ ~ 
n!r(-2a'(p q )+~ -n) 

I I 

4 

(1.3) 

• Let us rewri-

(1.4) 

(1.5) 

is a polynomial function of degree n depending on co! 

fore we can expand it in terms of the Legendre pol· 

0 ~ f ~ n • If e 1 • ¢ 1 and e 2 • ¢ 2 are the polar c 

momenta p1 and q 1 , respectively, then the resi 

be represented as a scalar product of \fl n( p 1) and 

the components 'I': (p {J
1

¢
1
)=Rhn(p

1
)Yo (0.¢.) • We sl 

hLm i ~ I 1 

these vectors can be determined in the space of the 

representations of the group U (3,2 ) and in this way 

operator factorization . for the 8 -function using a finil 

rators. 

The oscillator type representations of the gro1 

obtained by using the five boson creation and annihile 

a+ • b + 1 a • b 
.p. p. 

[ a+ a ] = g 
p. v p.v gp.v= 0 p.f,v 

[b+b ]= 1 g = -g =- g = -g = 1 
00 It 22 . 33 

(the other commutators are equal to zero). 

The generators of the oscillator type represent 

determined as follows: 

"a - a 
A =¢A¢, 

where 5 x 5 matrices A " are generators of the fund< 

sentation of the group U (3,2) 

sional vector operators 

1 and ¢ and 

a 
¢ = ( p. 

b 
¢= (-~~~a+ , - b +) v . 

¢ 

Since the unit matrix commutes with all the A "' 

that 
- JLV + + H=¢¢=-g a a -b b 

/l II 

is invariant under the action of the group. 

5 
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p, ~, ;a:,. 
Fig. 1. 

ziano amplitude, as is known, is represented by the 

tion: 

1 -a(~) -a(t) 

) , I -a ( t)) = J dx x (I - x) 
0 

(1.1) 

and a ( t) are linear Regge traj'ectories in the s -

els, respectively: 

a (0) a ( t) =a' t +a (0). (1.2) 

the - variable in terms of the scalar product 

in: 

ql)- f3+ I, 

,O<f3<I 0<a(2m 2)< 

in the following form 

n 
a ( t )) = I r(l-a(t))(-I) 

n=o r(l-a(t)-n)n! I + n -a (s) 

e function ( 1.1) in the pole a ( s) = n +I 

(-Itr<-2a'(p,q
1
)+f3 ~ 

nlr(-2a'(p q )+f3 -n) 
1 1 

4 

~· 

(1.3) 

• Let us revvri-

(1.4) 

(1.5) 

is a polynomial function of degree n depending on cos (J • There-
fore we can expand it in terms of the Legendre polynomials with 

0 ~ f ~ n • If 0 1 , ¢ 1 and 0 2 , ¢ 2 are the polar angles of the 

momentq p 1 and q 1 , respectively, then the residue {1.5) can 

be represented as a scalar product of 'P n( p 
1
) 

the components 'P n (p 0
1

¢
1
)=Rhn(p

1
)Yn ((J ¢) 

hfm I Lm I I 

and 'P n(q
1

) with 

• We shall show that 

of the oscillator type these vectors can be determined in the space 

representations of the group U (3,2 ) and in this way we obtain an 

operator factorization. for the B -function using a finite set of ope­
rators. 

'I'he oscillator type representations of the group U (3,2) are 

obtained by using the five boson creation and annihilation operators 

a+ 
;p. 

J b + ' a IL 

[ a+ a ] = g 
IL II !LII 

[b+b ]=I 

J b 

g /LII = Q p.f, II 

g = -g =- g = -g = I 
00 11 22 33 

(the other commutators are equal to zero). 

(1.6) 

" The generators of the oscillator type representation A a are 
determined as follows: 

"a - a 
A = ¢ A ¢ , (1. 7) 

where 5 x 5 matrices A a are generators of the fundamental repre-

sentation of the group U (3,2) 

sional vector operators 

-

, and ¢ and 

a 
¢ = ( IL 

b 
¢ = (- g/L11 a+ , - b + ) . 

II 

¢ are five-dimen-

(1.8) 

Since the unit matrix commutes with all the A fl. it is obvious 
that 

- Jlll + + H=¢¢=-g a a -b b 
IL IJ (1.9) 

is invariant un<\er the action of the group. 

5 
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We define now the operators (1.7) as operators in the Fock 

space. For this purpose we define the vacuum state 

a!O>=bi0>=0 
fl 

and then the basic vectors of the irreducible representation can be 

written in the form: 

Xnfln 5 
>= 

3 n 
Il (a+) I (b +) n5 
~I 

yn ! n ! n ! n ! n ! 
0 1 2 3 5 

I o >, (1.10) 

where n 
5 

+ ~ n = n 
fl 

is an eigenvalue of the operator H . 

The space of the functions (1.10) has an indefinite metric because 

it is a finite dimensional tensor representation of the noncompact 

group U ( 3, 2 J. 

Consider the vectors 

I 'I' < P > >= ~ n 
-1 -(a+p)k (b+)n-kl 0> = -l(a+p+ b+)n I 0 > 

k!(n-k)! n! 
(1.11) 

which are eigenfunctions of the operator H with eigenvalue n 

belonging to a fixed irreducible representation. 

The scalar product of two such vectors 

<'I' (p) I 'I' (q)>= (-l)n[l + (pq)] n a 
m t mn 

R· 

(1.12) 
n 

does not determine a positive norm. But in the space R we can 

redefine the scalar product so that the norm of the vectors {1.11) 

becomes positive. For this purpose we define the coefficients D:(a ',{3) 

in the following decomposition 

k -~Dn (a',(:3)x -------.:.. k 

r (-2a 'x+ {3 -n) 

We shall list some properties of these coefficients: 

i) the matrix 

6 

~ 

(1.13) 

'!. 

k! 
A , ( f3 ) = k, t ( k- k ') ! kk . 

( 
f3 k-k' 

- -) 
2a' 

.1:1 

gives a translation for the second variable in D k 

~ D nk (a ' , (:3 ) A ,( y ) = D ~ (a ' , {3 + y ). 
k kk k 

n n 
Therefore the D k (a ', 0) completely determine D k (a ', {3 

rary f3. 

ii) Dn(a ',0) 
k 

satisfy identically the recurrence 

1 n n 
D n+ (a ' , 0) = -2 a ' 0 (a ', 0)- (n + l ) D (a ' , 0) . 

k k-1 k 

So o: (a' , 0) are related to s (n , k ) - the Sti 

of the first kind /14/: 

Dn (a',0)=(-2a' )ks (n+l,k+l). 
k . 

iii) The following identity holds 
k-n • 

D n (a,' {3) D (a' ,y) 
~ m s 

n n! ( k-n) ! 

(m+s)! k 
---D 
m!k !s ! m+e 

({3+y-l). 

iv) There is a contour integral representatiot 

-2a'y+{3-1 -n-1 D: (a ',{3) l 
--=-- J dx d y (1- x) ( -x) y 
n! 4rr c1 c2 

Both the contours are circles with centers at the origin ar: 

v) D: (a', f3) are related also with the expansion 

-2a 'y+fJ-1 x 11 n k 
O+x) = ~ -- Dk (a',fJ)y 

n,k n! 

k 11 

-~-(-2a') fnkO+x)= ~~D n(a', 1). 
k! n! k 

7 
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the operators ( ~. 7) as operators in the Fock 

ose we define the vacuum state 

vectors of the irreducible representation can be 

n + n 
(a+) i(b ) 5 

~~ IO>, (1.10) 
! n ! n ! n ! n ! 

1 2 3 5 

"" n is an eigenvalue of the operator H . 

the functions (1.10) has an indefinite metric because 

iona.l tensor representation of the noncompact 

(a+p)k (b+)n-kl 0> = -l(a+p+ b+)n I 0 > 
! n! (1.11) 

of the operator H with eigenvalue n , 

representation. 

of two such vectors 

8 
mn 

positive norm. But in the space R 

(1.12) 

I 
we can 

product so that the norm of the vectors (1.~1) 

this purpose we define the coefficients n:(a ',{3) 

n k 
Dk(a',f:3)x (1.13) 

properties of these coefficients: 

6 

...-

' 

A ,({3)= k! ( {3 k-k' 
kk --) 

k '! ( k- k ') ! 2a' 

.n 
gives a translation for the second variable in D k (a ', {3 ) 

n n 
I. D k (a ', {:3 ) A ,( y ) = D , (a ' , f3 + y ). 
k kk k (1.~4) 

n n 

Therefore the Dk (a',O) completely determine Dk (a ',{3) for arbit-
rary f3. 

ii) Dn(a ',0) 
k 

satisfy identically the recurrence relation 

1 n n 
D n+ (a ' , 0) = -2 a ' 0 (a ', 0)- (n + l ) D (a ' , 0) . 

k k-1 k (1.15) 

So D: (a' , 0) · are related to s (n, k ) 

of the first kind /14/: 
- the Stirling number~ 

Dn (a',0)=(-2a' )ks (n+l,k+U. 
k . (1.16) 

iii) The following identity holds 
k-n • 

Dn (a,'f3)D (a',y) 
I, m s 

(m+s)! 

n n!(k-n) 

k 

m!k!s! 0 m+s (f3+y-l). (1.17) 

iv) There is a contour integral representation in the form 

-2a'y+f3-1 -n-1 -k-1 o: (a ',{3) =- _l_ j 

0 ! 411 c
1 

J dx d y (l- x) ( -x) y 
c2 

Both the contours are circles with centers at the origin and radii 

v) D: ( a', f3) are related also with the expansions 

-2a 'y+{3-1 x " n k 
O+x) =I- --D (a',f3)y 

n,k n! k 

k IJ 

-~-(-2a') fnk(l+x)= I.~D n(a', 1). 
k! n! k 

• 
7 
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p 1'p i l. 

(1.19) 



The proof of these properties is given in appendix A 

gether with some additional formulae. 

• to-

Let us introduce the operator U ~a ·, {:3 ) 
" ,, 

D(a',~)=r(K+I)r(L+l) x 

" ( I) -2a'yt~-1 -H-1 K-1 

• -=--- J J dx dy ( I - x) ( - x) y 
4rr c c 

I 2 

p,v ,, + 
where K = - g a + a , L =- b b • 

/l v 
Obviously U (a ', ~) is nondegenerate 

commutes with H • Hence it is a diagonal 

(1.20) 

operator which 

operator in the 

spece of the oscillator type representations of the group 

('I' ( p ) , 'I' ( q)) = <'I' (p ) I D (a ' , M I 'I' ( q ) > · (1.21) 

using D (a ',{3 ) as a metric tensor, Consequently it is easy to verify 

that for the vectors ( 1,11) we have 

n 

('I' (p)'P (q))=(-1) ~~::!a'(pqh/1) , 
n m ' ------(~ 

n.· 1'(-:!a'(p•Jlt/1-nl 
( 1,22) 

If p = q and P'l = p ~ m ., this scnlur product determines a positive 

norm of the vectors 111" (I') , Incl('('d in this Cilse 

(-l)n__!J_-2(:_'m:..2{il_= .!.__a( t 111 ~) [a 0 111 :.!),1} ... latlm:.!l+n +I)'- 0. 
II ! r ( -2 a ' rrr I {-3 -11 ) II: 

Thus the equnlity (1,:.2:.2) gh·rs tiH' required factorization of 

the residue (1,:-i), 

The vectors ( 1..11) could be interpreted ns wave functions 

of the two-particle resonance states, satis~ing the following eq,: 

( 1 - a ( s ) ~ II ) 'I' ( p ) ~ 0. 
n 

Hence we obtain an energy spectrum a ( s ) = n + I 

Green-function of the equation (1.23) by G( s) 

8 ._. 

(1.23) 

, We denote the 

·• 

ll'.',\,. ,, 
~~~:· 

''"t' 
,•,'i 

.:';.\1: 

.•. 

-1 I H-a(.,) 
G(sh(J-a(s)+H) =Jdx x 

0 

Then taking into account (1.4) and (1.22) it is possib1 

amplitude (1.1) in the following form: 

B 0- a ( s ) , 1 - a ( t )) = ( 'I' ( p 
1 

) , G ( s ) 'I' ( q 
1
)), 

where 

a'iJ>+b+ 

I'P(p )>=~J'Pn(p 1 )>=e IO> 
I n=O 

is a coherent state of the oscillator (1.23) and the sec 

defined in (1.20) 

ap
1 

+b 
( 'I' (p ) , G ( s ) 'I' ( q )) = < 0 I e 

I I 

D(a',m 
------e 
1-a (s) +H 

+ ... 
aq

1 
+b 

I O>. 

Let us note some features of the amplitude (1.2< 

zation of the amplitude is obtained in the space of t1 

mensional representations of the group lJ~3,:lJ using 

and annihilation operators. According to (1.23) the ve 

ponds to the lowest resonance state with energy a J: 

from zero. The coherent states (1.26) can be consic 

two-particle states. The dependence on the other part 

vely taken into account with a suitable choice of tl 

spectrum. 

2. Factorization of the Five Point Dual I: 

Suppose that in five-particle systems the inter~ 

in the following manner: VJ two particles transform into 

state, (ii) further this configuration interacts with the 1 

particle, forming a new resonance state, (iii) finally-

9 
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of of these properties is given in appendix A 

orne additional formulae. 

introduce the operator U l a ·, f:5 ) 
... , .. , 

=t(K+l)1(L+I) X 

- 2a 'Y+/3-1 -H-1 " K-1 
j dx <ly ( I - x ) ( - x) y 

c 
2 

v 

h 

" + 
a+ a , L =- b b • 

fl. v 

lJ (a ', f3) is nondegenerate 

H • Hence it is a diagonal 

operator 

operator 

oscillator type representations of the group 

> l = <'I' (p l I u <a ' • f3 l I 'I' < q l > . 

• to-

(1,20) 

which 

in the 

(1.21) 

as a metric tensor, Consequently it is easy to verify 

ectors ( 1,11) we have 

)) = (::,!l n~~-::2a~~~.f__l ___ a 
n~· l'(-2a'(prJlt(1-nl lllll (1.22) 

fHJ = fl ··Ill this scalar product determines a positive 

ectors 11', ( p) InciPr•d in this Citse 

'..:.t:fil_ 
·11-n) 

, a( lm~) [a (lm~ltl] 
II· 

• •• [ " ( lm ~ ) +- n + I ) '- 0. 

e E:qttality (1,:2:2) ~h·0s tiH• required factorization of 
.:>). 

tors ( 1,11) could be interpreted u.s wave functions 

ticle resonance states, satis~ing the following eq.: 

II ) 111 ( p l ~ o. 

in an energy spectrum a ( s) = n +I 

of the equation (1.23) by G(s) 

8 

~· 

(1,23) 

, We denote the 

• 

., 

~.~~.6';!·.· ·" 
. .~ 

• ·,,~/. <-

-1 1 H-a(s) 
G(sh{l-a(s)+H) =fdx x {1.24) 

0 

Then taking into account {1.4) and {1.22) it is possible to write the 

amplitude {1,1) in the following form: 

8 0- a ( s ) , I - a ( t )) =( 'I' ( p 
1 

) , G ( s ) 'I' ( q 
1
)), 

(1.25) 

where 

a '\tl +b + "" I'P (p l>= I I 'P "<P1 > 
I n=O IO> >= e 

(1.26) 

is a coherent state of the oscillator {1.23) and the scalar product is 

defined in (;1..20) 

ap
1 

+b ( 'P (p ) , G ( s) 'P ( q )) = < 0 I e 
I I 

+ ... 
D(a',,B) e aql+b I 0>. 

( 1.27) 
I-a (s) +H 

Let us note some features of the amplitude {1.27): the. factori-

zation of the amplitude is obtained in the space of the finite - di­

mensional representations of the group Ut3,:!J using five creation 

and annihilation operators, According to (1.23) the vacuum corres­

ponds to the lowest resonance state with energy a priori different 

from zero. The coherent states (1.26) can be considered as free 

two-particle states. The dependence on the other particle is effecti­

vely taken into account with a suitable choice of the resonance 

spectrum. 

2. Factorization of the Five Point Dual Diagram 

Suppose that in five-particle systems the interaction occurs 

in the following manner: VJ two particles transform into a resonance 

state, (ii) further this configuration interacts with the third incoming 

particle, forming a new resonance state, (iii) finally- a decay into 

• 9 



two free particles. This can be represented graphically by the following 

diagram: 

P.a.. p., 

52 s, 
Pc 

Fig. 2, 

Let us define the energy variables s 1 

state as follows: 

and s for the resonance 
2 

2 2 
s = (p + p ) = ( p + p + p ) 

1 0 1 2 3 4 

2 
2 t2.1) 

s = ( p + p + p ) =(p + p ) . 
2 0 1 2 3 4 

In the case of identical particles the resonance state in the system of 

the two fixed particles t0-1 for example ) is simultaneously a reso­

nance state in the three-particle system t2-3-4). Thus the resonan­

ce wave function besides the two-particle equation (1.23) must sa-
• 

tisfy some three-particle equation of the same type. Such a three-

particle equation can be obtained from Eq. t1.23) when the operator 

H is now the Casimir operator for the group U(3,2) x U (3, 2 ) in the 

oscillator representation 

·H=H 1 +(\, 

where 

HI= -{v + 
a. 

miL 
a 
·' (i) v 

-b + 
(I) 

The operators ( a + , b + ) 
1 fL 1 

(2.2) 

b • i = l, 2. (2.3) 
(I} 

and (a+ , b-t:) commute with each 
2fL 2 

other. 
Hence we have the to!lowtng equattons tor the resonances· 

state function in the system of ( 0-1)- particles. 

10 

._. 

... 

., 

-~ii 

1* 

[ H 1 - a ( s 1 ) ] I 'I' n (p 1) > = 0 

[H
1
+H -a(s )]liP (p b= 0. 

2 1 n I 

Analogously, for the resonance state in the system of 

(3-4) we require that 

<'I' (p )I[H +H -a(s )]= 0 
n 3 I 2 2 

<'I' ( p ) I [ H - a ( s ) ] = 0. 
n 3 2 2 

From here we obtain the following solutions 

liP 
n 

( p ) > = _l_ [ p a+ + b +] n I 0 > 
I R! 1 I I 

l n 
<'I' (p) 1=-<0JL p (a +a )+b +b J. 

n3 ! 3 I 2 I 2 
R· 

The corresponding coherent states have the form (1.26 
+ + 

p a +b 
I 'I' ( p ) > s I I 'I' ( p ) >= e I I I I 0 > 

I n n I 

<'I' (p3) s I<'P (p) I=< OJ P3(al+ a2)+bl+b2 
ll n 3 e 

In the representation space of the group U(3,2) 

metric tensor D which gives a positive norm of th' 

is the direct product of the metric tensors 0 1 and D 2 

ding to the first and the second factors. 

D=D (a',f3)D (a',f3 ). 
1 I 2 2 

Now we shall seek an expression for the five-point 

in the form: 

11 
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This can be represented graphically by the following 

p'f 
s .z 

P.a. 

Fig. 2. 

energy variables s 
1 

2 
(p+p+p) 

2 3 4 

2 2 

p ) =(p + p ) . 
2 3 4 

P1 

s, 
Pc 

for the resonance and s 
2 

(2.1) 

identical particles the resonance state in the system of 

(0-1 for example ) is simultaneously a reso­

the three-particle system (2-3-4). Thus the resonan-

besides the two-particle equation (1.23) must sa-
• equation of the same type. Such a three-

can be obtained from Eq. (1.23) when the operator 

for the group U(3,2) x U (3, 2 ) in the 

(2.2) 

) /1-
a 
'{i) v 

-b + b 
(I) (I) 

(2.3) ' i =1,2. 

(a+ 
lp. 

' b + ) 
I 

and (a+ 
2p. 

'b +) 
2 

commute with each 

have the tolloWing equatrons tor the resonances 

the system of (0-1)- particles. 

10 

.,. 

'(~ ' ·'I'" ' ';: J 
·.··.',•:; 

:. 

' /" 
J>\~:i 

'il;~' ~:· ~ 
·~t 

-', f 

[ H 1 - a ( s 1 ) ] I lJI n (p 
1

) > = 0 
(2.4a) 

[H 1+H -a(s )]IIJI (p
1
)'>= 0. 

2 I n 
(2.4b) 

Analogously, for the resonance state in the system of the particles 
(3-4) we require that 

<IJI (p) I[H +H -a(s )]= 0 
n 3 I 2 2 

< lJI ( p ) I [ H - a ( s ) ] = 0. 
n 3 2 2 

From here we obtain the following solutions 

I 1J1 (p ) >= _j_ [ p a+ + b +) 0 I 0 > 
n I · 1 I I I n. 

l n 
<IJI (p) 1=-<0il p (a +a )+b +b J. 

n3 1 31212 n. 

The corresponding coherent states have the form (1.26): 
+ + 

p a +b 
I lJI ( p ) > = I I lJI ( p ) >= e I I I I 0 > 

I n n I 

<IJI (p3) = I<IJI (p) I=< 0 I P3(al+ a2)+bl+b2 
n n a e 

(2.5a) 

(2.5b) 

(2.6) 

(2.7) 

In the representation space of the group U(3,2) xU(3,2) the 

metric tensor 0 which gives a positive norm of the states (2.6) 

is the direct product of the metric tensors D 
1 

and D 
2 

correspon­
ding to the first and the second factors. 

0=0 (a',{3)D (a',f3 ). 
I I 2 2 (2.8) 

Now we shall seek an expression for the five-point dual diagram 
in the form: 

• 11 



8 = ('I' ( p ), G ( s ) r ( p ) G (s ) 'I' ( p )) , 
5 3 2 2 2 II I 

(2.9) 

where 

-1 I -a(~l )+HI 
G ( s ) = I H - a ( s ) + l ] = I dx x 

I I I I O I I 
(2.10a) 

G (s )= [ H +H - ( ) 1]-t I -a(~)+H,+H2 
2 2 I 2 a s2 + = I x2 

0 

dx (2.10b) 

and r ( p
2 

) is the vertex, which we shall determine, requiring an 

agreement of (2.9) with the well known expression for 8 5 

-a<~,> -a<~2) -at2 -a 23 P 13 
8 =I dx dx x x ( 1 - x ) ( l - x ) ( l - x x ) . 

5 I 2 I 2 I 2 12 
(2.11) 

Here we comply the following notations for the trajectories: 

2 
a = a ' ( p + p ) + a (0) 

i +I ! 1+1 

~2.12) 

p = - 2a '(p p ) + y 
13 I 3 13 

vv; tere y is a constant. 
13 

Let us introduce the operator 

l n , k n- k 
V(pa;b;~ )= ~ ~ D (a~ )(pa) b , 

k . 
n,k n! 

(2.13) 

where the coefficients D n (a',~ ) have been defined in the first section 
k 

(1.13). Accoring to the first of the equations (1.19) we have a for-

mal representation 

-2 a'....!:!..+~ -t 
b 

V(pa; b; ~ )= (l +b) (2.14) 

Two properties of this operator are of interest. The first one 

connects it with the metric tensor 

12 ._. 

' . ~ 

~ ' 
. 

.J 

. :·,j 

.. I 

po.+ b 
< 0 < e D(a',~)=<OIV(pa;b;~ ). 

the 

This equation shows that in the sense of the me 

resonance state on the right-hand side is contrav. 

coherent state on the left-hand side. Therefore, the 

and e po. +b are related with each other. Indeed the for 

~::!.14) determines V as a finite difference analog o 

nent I 15j. Another property which confirms tpe above 

contained in the following identity 

V ( p a ; b ; l + ~ ) V ( q a ; b ; l + y ) = Y ( ( p + q ) a ; b ; l + ~ +Y ) • 

(The proof is given in appendix 8 ). For~lly it can 

directly using {2.14). '!'he equality {2.16) determines 1 

v as a representation of the five-dimensional trans 

and in the same sense it is an analog of e po.+b 

Now using (2.15) we rewrite (2.9) in the form: 

8 =<0\V(p a ;b; f3 )V(p a ;b ;~ )G (s )r( p)G (s )e 
5 32 2 2 31 I I 2 2 2 I I 

Using (2.10a) we can evaluate that 

G (s 
I I 

p .,+ +b+ 1 -a(~ ) x p .,+ +x b + 
) e 1 t t 1 0 > = Jx 1 e 1 1 1 1 1 

0 I 

dx I 0>. 
I 

p 

Let us multiply this equality on the left by tl 

V (p a ·b • ~ ) • Then we obtatn 
2 I ' I ' I 

V(p a;b ;~ )G (s )e 
2 I I I I I 

~ .,++ b+ 
I I I I o > = 

t -a<~,> -a + + 
= J dx x ( l - x ) I 2 exp ( x p a + x b ) I 0 > . 

o I I I I I I I I 

Obviously if we choose r ( p ) 
2 

p + + 

in the form 

f(p )- 2o.2+b 
2 

- e 2 V(p
2

a 1 ;b ;~ 1 ) 

13 
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), G ( s ) r ( p ) G (s ) IJI ( p ) ) , 
2 2 2 1 1 1 (2. 9) 

-1 1 -a(• )+H
1 - a ( s ) + l ] = I dx x 1 

1 0 1 1 
(2.10a) 

-l 1 -a("J)+H 1 +H 2 
+H -a (s ) + l ] = J x 2 dx 

1 2 2 0 (2.10b) 

the vertex, which we shall determine, requiring an 

(2.9) with the well known expression for 8
5 

-a(• ) -a(• ) -a 
lx 2 0-x ) 120-x 

1 2 1 2 
-a230-x x ) P ~~ 

1 2 

y the following notations for the trajectories: 

2 
+ p ) +a (0) 

1+1 

) + y 
3 13 

a constant. 

roduce the operator 

1 k n-k ~ _;_ Dn ( a '{3 ) ( p a ) b 
k I k , n. 

(2.11) 

t2.12) 

(2.13) 

cients n n (a ',{3) have been defined in the first section 
k 

to the first of the equations (1.19) we have a for-

-2 a' Pa 
(I + b) -b +{3- 1 

(2.14) 

erties of this operator are of interest. The first one 

the metric tensor 

12 

.,. 

l' ~·\ 

I 
i 

< 0 < e pa+b 
D(a',f3)=<0IV(pa;b;{3 ). 

(2.15) 

the 
Tnis equation shows that in the sense of the metric D(a' ,{3) 

resonance state on the right-hand side is contravariant to the 

coherent state on the left-hand side. Therefore, the operators V 

and e pa -rb are related with each other. Indeed the formal equality 

t::!.14) determines V as a finite difference analog of the expo­

nent I 15;. Another property which confirms tpe above analogy is 

contained in the following identity 

V(pa;b;l+{3)V (qa;b;l+y)=Y( (p+q)a;b;l+f3+y) • (2.16) 

(The proof is given in appendix B ). For~Uy it can be obtained 

directly using (2.14). The equality (2.16) determines the operator 

\1 as a representation of the five-dimensional translation group 

and in the same sense it is an analog of e Pa+b 

Now using (2.15) we rewrite (2.9) in the form: 

p a\b+ 
B =<OIV(p a ;b; {3 )V(p a ;b ;{3 )G (s )r(p\G (s )e 1 1 10>. (2.17) 

5 32 2 2 311122 2!! 

Using (2.10a) we can evaluate that 

G (s 
1 I 

p ,.+ +b+ 1 -a(• ) 
) e 1 1 I I 0 > = jx I e 

0 1 (2.18) 
x p ,.+ +x b + 

1 I I 1 I dx I 0 >. 
1 

Let us multiply this equality on the left by the operator 
V(pa ·b ;{3) 

2 I ' 1 1 
• Then we obta1n 

I',.++ b+ 
V(pa;b;{3)G(s)ell 1 

2 1 1 1 1 1 I o > = 

1 -a<• 1J -a + + 
= I dx x ( I - x ) 12 exp ( x p a + x b ) I 0 > . 

0 1 1 1 I 1 1 1 1 

Obviously if we choose r ( p ) 
2 

+ 

in the form 

r( ) p a +b+ 
P2 = e 

2 2 
2 V(p2al ;b ;{31) 

~ 

13 

• 

(2.19) 

(2.20) 



then the expression (2.17) coincides with (2.11). Finally we have: 

pa++b+ 
B =('l'(p ),G (s )e 2 2 2 V(p a ;b ;{3 )G (s )'I' (p )). 

5 3 2 2 21 I I I I I 
(2.21) 

3. Factorization of the N -Point Dual Diagram 

The results obtained in the previous two sections can be 

easily generalized to the N -point functions. 

P>JN·.l. p,.~ 
5 - ... 

11-6 

P, .• L Po 
Fig. 3. 

Here P 1 are the momenta of the i -th particle. The definition 

of the variables s 

j 

s = ( I 
I k=O 

2 
p k ) • 

's is: 
2 

... s 
N-3 

(3.1) 

Slightly modifying and B 
6 

we get: 84 

B =<0 le 
4 

+ + 
p2 .. 2 + b2 PI a i + b~ 

V ( p ) G ( s )e 
I 2 I I 

+ + + + p .. +b p .. +b 
33 3 222 

B =<0 I e V ( p ) V (p ) G ( s ) e 
5 2313 22 

Here we use denotations 

V (p ) = V (( p a ) ; b ; f3 ). 
I k k I I I 

14 

.;a 

I o > 

+ 
VI (p )G (s ) plal+b~ (3.2) 

2 I I e I 0>. 

(3.3) 

The additional left-hand exponent in the equality (3.2) 

down only tor symmetry reasons. ~The lett-hand vacuum 

formed it into unity). 

1.'he operator 

p ,.+ +b + ~. 
I I I > 

e = e 

must be put into correspondence with 

diagram. 

The operator 

I-I 

r = n v (p > 
I k=l k I 

-th externa 

corresponds to the vertex with the incoming i -th pari 

To every internal line with variable s 1 we put 

pondence the propagator 

"' -1 1 -a(e )+H 
G ( s ) = [ H - a ( s ) + l ] = J dx x i I 

I I I I O I I 

where 

"' I 

H 
I 

I Hk 
k=l 

and 

H =-rfva+ 
k (k)/l 

a -bt b 
(k)V (k) (k) 

Thus, multiplying the operators (3.4), (3.5) and (3.6) 

corresponding to the elements of the diagram (Fig.3) 

vacuum expection value we obtain 

B =< 0 I e 
N 

~N-2 ~2 ~I rN G ( s ) ... G ( s ) e r G (s ) e 
-2 N-3 N-3 2 2 2 I I 

15 



(2,17) coincides with (2,11), Finally we have: 

+ 
+b2 

V (p a ; b ; f3 ) G ( s ) 'I' ( p )) . 
2 · l l l l l I 

of the N -Point Dual Diagram 

(2,21) 

in the previous two sections can be 

N -point functions, 

PN-~ 

Fb 
F'ig. 3, 

the momenta of the i -th particle, The definition 

... s is: 2 N-3 

(3,1) 

and B 
5 we get: 

PI at+ bi 
p ) G ( s )e 

2 l l I o > 

(p ) G P a++b + 
l 3 (s ) 

2 
2 2 2 2 e 

+ 
VI (p2 )G (s ) pta l+b~ (3,2) 

l I e I 0>. 

{3). 
I (3.3) 

14 

.,..: 

The additional left-hand exponent in the equality (3,2) is rewritten 

down only tor symmetry reasons, rrhe lett-hand vacuum state trans­

formed it into unity), 

':('he operator 
+ -1' 

P I a I +b I fi 
e "'e (3.4) 

must be put into correspondence with 

diagram, 

-th external line of the 

The operator 

1-l 

r = n v (p > 
I k=l k I 

(3.5) 

corresponds to the vertex with the incoming i -th particle. 

To every internal line with variable s 1 we put into corres-

pondence the propagator 

where 

and 

"' 
G (s )= [H -a(s )+l] 

I I I I 

"' H 
I 

I 

I. H k 
k=l 

a -bf b 

-l l = f dx x -a(,. 1 )+H 
0 I I I 

H =-rflla+ 
k (k)p (k) II (k) (k) 

(3,6) 

(3.7) 

(3,8) 

Thus, multiplying the operators (3.4), (3,5) and (3.6) in the order 

corresponding to the elements of the diagram (Fig,3) and taking a 

vacuum expection value we obtain 

.; N-2 

B =< 0 I e 
N 

r 
N-2 

.;2 .;l 
G ( s ) ... G ( s ) e r G (s ) e I 0 > 

N-3 N-3 2 2 2 l l 
(3,9) 

15 



which is a correct expression for the 4- and 5-point functions ( 1.1), 

{2.11). 

We shall show that the expression {3.9) for all N coincides 

with the known dual amplitude t16t. To do this we substitute into 

p. 9) the operator G 
1 

( s 
1 

) 

N- 3 -dimensional integral 

from the expression {3.6). Then we get 

with the integrand : 

N-3-a(sl) .;N-2 
llx <Ole r X 

1=1 I N-2 

H 
N-3 

••• X 

H2 
"' 

.;2 ill 
e ~ x 

.;I 
e I 0 > . (3.10) 

~ = 
Note that the operator e commutes with all rk and H f 

when k < i and f < i • Therefore instead of (3.10) we can write 

N-3 -a(sl) < 0 I r n 
X N-2 I I= I 

ii: = = 
N-3 H2 H1 

X ••• X r X 
N-3 2 2 

Nf~k 
k=l 

I o >. e 

Separating from every vertex r
1 the (i -1 ) -th factor, i.e. 

1-2 
r = II V (p ) V ( p a ; b ; f3 ) 

I k=l k I i 1-1 1-1 1-1 

~ 

H 

and taking its commutators with the all x k k < i we obtain 

N-3 -a(s ) N- 4 HN-3 N-5 
n x 1 < o 1 n v (p > x II v 

1=1 I kl =I k 1 N-2 N-3 k
2

= 1 k 2 

~ =::= 

f':a HI N-3 

••• x 2 X I ll V (-X ( p a 
jd j i+l j 

a+p +b+ 
k k k 

) ; -x b 
l I 

If 
N-4 

( p ) 
N-3 

X 
N-4 

N-3 

e :~ .;e 
; f3 ) e 

I 
I 0>. 

(3.11) 

(3.12) 

(3.13) 

The vector I o > is an eigenstate of the operators a 
(k)!l 

e 

b (k) with the eigenvalues p<k>!l and I respectively. For this 

reason: 
N-3 
I.; 

; f3 ] e f:t f I o > 
N-3 

n v L - X (p a ) ; -X b 
1=1 i HI I 

N-3 

= n v <- x 
1=1 ,. I 

_. 

p 
HI 

. N-3 

p 1 ); -x ; f3 )ef:l .;f 
i 

16 

(3.14) 

IO> . 

From the definition of the operators V((pa); b; {3) (2.13) c 

foolows that 

N-3 

IIV(-(p p )x 
k+l k k 

N-3 -a 
;{3 >= no-x ) k+l,k 

k k=l k 
;-x 

k=l k 

where 
2 

ak I k=a'(pk l+pk) +a(0);,,2a '(p p )-{3 +l. 
+ • + k~. k k 

So the integrand (3.13) is transformed to 

N-3 -a(s
1

) 
II X 0-xl 

1=1 

= 
H2 HI ~-~ 

x i=l e 
••• X 

2 I 

-ai+I,I<O N-4 'fi .N-5 
n V ( p ) X N-~fl V 

k =I k 1 N-2 N-3 k=l k 
I 2 2 

10>. 

( p )· 
N-3 

Using the method described above for the remaining o 

{3.16) we see that p. 9) coincides identically with the Ba 

formula for the N -point dual amplitude. So the N -point 

is represented by the expression {3. 9) which is facto 

momenta p 
1 

t i = 1 , 2 , ... N - 2 )' 

The essential feature of this factorization is that it 

by a finite number of creation and annihilation opera 

operators, as already clarified in the first section, g. 

dimensional representation of the group U(3,2) accord 

the residues of the resonances are expanded. It can t: 

{3.16) that the N -point diagram contains N-3 mutuaU 

sets of operator~ ( a~1 b tiJ ), ( i = l, 2, ... , N-3) • In this sE 

consider a given factorization to be determined by the 

U t3 , 2 ) X U t 3 , 2 ) .. .. X U t3 , 2 ) 

( N -3) times 

17 



expression for the 4- and 5-point functions (1.1), 

that the expression p. 9) for all N coincides 

dual amplitude f16f. To do this we substitute into 

from the expression (3.6). Then we get 

integral with the integrand: 

H 
N-3 H2 

"' 
,;2 HI .;I 

r x 
N-2 

••• X e ~ x e I 0 > 

.;I 
the operator e commutes with all rk 

e < i • Therefore instead of (3.10) we 

N-3 

'R "' "' I ( k 
N-3 H2 HI k"'l 

I o >. X ... x r X e 
N-3 2 2 

every vertex ri the (i -I ) -th factor, i.e. 

a ;b ;{3 ) 
i-1 i-1 1-1 

"' H 

with the all x k k < i we obtain 
~ 

HN-3 N-5 
) X !] V 

N-2 N-3 k 
k2=1 2 

x ( p a 
j HI j 

+b + 
k 

) ; -x b 
j j 

( p ) 
N-3 

X 

H"' 
N-4 

N-4 

N-3 

I .;e e =I 
. f3 ) e 
' I 

I 0>. 

(3.10) 

"' 
and "e 

can write 

(3.11) 

(3.12) 

(3.13) 

I o > is an eigenstate of the operators a 

eigenvalues 
(k)p. 

p(k>p. and I respectively. For this 

N-3 

) ; -x b 
I( 

; {3 ] e f=l e I o > 

N-3 
I .; r 

p ); -x ; {3 )ee= 1 IO> . 
j j 

(3.14) 

16 

_,.: 

From the definition of the operators V((pa); b; {3) (2.13) and (2.14) it 

foolows that 

N-3 

ll V ( - ( p p )x ; - X 
k=l k+l k k k 

N-3 -a 
;{3 )= 110-x ) k+l,k 

k k=l k 

where 
2 

ak+l,k=a'(pk+l+pk) +a(0):2a, (p k;'pJ-1\+l. 

So the integrand (3.13) is transformed to 

N-3 -a(e
1

) 
n x 

1=1 
0-"t 

= 
H2 HI ~-~ 

ef =I f ... x 
2 

X 
I 

-a 
i+l,i < 0 N-4 1J: .N-5 

11 V (p )x N-~ll V 
k=lkl N-2 N-3k=lk

2 I 2 

10>. 

(3.15) 

H 
(p )x N-4 

N-3 N-4 

(3.16) 

Using the method described above for the remaining operators. in 

(3.16) we see that (3.9) coincides identically with the Bardakci-Ruegg 

formula for the N -point dual amplitude. So the N -point dual diagram 

is represented by the expression (3. 9) which is factorized in the 

momenta p 
1 

l i = 1 , 2 , ... N - 2 ) · 

'I'he essential feature of this factorization is that it is achieved 

by a finite number of creation and annihilation operators. These 

operators, as already clarified in the first section, give a finite­

dimensional representation of the group U(3,2) according to which 

the residues of the resonances are expanded. It can be seen from 

(3.16) that the N -point diagram contains N-3 mutually commuting 

sets of operators (a~1 btiJ ), (i =l,2, ... ,N-3). In this sense we can 

consider a given factorization to be determined by the group 

U (3 , 2 ) X U (3 , 2 ) .. .. X U (3 , 2 ) 

(3.17) 

( N -3 )times 

• 17 



'!'he formula {3.9) can be expressed in a more symmetric form 

noting that .on the right-hand side of the propagator G 1 ( s 1 ) only 

the creation and annihilation op~rators carrying indeces k< i appear. 

where 

Hence (3.9) does not change its form if one substitutes 

-I 

G {s 1 )=(H -a(s )+l) 
I 

00 

H= I H 
k=l k 

"" -a(e )+H 
. I 

= j dx 1 "' 
0 

(3.18) 

and H is given by {3.8). '!'his means that we extend the chain 
k 

(3.17) to infinity. For the same reason the expression l3.9) remains 

unchanged if instead of rl from (3.5) we put 

r ( p ) = n v (p ). 
I k=l k 

(3.19) 

Consequently we obtain new expressions for the propagators and 

vertices which do not depend on their position in the formula l3.9). 

.b'inally we have 

~N-2 ) ~2 ~I B =<Ole r(p )G(s ) ... G(s e r(p )G(s )e 10>. 
N N-2 N-8 2 2 I 

(3.20) 

Although an infinite set of operators occurs in the last formula, in 

fact, we deal with only some of them, as could be seen from (3.9) 

because all remaining operators will be annihilated by the vacuum. 

Summarizing, we obtain a diagrammatic technique of building­

up the N -point dual amplitude, according to the following rules: 

a) The operator ·e ~~ {3.4) corresponds to the i -th external 

line of the diagram (Fig. 3). 

b) The operator r(p
1

) (3.19) corresponds to the i -th vertex 

(see Fig. 3). 

c) The propagator G (s ) (3.18) corresponds to the internal 
I 

line indicated by s 
1 

on Fig. 3. 

18 

_. 

d) Preserving the order stated in Fig. 3 we mult 

rators a), b), c) and taking the vacuum expectation va1 

the exact expression for the N -point function. 

The factorization of the N -particle dual diagr, 

obtained, probably is not the most economical one in 

the dimensionality of the group. Let us illustrate this 

an example concerning the five-point diagram. It is seen 

+ + 
<0 I e 

p a+ +b + 
3 

H -a(s )+l 
2 

V(p a ;b ;~)D(a',W)x 
2 

l -~e xV(p2a;b;~) H-a(sl)+l 

pa++b+ 
I I o > 

coincides with (2.11). Thus we have built up the fiv 

point function factorization using in both cases only th• 

The authors express their deep gratitude to N.: 
D.I. Blokhintsev, V.G. Kadyshevsky, A.A. Logunov, \i 

R.M. Muradyan, V.I. Ogievetsky, D.V. Shirkov and J.A. 

for many fruitful discussions and critical remarks. 

Appendix A 

Let us rewrite in detail the definition {1.13) fo: 
n 

Dk(a',/3) 

r{-2a'x+~) 

r(-2a'x+ ~-n) 
=(~-2a'x-l)(~-2a'x-2) ... (~ -2a'x-n) = 

= I D: (a ', ~ )x k and D : (a ', ~) = 0 , k > n . 

1) Translating the argument 
X-> x- _Y_ 

2a' 

we get: 

r(-2a 'x+~+Y) n , k! Y 
= I, D (a .~) (- -) 

r{-2a 'x+~+y-n) k,k k k '!( k- k' )! 2a' 

19 
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formula (3,9) can be expressed in a more symmetric form 

.on the right-hand side of the propagator G 
1 

( s 
1 

) only 

and annihilation op~rators carrying indeces k< i appear, 

{3,9) does not change its form if one substitutes 

-a(e )+H 
. I 

= J dx 1 "i 
0 

-I 

-a(s. )+l) 
I 

) =( H 
(3.18) 

}; H 
k=l k 

given by (3,8). This means that we extend the chain 

inity. For the same reason the expression (3,9) remains 

if instead of rl from (3,5) we put 

n v (p >. 
k=l k I (3,19) 

.y we obtain new expressions for the propagators and 

ch do not depend on their position in the formula (3,9), 
.ve 

(2 (, r (p )G(s ) ... G(s )e r(p )G(s )e IO>. 
N-2 N-3 2 2 I (3.20) 

infinite set of operators occurs in the last formula, in 

I with only some of them, as could be seen from (3,9) 

remaining operators will be annihilated by the vacuum. 

rizing, we obtain a diagrammatic technique of bwlding­

point dual amplitude, according to the following rules: 

operator e ( 1 (3,4) corresponds to the i -th external 
iagram (Fig, 3), 

operator r(p1 ) (3,19) corresponds to the i -th vertex 

propagator G (s ) (3,18) corresponds to the internal I 
by s

1 on Fig, 3, 

18 

~· 

d) Preserving the order stated in Fig. 3 we multiply the ope­

rators a), b), c) and taking the vacuum expectation value we obtain 

the exact expression for the N -point function, 

!he factorization of the N -particle dual diagram, we have 

obtained, probably is not the most economical one in the sense of 

the dimensionality of the group, Let us illustrate this statement by 

an example concerning the five-point diagram, It is seen that 

Pa" -t- +b + 

<0 I e 
H -a(s )+l 

2 

+ + 
V(p a ;b ;{3)D(a',(3')x 

2 

l --e xV(p2 a;b;f3) H-~)+1 
pa++b't-

1 
I o > 

coincides with (2,11), Thus we have built up the five- and four­

point function factorization using in both cases only the group lJ(3,2J. 

The authors express their deep gratitude to N.N. Bogolubov, 

D,l, Blokhintsev, V,G, Kadyshevsky, A,A, Logunov, V,A, !VIatveev, 

R.M. Muradyan, V.I. Ogievetsky, D,V, Shirkov and J,A, Smorodinsky 

for many fruitful discussions and critical remarks, 

Appendix A 

Let us rewrite in detail the definition (1,13) for coefficients n 

Dk(a',(:3) 

r{-2a'x +{3) 

r(-2a'x+ /3-n) 
=({3-2a'x-l)({3-2a'x-2) ... ({3 -2a'x-n) = 

= }; D: (a ', f3 )x k and D : (a ', f3) = 0 , k > n . 

1) Translating the argument 
X-> x- _y_ 

2a' 
we get: 

r( -2a 'X+ {3 + Y ) n , k ! y 
------= };, D (a ,{3) (- -) 
r( -2a 'x + f3 + y- n) k 'k k k '! ( k - k' ) ! 2 a ' 
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' 

k-k 
k' 

X 

(A.1) 



I 

On the other hand 

r<-2a'x+f3+y) 

r(-2a 'x+f3+y -n) 

n 

I.D 
k k 

Consequently we have 

(a',(3+y)xk. 

a n 
ID (a',(3)A (y)=D (a',f3+y), 
k k kk' k' 

where 
k' y k-k' 

. [---J. 
k '!(k-k ')! 2a' 

A ,(y)= 
kk 

(A.2) 

The matrices A , ( y ) 
kk. 

form an one-parameter commutative group. 

Indeed: 

A ,((3)A, ,(y)=A ,((3+y). 
kk k k kk 

With normalization condition 

A , (O) = fim 
kk y-+O 

k' y k-k' 
. [-- j = () • 

k '! (k-k ') ! 2a' kk' 

2) Using the identity 

~- r<-2a 'x tm._ =( _ 2 a ')_a__ f(-2a 'x +8) (A.4) 
ax r<-2a 'x+f3-n) a (3 f(-2a 'x+(3-n) 

the following representation of the coefficients D :<a ', (3) holds 

k 
n (-2a) dk r((3) 

D (a=f3 )=--- . • 
k k! df3k r<(3- n) 

Indeed from (A.l) follows that 

n , } .:l k r ( -2 a ' X+ {3 ) 
D (a ,(3 ) =- ( ~ 

k k! a Xk r (-2 a' X+ {3 -n) 

If now we use the identity t.A.4) to 

of the last relation we get t.A.5). 

3) If(3=0 we have 

r<-2a 'x) ---
f(-2a 'x-n) 

... 

= I D n (a ' , 0) x k 

k 

20 

(A.5) 

x=O 

transform the right-hand side 

(A.6) 

multiplying this equality by (-2a 'x-n-1) we get 

r (-2a 'x) n k n 
=-2a'I.D (a',U)x -(n+1)I.D 

k-1 k 
r(-2a 'x -n-1) 

(a ',0) 

Hence 

n+l n n 

D (a',0)=-2a'D (a', ·0)-(n+l)Dk(a',O) 
k k-1 

the last gives the relation between the coefficients an 

numbers s t n , k J • 

4) The polynomials rt(3 .2_ 
r((3 -n) 

are related with 

polynomials La (O). 
n 

cf3 <o>= <-Ir r<(3> 
n I ---• 

n. r( (3- n) 

a 
Let us use one known property of the L n ( x) 

I La ( x) L(3 ( ) = L a+f3 + I 
m m n-m Y n 

(x+y) 

in the form 

I L-(3 (O) L -y (0) = C (3 -y +I (0). 
m m n-m n 

Differentiating the last equality k times in (3 and 

y , and taking into account (A.B) and (A.5) we ob 

m n-m 
I D k ((3 ) D e ( y) 

m m!( n-m)! 
(k~ D n ({3+y-l). = --1 1 k+e n!k . s · 

5) The binomial 

-2 a' (3 
0-x) Y+ -1 

has the following x -power expansion 

-2a 'y+{3-1 n 

0-x) =I f(-2 '0.+{3)(-l)_xn 

n !r(-2a'y+{3-n) 
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n 

~0 (a',f3+y)xk. 
k k 

( y ) = D n' (a ', f3 + y ), 
k 

[- y k-k' 

')' --J. 
· 2a' 

(A.2) 

k ' ( y) form an one-parameter commutative group. 

) =A --<f3+y ). 
kk 

condition 

y k-k' 
~-···--[--1 =15 

2a' kk 

identity 

( -2a ')_a __ ...I.i_-2a 'x +8) 

a{3 r<-2a'x+{3-n) 
(A.4) 

lb~-~~entation of the coefficients D :<a', {3) holds 

(A.5) 
,• 

follows that 

f' ( -2 a ' x + {3 ) 

x=O [' ( -2 a ' x + {3 -n ) 

identity t.A.4) to transform the right-hand side 

tA.5). 
we have 

(a',O)x k (A.6) 

20 ... : 

multiplying this equality by (-2a 'x-n-1) we get 

[' (-2a 'x) 
n k n 

=-2a'~D (a',U)x -(n+l)~D 
k-1 k 

['(-2a 'x -n-1) 
(a',O)xk. 

Hence 

n+l n n 

0 (a',0)=-2a'U (a', ·0)-(n+l)Dk(a',O) 
k k-1 (A.7) 

the last gives the relation between the coefficients and the Stirling 
numbers s t n , k ) . 

4) The polynomials 1~ <{3 }_ 

polynomials La (0). ['({3 -n) 
are related with the Laguerre 

n 

L{3 (0)= (-It__.:~. 
n n! n;a-n) 

a 
Let us use one known property of the L n ( x) 

l La ( x) L{3 ( ) = L a+{3 + I 
m m n-m Y n 

(x+y) 

in the form 

l cf3 (O) L -y (OJ= cf3 -y +I (0). 
m m n-m n 

Differentiating the last equality k times in {3 and s 

y , and taking into account (A.B) and (A.5) we obtain 

l D ~ ({3 ) D ne- m( Y) 

m m!( n-m)! 
(k+s)! D n ({3+y-l). 
- ! ! k+e nlk. s · 

5) The binomial 

-2a' 
(1 - X ) y +{3 - I 

has the following x -power expansion 
-2a 'y+{3-l 

0-x -) - ~ 

~ 
21 

(A. B) 

times in 

(A.9) 

(A.10) 



I 

and using (A.1) we obtain 

-2a'y+f3-1 ~ 8J n 0 n (a' ,f3 )x nyk. 
-~ k 0-x) -

n! 
(A.11) 

So the function (A.10) is a generator function for the coefficients 

o:(a',f3 • Therefore directly the following integral representation 

holds -2a 'Y+f3-
1 

o:(a;f3)- =-_I_ j I dxdx 0-x) 
---- 417 c

1 
c2 n! 

-n-1 -k-1 

-x) y ' (A.12) 

where C 
1 

and C 
2 

are closed contours which contain the points 

x =0 and y = 0 • They must intersect the positive axis in the 

interval ( 0,1). 

From (A.11) we get 

I k k {3-1 X n n 
-(-2a') fn 0-x)O-x) =I -D (a',f3). 
k! n! k (A.13) 

The formulae (1.18) can be obtained from (A.10) and (A.:L3) 

if we put x ->- x in (A.10) and {3=1 in (A.13). 

Appendix B 

To prove the formula ( 2.16) I.et us multiply V ( p a, b , {:3) and 

V( qa, b, y) by each other: 

Dn (a',{J)Dn,(a',y) k' n+n'-k-k' 
k k k 

V ( p a ; b ; f3 ) V ( qa ; b ; y ) = I ------- ( p a ) ( q a ) b 

The substitutions n-> m-n 

V(pa;b;f3 )V(qa;b;y)= I 

n! n '! 

and k ~ s -k 

D n (a' ,{3) lf'-n(a ',y) 
k s-k 

n! (m- n)! 

Taking into account the identity (A. 9) we get 

22 

_. 

give 

k 1!-k m-e 
(pa) (qa) b 

,' • 

V ( p a ; b ; f3 ) V ( qa ; b ; y ) = I 

IL 
m! 

rn 
D [(p+q)aJ'" bm-s .. 

and consequently 

s ! D : (a , ,(3+ y-l) ( p a) k ( qa) ' 

m! k!(s-k)! 

V ( p a ; b ; f3 ) V ( q a ; b; y ) = V (( p + q) a ; b ; f3 + y -1 ). 

Hence the formula (2.16) can be obtained by subst 

{:3->{3+1 y->y+ 1. 

References 

1. A.A. Logunov; L.D. Solaviev and A.N. Tavk:helidze. 

14B, 181 ( 1 967}. 

2. B.Yf. )Kypaanea, B.A. MemepsrKoB, K.B. Pepnx, A.H. 
npeiipHHT OY1HY1, P2-3385, Jly6na, 1967. 

3. K. Igi and s. Matsuda. Phys.Rev.Lett., .1:§, 625 ( 

4. V.A. Matveev, D. Ts. Stoyanov, A.N. Tavkhelidze. JIN. 

E2-497B, Dubna, 1970. 

5. R. Dolen, D. Horn and c. Schmid. Phys.Rev., 1661 

6. C. Schmid. Phys~Lett., 2BB, 348 (1968}. 

7. s. Matsuda. Phys.Rev., 185, 1811 (1.969}. 

B. V.A. Matveev and A.N. Tavkhelidze. JINR Preprir 

Dubna, 1 96 9. 

9. M. Jacob. Rapporteur talk at the Lund Conference or 

Particles (June 1,969} and references therein. 

10. s. F'ubini and G. Veneziano. Nuovo Cimento, 64A, 

11. z. Koba and H.B. Nielsen. Nucl.PhY$., B10, 633, B1::. 

12. J<. Bardakci and H. Ruegg. Phys.Lett., 2BB, 34 

D. Fubini, D. Gordan and G. Vene:;>:iano. Phys.Lett 

c. Lovelace, CERN Preprint TH 1123 (1969}. 

23 



n 

- ~ <::!J D n (a ' ,(:3 ) X n Y k • 
- k 

n! 
(A.ll) 

is a generator function for the coefficients 

directly the following integral representation 

-2a'y+f3-1 -n-1 -k-1 

J dxdx 0-x) ( -x) y , 
c2 

(A.12) 

C 2 are closed contours which contain the points 

• They must intersect the positive axis in the 

11) we get 

X n D :(a ',f:3 ). 
n! (A.13) 

can be obtained from (A.lO) and (A.:L3) 

in (A.10) and {3 =l in (A.13). 

Appendix B 

the formula ( 2.16) I.et us multiply V ( p a, b , {:3) and 

each other: 

[)n (a ',{3 )Dn, (a' ,y) k n +n '-k-k' 
k k ) k ) ;b; y)= ~ ------- (pa (qa b 

n--)> m-n 

~ 

n! n '! 

and k-+ s - k 

D n (a',{3) If'-n(a',y) 
k e-k 

n! (m - n ) ! 

identity (A. 9) we get 

22 

.... 

give 

k e-k m-e 
(pa) (qa) b 

V ( p a ; b ; {3 ) V ( qa ; b ; y ) = !. 
m( , ~ l) k s-1<;. 

s ! D e a •tJ+ y- ( P a ) ( qa ) b 

m! k!(s-k)! 

!.L 
m! 

m 
D [(p+q)aJ" bm-s 

" 
and consequently 

V ( p a ; b ; {3 ) V ( q a ; b; y ) = V (( p + q) a ; b ; {3 + y -1 ). 

m-s 
= 

Hence the formula (2.16) can be obtained by substituting 

f:3->f3+1 y->y+ 1. 
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