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Introduction

The contemporary interest in infinite-component fields is due
to the fact that they allow to describe in the unified manner the
second quantization and interactions of infinite multiplets, Such multi-
plets appear in attempts to relativize internal symmetries of elemen-
tary particles/1/, Nevertheless , at the preliminary stage of developing
inﬁrﬁte—_componént du_antumﬁelds it is useful (as it has been propo-
sed by Feldman and Matthews/2)) to digress from inner structure
of partlcl'es and to‘ study the "bure infinite-componentness®,
treating infinite—-component fields as fields transforming under infinite
dimensional (mainly, irreducible) representations of the connected
Lorentz group L: x/.

In accordance with the Wightman scheme a quantized field
transforming under irreducible representation x:[k.c‘] of the group

LI (where k is a (half-)integer and ¢ is an arbitrary complex

number) is defined/4/ as a continuous bilinear operator-valued functio-

x[Proceeding from analogy with the construction local
dlgebras on basis of the Wightman finite—-component fields one can
(under usual assumptions) define the Haag-Araki algebra/3/ starting
from infinite~component quantum fields, The properties of infinite-
component fields differ considerably from those of finite—~component
fields (e.g., CPT-theorem and the connection of spin with statistics
fail), hence the study of infinite~component fields can give an insight
into problems of the theory of local algebras),
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nal 'f(“"’” over (u,{)e S(M.‘x»_x with common dense domain Do
in the Hilbert space w of state vectors; here S(Mﬁ) is the Schwartz
space of rapidly decreasing e“ -functions in Minkowsky space Mq',
Q_x is the nuclear Space/5/ of representation T_x of the groun
SL(2.C). Therefore, for fixed 46»_-! R ?(u‘,{) is an operator-valued
distribution in- Mq .
All the Wightman axioms/6/ are imposed (except the finite-

componentness of fields), In particular, the condition of covariance
under the connected Poincare’ group 9: (the connected inhomo-

geneous Lorentz group) is

U(,A)9d) U (@A) =g (aB) 2+, Ty (WD), (0.1)

where QGTq (the group of translations), AGSL(’-,C), U(@,A)

is the unitary representation in u of the universal covering group
i’ of the group 9: . Note that if the field ? transforms under
the representation Y then the hermitian conjugate field ,*, defined

"?*(K'»¥)=(‘f(us¥))* L (IL e Stmy), {G 3-1*) (0.2)

transforms under the complex conjugate representation x+-. [—k.a:l_

The field (' transforming under the representation % can be
realized in another equivalent way/7-8/ x/ as an operator-valued
SL(2,C) —covariant distribution ?(x;z) in the domain Ma'XCl {where
é"= Ca'\ {0} is the two-dimensional complex space without the
origine), the following homogeneity condition being fulfilled:

x/’I‘he equivalence of this realization and the gne presented
above is based on an isomorphism of the space &y , topologi-
_cal dual to s_l,and the subspace d of distributions in =¢\{0}
homogeneous of index X (cf./4/, Appendix A, 2 2



. o .
?(z;@_e&tz) =fc-'edmtf(x;z) for any P20, & = .

A finite-component field with m undotted and n dotted indices
transforming under the finite-dimensional representation (m /2, n /2)
of LI is a special case of infinite~component fields when ?(I;Z)

is a homogeneous polynomial in (Z,i) of the bi-degree (m ,n):

fag= 2 ot @ 2. 2@ @k . 09

Q'»'-)i:- 1.2

There is the famous CPT -theorem for the Wightman finite-com—
ponent fields: an antiunitary operator, @ , exists such that for

any field ? transforming under an irreducible representation of L:
O¢eh 0" =1) 96z, (lt feda) o

holds, Feldman and Matthews (/2/, 1967) have posed the problem
whether the CPFtheorem is wvalid for infinite—.component fieldsx/. The
positive answer has been of doubt since all proofs of the CPEtheo-
rem are based essentially upon the finite-componentness of fields
(see the discussion by Stoyanov and Todorov/lob. Indeed, there
are examples/ll/ of CPT -noncovariant free fields transforming under
irreducible representations of the group Li and satisfying all the
Wightman axioms, except the finite~componentness of fields; (the
connection of spin with statistics may be chosen normal as well
as abnormal),

In view of absence of CPT-theorem for infinite~component fields
it is desirable to investigate other possible forms of covariance

condition (compatible with the locality) for infinite-component fields

x/

A similar problem has been posed by Epstein in the local
algebra approach/9/,



under space-time reflection. Of course, such covariance is to have
an obvious group theoretical meaning and to be based on an ana-
IYSIS of symmetnes with respect to the special Poincaré grou * ™
‘q’ U q? generated by the connected Poincaré group, t’,,, , and
the space-tlme reflection, I.

§1 of the ‘present paper is devoted to the analysis of symmet-
ries with respect to the group q’.,. in quantum field theory. An analy-
sie of this kind would be incomplete without taking into account super-
selection rules: it is well known that the neglect of these does not
permit a consistent treatment of symmetries even for the Wightman
ordinary fields, To clarify our point of view we expose in section
1.1, what we mean by symmetry in the presence of superselec-
tion rules, Respectively, in section 12 we state the notion (adopted
further) of local covariance of quantized fields with respect to a sym-
metry groupxl. In section L4 the characterization of symmetries
with respect to the group \,,., _in the presence of superselection rules
is given, Using the Wigner analysis/12/ of projective unitary repre-
sentations of \?.'. we show that every d¢ -symmetry can be S
cribed by a unitary-antiunitary representation of the group +
(the description of the group Jg and other groups associated with

is presented in section 1,3). In turn, any such representation
U(’#of 4 is uniquelly defined by a unitary representation U(ﬁ' A)
and an antiunitary operatorq's satisfying the conditions:

J U(O.,A) J-i = U(—Q,,A) , | (0.58)

2
. . . ]
J is a unitary superselection operator R (3‘) - 1. (0.5b)

XIMost of concepts of §1 are far from being original and are
drawn to make the treatment self-contained.



Sections 1,5-1,6 deal with the statement of ﬂ- and CPT -cova-
riance conditions. Let aﬂ{'f”,..,tf“} be a complete finite set (which
involves with every fields its hermitian conjugate) of infinite~compo-~
nent fields transforming under irreducible representations of SL(Z:C)
and satisfying 9: —-covariance condition (O.l). Let further the \a. -Sym-
metry in the Hilbert space y be defined by the unitary repre-
sentation U(G,A) of a’ and the antiunitary operator J satisfying
(0.5). Then the 2. -covariance condition of fields ?l"“'?" means that
the field JY‘J" (l:‘l,m,") at an arbitrary point zGMq is a linear
combination of the fields ‘,1""'?" at the point =2 x/ The CPT -co-
variance condition (0.4) is the special case of the & —-covariance
condition,

To show that the \?;, -covariance condition for infinite—-component
quantized fields is independent of the basic principles, examples
of free Jgy -noncovariant infinite~component fields are given in sec-
tion 2,1xx/, Since free fields are characterized completely by two-
point functions, it is a straightforward task to verify all the condi-
tions of the Wightman reconstruction theorem for these fields, An
example of section 2,2 illustrates the fact that the z.-covariance
condition is more flexible than the CPT -covariance, Namely, we con-
sider fields ‘, and r* (introduced earlier in/11/) transforming
under the Majorana representation X.-[o, '/’,] jthere is no operator
@ satisfying (0.4) but an operator J exists such that

J‘f(xif)fl‘l = 9(-x; ?) , J‘f*(.z-, )J-f.‘, r!(_x; f) (0.6)

x/Though a quantized field (f(x) is an operator-valued distri-
bution one may say about the value of the field at a point X
beaﬂng in mind a sesquilinear form defined on a dense domain
in . 4

xx/lt is likely that using fields similar to those of section 2.1
one can obtain CPT -noninvariant local algebras,



holds., The interpretation of the operator J depends on superselec-
tion rules, E.g., if the fields (, and Y* describe respectively
"particles" and “antiparticles" (separated by superselection rules),
then the operator J in (0.6) has the meaning of the PT -operator.
Thus, infinite-component field theory allow PT -covariant but CPT-non-

covariant local fields,

§1. Representations of the Special Poincaré Group
in Quantum Field Theory

1.1, Symmetry and Superselection Rules

In the sequel we follow the Wigner notion of symmetry of
a quantum system with respect to a group G .

Let W be a Hilbert space of a system and let Il be the
set of all Unit rays (in w ) representing pure statesx/, We shall
suppose that the linear hull of the set m is dense in ?{ . This
condition is sufficient (/15/, ch. 1I, section 1.3) to represent (uni-
quelly) ;I as a direct sum W-Q W,‘ of a family of subspaces
called coherent subspaces so that i) m-U m.‘ where m. is
the part of . contained in W,., , ii) for e:ery ot the set of
projections on rays of the set m* is an irreducible set of opera-

tors in o

x/Nowadays the concept of pure state is the one derived from
the concept of the observable considered as the primary object/B/.
We shall restrict ourselves to the special scheme which corresponds
to the traditional approach to the concept of pure state in quantum
field theory/13,14/ and which seems to be sufficient for up-to-date
reeds. This approach takes for granted pure state vectors (other-
;ffﬁﬁge, physically reallzable vectors/ﬁ/, which may be "prepared expe-
;‘g;rhnental.ly“). The closed linear hull of the pure state vectors can be
“runiquelly decomposed into direct sum of so-called coherent subspa-
ces (see below), and observables are defined as hermitian operators
with vanishing matrix elements between different coherent subspaces,



A group G‘ is called a symmetry group of the quantum system
if every ’GG is in line with a transformation, T’_ , of the set

of pure state vectors onto itself which preserves transition pro-
babilities l( Q., ‘,)\z(where Q , Qz € m ), the group law

being fulfilled:

Tq °Tq =T . (1.1)
$ Y &1 9o
Due to the ramification of the Wigner well-known theorem (/6/,
Theorem 1-1), every transformation Ta can be realized by an ope-
rator T( ’.), a direct sum of a unitary operator and of an antiunitary

operator, such that
any ”‘ is mapped byT(’.) onto some ;/p ([’ = {3(’,&))‘ (1.2)

the restriction of T(}) to a coherent subspace W& being unitary
or antiunitary operator defined uniquelly up-to a phase. Due to(1.1)
operators T(,.)T(?&) and T(,"&) realize the same trsansforma-
tion t’" % of m , hence (in view of irreducibility in y‘ of the set
of projections on rays of m.' ) they may differ at most by a phase
factor on any coherent subspace, Let us introduce the set

of unitary superselection operators in W , i.e, operators of the
form
N = § w » E «

where E o< is the projection on N“ and w‘ is an arbitrary complex
number of modulus 1, Then the multiplication law of operators T(’)

can be written in the form

T(M.T(g,’)=Q(m,g&).T(,‘.gz), Q(3.,90€ U . (1.3)

In all cases of practical importance every T(?) must be either
unitary or antiunitary; (in particular, this is the only possibility for
the special Poincaré groupa as a symmetry group in a theory
with the spectrum condition). Therefore we adopt the following defini-

tion,



Definition 1. We call the family (T(’) 966‘) of (anti) unitary ope-
rators satisfying (1.2), (1.3) the Unitary-Antiunitary Representation

up-to a Superselection Factor of the symmetry group G- , briefly,
- A
UARSF of the group G .
There is an important class of UARSE,
Definition 2, We say that UARSF, T s of a group G‘ is generated
o~
by a unitary-antiunitary representation, U , of a group G if
pary o~
0) there is a homomorphism, f , of 6 onto G , ii) for any SGG
Ld
operators U(,) and T(f(?)) differ at most by a superselection

factor, l(g), i.e. U(‘i) = l(g)T'(f(g)) where A.(g) S‘u.

The following proposition is evident : if is a homomorphism
of a group G onto G' and U is a unitary-antiurivary representation
ld
of , for any g of the kernel of f U(’) being a unitary super-

selection operator, then U generates an UARSF of G x/,

1,2. Covariance of Quantized Fields with Respect

to a Symmetry Group

To formulate the notion of local covariance of fields it is

useful to have a unique "big" field @ instead of a complete set

of fields *f,tp',sy,,uf... This is a bilinear continuous hermitian

functional over W& S(Mq),FEE, where 3 is some topologi-

cal vector space with an involution , Q(“.F) being operators

defined on a domain DO dense in . Hermiticity of the functional
implies

o(z:3F) = (&) | . @)
_ D,

x/As to projective unitary-antiunitary representations (which
correspond to the case when the set consists only of multi-
ples of the identity operator, i.e. when there is no superselection
rules) of topological groups see 16,17/,
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By @(I,F) we shall denote the operator—valued distribution in

' 1€Mq . -

For example, if a'{'f,,..., W} is a se of (in)finite~component

fields, transforming under representations lh.-., xN of SL(2,C),
*

any (" belonging to a which lts hermitian conjugate (f‘ Y‘I ’

then one may introduce a "big" field by

N
B(xiF) = g 0 (2 fi) (1.9

where Fa({b'“n,ﬂ) is an element of the space 3 = 9_11 ®...
o 3_1 .,the involution 3 _being defined by the formula
L (fs fa) = B B)-

Let G be a symmetry group which acts on the Minkowsky
space M" .so that (’l-’,)’:e(x-y)& (i.e. there is a homomorphism
of G into the full Poincaré group $ ). Given a UARSF, T,
of the group G » the most straightforward way to formulate the
notion of G -covariance of a "big" field is to group the LJARSF‘
T into a unitary antiunitary r%)resentation, U » of a group G s
homomorphic to G , {hence, G also acts on Mq). Then the local
G ~covariance condition means, roughly, that, for any gs a .
the field U(§)¢ U(i).’ at any point X is a (anti)linear functional
of the field Q at the point gz .

Definition 3 (Local G —covariance of fields), Let ¢ be a "big"
quantized field in Hilbert space w . Let G be a symmetry group
which acts morecver in the Minkowsky space Mq , and let T be
its UARSF in ” « We call the field G ~-covariant if there are

a group » homomorphic to G » and a pair of unitary-antiuni-

tary representation, U » and linear-antilinear representation R J:

o~
of the group & in ;/ and 3 respectively such_that ) UARSF T
of G is generated by the representation U of G (see Definition 2),

i) V(9 D, =D,, (L6a)
- U@R=RUGT = ¢(gx; J(3)F) . (1.6b)

11



x|

L
1,3, The Group .?:,. and its Covering Groups & 2. , 9;,. .

Let us define a few groups which are of use in the analy-
sis of symmetries with respect to the FPoincaré group involving
the space-time reflection,

a) (?,: is the connected Poincaré group; this is the semi-direct
productx/ T.‘.QLIof the group T;’ (of translations of the Minkowsky

space Mq~) and of the connected Lorentz group LI .

b) 9_:=12.0 LI (where LI= SL(Z,C) is the universal cove-
ring group of LI ),the action of SL(Z,C) on T‘. therewith is
defined by the formula Q =A(A)a. where A"A(A) is the standard
homomorphism of SL(Z,C)onto L: /6/.

c) 9} , the special Poincaré group, is the group of transfor-
mations X=» (Q,A)IEAI-I-G of the Minkowsky space, where & GT«
and A is Lorentz transform ation with determinant equal to 1, It
is essential that !?1_ is isomorphic to the semi-direct product of
two subgroups, ?1 and R H the latter consists of two elements-—
unity, e'(o,i),and .space-time reflection, 1, with respect to the ori-

gine. The action of an % & R on ‘?_: is defined by g‘: °"g°(-1>

i.e,

ge= g, slg(a,,/\)r.(-o.,/\) tor any g & ‘93_1“ (.7)

By the isomorphism[?,d]“ e, (where 76 ‘2:, ol € R )
we shall identify the groups $$OR and +
-~
d) -?... is the semi-direct product of g?.: and the free group

lad

R . .
£={l }nso,t1,t2.,-.. with one generator ; The action of the l

on ?e ?_: is defined by

Let a group K act on a group G , for any kGK the mapping 3-.3

being an automorphism of . The semi-direct product ©

of groups G and K is the set of all pairs [.,,k] (’GG.k‘K)
with the composition law /,-”k,][’bkl]= [”.8‘h‘ k. k‘]‘

12
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;3 a (2, )% = (-0 4). (.8)

n n
The mapping I' “I is a howomorphism of g onto R 3 analo-
. R
gously, the mapping [E“u A).,I ] “’[ ("» A(A))» I ]
is & homomorphism of 'ﬁ, onto e ~,

e) ¢ is the semi-direct product of + onto the cyclic group
R‘{C.I, I ,T } of order 4, the action of I‘~ on +
being defined by a formula of the ty; (1.8) (with I instead of ; )

f) + E— the .quotient'group * Q , where Q is a ceritrial
subgroup in $+ which consists of the identity and [(0,'1), ]

There are obvious homomorphisms of every of the group
a) - f) into ¢+ » and actions of these group on the Minkowsky

space is defined thereby, E.g,, for ?’H [(t,,‘A),Tu] € ;ﬁ ,

§'x = A(A)I"x +a. (1.9)
In every of the groups’ a’, ":, a,‘a, \’.i,, i we may

choose elemin with the tz‘anslatio~n vector a-‘o.,we obtain thus
subgroups L+,L:=SL(2,C),L+,L+, L*.'E,hrespectively (i.e. the

quotients ‘of the above groups by the translation subgroup),
1.4, $ -Symmetry
—_

We are interested in the group .9;.. as a symmetry group,
Our aim is B reduce ﬁ_-symmetries to unftary-antiunitary represen-
tations of ¢ » the covering group of \ﬂ_ .

We start from the description of symmetries with respect to
the connected subgroup a’c 9;', (/6/, section 1-4), Of course,
it is reasonable to restrict ourselves to continuous in g transfor-
mations T(,):m*m of pure state rays; in this case the equality
of t'(‘) to the identity transformation entails that every coherent
subspace is invariant under (T(’) ’E 9:) Since any ¢ € .?:
can be represented in the form 7! (")l (,“)l., all T(’)are
unitary operators (due to (L.3)). Hence there is a unitary repre-

13



sentation up-to a phase of the group f‘: in every coherent sub-
space Wd, . The Wigner analysis/ 12,16/ of projective unitary
representations of fl-f gives now that every UARSF of ‘?.: is gene-
rated by a unitary representation U of c’f (see section 1.1,
Definitions 1,2).

The representation of the abelian subgroup of translations,
(U(“.')'- as Tl.) has the form U(Q,i)'“P(iPd) where P is the
4-momnentum oper"ator (whose components are self-adjoint commuting
operators), We suppose that the spectrum conditign is fulfilled: the
spectrum of the operator P lies in -V;I{PG Rq H P° 2 IFI} R
the point 0‘V+ corresponding to unique (vacuum) ray in .

Now we can characterize UARSFEF Qf the group z. .
Proposition. Let T be a UASRF of the group \a_ in y , hence
there is a unitary representation U of the group V4 generating
T. Let the spectrum condition be fulfilled. The family (T(g): ge?f)
can be continued to a UARSFEF (T(a') g'ei‘,,) of the group +
if and only if there is an antiunitary operator, J , satisfying (1,2)
such that

) JUMIT=U@EY, je § (1.10)
where 5‘1‘ € ?f is defined by (1.8);

if) 3" is a unitary superselection operator X/, ‘ (1.11)
As this takes place, a UARSF T of 94, may be defined by

T([g, Iu]) = T(a)Jn where g‘ 0.9$, n=01 ;o (L12)

this may be considered as a UARSFE of a generated by the uni-

tary-antiunitary representation V(g) of the group 3:, (see section
~ ~

1.3, d) defined by :

V([’i,ll])=U(§)3n, ?Gi’, R=0,21,¢2,.. (L13)

x/Condition (1.11) means that J" is a unitary operator with

discrete spectrum and every pure state, vector of is an eigen-
vector of . We call the operator J the superselection opera-
tor with respect to the space-time reflection,

14



Moreover, multiplying the operator J by a superselection factor
one is able to fulfill the equality

AL
i) (3 ) = { 3 (1.14)
then the UARSFEF Tof the group ‘?;', may be considered as being

generated by the unitary-antiunitary representation U of the group
+ (see section 1.3, e) defined by

U([‘i.i"])=U(§)-J“, Fed, n=on23 (i

Proof. The sufficiency of (1.10), (111) follows from the formulae
(1.12), (L.13). Let us prove the necessity of (1.10), (L1,

Let <T([§,d]) :gef,",deﬂ) be the UARSF of df} :
T([ }p"t]}T(@,,,dJ )= .Q(@,,ct,], &,«J}T( ﬁv‘&q"“#’])- (1.16)

It has been pointed out that, under suitable choice of superselec-
tion factors A(@, A)eﬁl , operators

Ue,d) = 22, A)- T([(a,Aa),e])

form a unitary representation of v .
Denoting3=T(I)we want to prove that J satisfies (1.10), Indeed,
(1.16) implies that the left and the right sides of (1.10) may differ

IUGI'=2(UGh) = UGH- Q1) (.19

where

QG =L@, o=t oo

x| Our argument is close to the Wigner ana.lysis/ls/ of invariance
under the full Poincaré group, the only difference is that we incor-
porate superselection rules,

15



~ I -t .1
Butg-bg"' is an automorphism of &’, hence JU(?)J and
—
U('g;)are two representations of ,};’.‘.’Eq.(l.l'?) implies then
[/
that .Q(g)is also a representation of \9;: which is reduced to
!
a one-dimensional representation, uu( 9’) , of .%_* on every
coherent subspaces R The only possible such representation
1 ,)ee Yoo
w (9) is trivial, hence .Q( )=1 and (1.10) is proved,
o o1
In particular, 3 U(Q,')J =U("a-,1) for any aeTq . Recall that,
with our definition of a UARSF, the operator is eith'er unitary
{hence 3p3‘1=‘P ) or antiunitary (hence JPJ.i'P ). But the
only possibility (except for trivial one-dimensional ;/ ) compatible
with the spectrum condition is the antiunitarity of J .
We have: J is the antiunitary operator, and J" is (due to

(1.16)) a unitary superselection operator:

3£=§§“.E‘ ’ ‘§¢|=1‘ (1,19)

For a coherent subspace N‘, there is one of two possibilities:

a) Nw is invariant under , hence the eq_l:lality J E - E “J
holds; then the identity 3(3")=(J") 3 implies {‘I g‘ , e §“= + 1;

b) There is another coherent subspace #§,/ such that J ;,“: 2‘("
and Juil-'-;l,‘,hence JE‘= E‘IJ and JEJ‘E‘J ; then the identity
3(32)3-1=3l implies _;.d-"?d. .

Let us intriduce instead of J a new operator, J, , which

differs from 3 by a superselection factor :

J=Q3, where .Q-z’[q_ Eo o fu=2V§, . 20

Using the equalities §‘=t1 in the case a) and z‘,= fd‘ in the

case b), one easily verifies that 31 so defined satisfies (1,14),

This completes the proof,

Example, Let us describe possible c?‘_-symmetries assuming that

the space does not contain zero-mass states, A UARSF of
s?:’, in ?'l commutes with operators of mass and spin. Hence the

/
subspace, al , orthogonal to the vacuum can be represented as

m
a direct integral (or sum) of spaces ;/ with definite values

16



of mass (m>o) and spin (SBO, 1/2.» ) and the representatlon of
ms
4 nm u is reduced to representations U of t??‘ in 2/
H
H we shall denote a contnbutlon of a coherent subspace

'H (= H to W"" 3{"“-6 3/':‘ Let H be the space of the irredu-

" cible representatlon of §+ with mass M and spin § , which

+

may be realized by functions %(P,g) of P , a vector on the upper

hyperboloid of mass M in R", and of ; , a two-dimensional

complex vector, 4(? s)bemg a homogeneous polynomial of degree 5 in
3 The scalar productin H is glven by

Sf>= J( 7'3‘?) T dlr) =

where ~-( P_P -P-q.iP )
| PR e

2L

F

+m"

(cf./s/, section 1-4), Every 3/,,_ as a space of representation of 9*
with mass M and spin S , can be represented in the form 3/
ms
—'H ® 5 vThen elements of the H.g are vector-valued measurable
functions F;' (P,()wnth values in '6& such that
3

IF2] = J(M ,g) (F (), Fe (p,o)v#’mTw,

and the representation of 9?: has the form

(U2 FT)(Ps£)=e F"“(A“ )3 ¢A). (1.2)

Due to Proposition, for the definition of a UARSE of u’;'_ it is
m
sufficient to define in every ;{ $ an antiunitary operator 3
. Nms Wms N’ ..
which maps every o onto some «’ ( (u,) being equal

to o ) and satisfies the equation

" U A) (IM) = UM ). (22



As it has been mentioned above, there are two possiblilities:

. ms
a) ﬂ.’= e , then in view of (1,21) and (1.22) J.. , the restriction
of 3”“ to W:‘ has the form

O PN = (el 1) F),
Mereé=(

2 ;)-and ‘/“ is an antiunitary operator in 5& such

that (J‘)" equals up-to a phase factor to the identity operator;
! I™ maps W3 o i  fovs
b) ' & , then maps W, onto A, and, vice versa, w’
o M, 5"" the restriction of M8 to A ¢ W™ | has the
onto € iy e stric J o ® < !

form

amef Fo|| Favs(0 ia| [FR
o e | (RN A f R R LA
::, ( é m;f) e 0 :’(p;g) ’

where J‘;“ is an antilinear isometry of 5“ onto 5‘[ ' } o is
an arbitrary phase factor,

1,5, g‘-Covariance Condition for Infinite~Component Fields

We have proved in section L4 that any 12', -symmetry is
defined by a unitary-antiunitary representation, U » of the group g
In line with Definition 3, we may take G- ?_'_ and C= ¢ to formu-
late a '?:l' -covariance condition for a "big" field @ « As the group

+ being generated by the subgroup ~: and tht‘e- element T , it
is sufficient to fulfil (1.6b) for ?G 9: and i: I separately, It is

natural therefore to take the following !

.?* ~covariance condition:

i). There is a UARSF of ;2_ in ;/ which due to Proposition of
section L4 is defined by a unitary representation, U , of wf.’.f
and an antiunitary operator, J » satisfying (1.2), (1.10), (1.12), (1.14),
The ?;'_’ -covariance condition for a "big" field Q(z,' F) is fulfilled

in the form

18



U(e,A)d(x; F)U(aA) ' = $(AA)x+a; JCAF), (29

where f(A) is a representation of SL(2,C) in E (cf. (0.1)).

ii), There is an antilinear operator } in &) such that

] T(A) = J(A) 7. (L.24.8)

(5) =1, | o
and the fiekd é satisfies the condition

J é(’-‘ F) 31 é(' }F) (1.25)

Taking hermitian conjugation of (1,25) and using antiunitary of

3 §(x;F) 3= @ (233 F), (1.26

where 3 is the involution in ®) (cf (1.4)). For compatibility of (1.26)

with {1.25) we shall assume that operators and commute:
3; } = Z } . (1.27)

We discuss in more detail the case of infinite—.component fields

(see Introduction), Let U= i?,‘f*, (P, ‘?*,...} = {‘f,,..., ?N}

be a complete finite set of infinite~component fields transforming

under irreducible representations 11 N X'N of SL(Z,C) . All the

Wightman axioms are assumed, To get rid of non-significant over-

loading we make additional assumption: for any two fields Yi'%eu

19



either x‘= XJ or Xt\# ix" (the latter means that X‘ and XJ
are non-equivalent), By v‘-,efl we denote the field hermitian con-

jugate to ?t (see (0,2)):
*
9 =(1)" .

Let @(2., F) be the 9.., ~covariant big field corresponding
to the set a (see section 1.2) and } be corresponding anti-
linear.' SL(Z,C)-invariant (due to (1.24)) operator in St =% ®..0 -IN.
According to/5/, the mos'tv general form of ; is 1

- N -

J ({1.-.-.{,4) = (ﬁv_'.agj {J‘/,..., ng, a'Nj ’J’) , (1.29)
where f,l EQ—XJ and (a‘J) is NxN complex matrix such that
a.,:j =0 if xt*XJ . Now (1.25) takes the form

N
-1 o
J ?i(z;{)s =j§1 a‘:'. (cfj(.x;{)) , {‘ D-Xj- (1.30)

Equations (1.2%) and (1,26) impose additional restrictions on the

(1.28)

matrix \£ = a“j

..44 =1, : (1.31)
a.i_'j, = a.ij . (1.32)

Note that by a linear nonsingular transformation,

%(:c;f)'—‘jz Bq%(z,f) . where B(}-= 0 it X;#X:, (139

identity (1.30) allows to come from the set a‘{'ﬁ,..., ?N} of fields
to a new set a1={%"“’ ?N} of fields (also transforming under
irreducible representations of SL(z,C)) so that the new matrix 7 in

(1.30) will be diagonal, the diagonal elements being equal to iu

k=0,1,23):

J%(z,{) J"=?(ﬂ~)-(%(—x;{))* , 11('}})" 1,-1,0 -, (139

20



Indeed the new matrix ._741 is obtained from J@ by a transformation
.A1 B&B - , and equation (1. 31) guarantees the existence of a
B which transforms to diagonal form.

It is easy to translate the 9,', —covariance condition into the

language of Wightman distributions. Let

Mf“i ¥ {1’ ¥") <°l"ﬂ. 11»&) ?Ln(zt\x{n)\()) (1.33)
be vacuum expectatxon values of infinite- component fields ’f"’ "‘fl ea
(here R=04,-++ 3 Cyaees lv,‘-1,... ﬁeD x ). Let —(a ) - be

NxN matrix satisfying (1. 31), (1. 32) One venfles immediately that the

q?i'_ —covariance condition implies the following relations between

the Wightman distributions

WE‘...i“(x“""xn.’{h""{"’) = Z ai’j’ " ai[\jn X

Jorey JnZ N (1.36)

" (nljn."'h( Aot x“{m"w{q),

for any =01, 5 l‘-h\...,in=1,...,N. On the other hand, due to
the reconstruction theorem/6/ the distributions (1.35) define comple-
tely the set a of quantized fields, and the fulfillment of (1.36)

is the sufficient condition for the existence of an antiunitary opera-
tor J satistying (1.10), (1.14), (L. 30) (/6l, theorem 3-9). 1f in addi-
tionJ satisfies the condition; maps every coherent subspace Mg
onto some coherent subspace M/ and (0(' —ﬂ' (ct.(1.2), (1.1D),
then the set a of fields efmed by distributions (1.33) satisfies
the ? ~covariance condition.

In particular, a set a, of infinite~component free fields (for
which (anti)c‘ommutators are multiples of the identity operator) are
uniquelly defined by two-point functions, and the covariance condi-
tion (1.36) is equivalent to the following restrictions on two-point

functions
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W‘](x"{'?)'—' Z Gin War(zgf), o

l.m =1,...N

bj=h.., N W; (1-];{;7) =Wilxyitg). oo

Remark, The G-covariance co'r.l-dition (section 1.2) involves a free-
dom in the choice of a group G » homomorphic to G . Given a
UARSF of a group G- » the larger the group » the easijer is
to satisfy the- resulting G' -covariance condition, In the case of
G=a one could take the group f.'_ (see section 1,3,d) as c .
This results in abandoning the restriction (1.14), (1.24.b), (1.31)

of the above treatment, There is a case when the choices of the
groups 2_ and + are equivalent, Namely, if, for any unitary
superselzction operator .Qe ‘u, there is an operator O in D
such thatQQ(x;F)_Q-'=¢(x;o F) , then the operator J satisfying
(1.25) but not (1. 14) may be substituted by an equivalent operator
31=.QJ such that (31)4=1 (cf. Proposition of section 1,4),

1.6, CPT-covariance

It is complicated to formulate in field theory general CPT ~cova-
riance condition with reasonable physical meaning; this would demand
a detailed description of superselection rules (in particular, the se-
paration of "particle" and “antiparticle" pure states), We shall con-
tent ourselves with the standard version of CPT-covariance which
requires that, for a field ? transforming under an irreducible repre-
sentation of SL(z,C),the field J?Jq is equal up-to a factor to (f*
(J being space-time reflection operator),

_CPT —covariance, Let a={‘f,,...,‘f"} be a complete set of infinite—

component z_—covariant fields (see section 1,5) transforming under

irreducible representations of SL(Z,C) We call the fields CPT-covari-

ant and write 9 instead of J if
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Qo) 07y (ot p)', Y=ot 0o

for any field Lp , the linear combination of the fields if,, , ‘fu»
which transforms under an irreducible representation, x, of SL(Z,C)
(ie. @(x;4) Z ) i f)ana G=0 it XX .

The standard interpretation of as the (PT-operator is
as follows, First, 0 transforms fields at a point x\ to fields at =%X.
Second, let for a field ? , one-particle states obtained by applying
‘f and (P to the vacuum be called - in line with some super-
selection rules - respectively "particle" and "antiparticle" states;
then, due to (1.39), @ converts particles into antiparticles and
vice versaX/,

We have seen in section 1.5 that, starting from a set fl=
={'ﬁ,...,?~} of 3?'_ —covariant fields transforming under irreducible
representations of .SL(Z,C),by a (local) linear transformation (1,38)
one may obtain a new set, a,, of fields so that the transforma-
tion low under space-time reflection takes the "diagonal" form (1.34).
It is evident that this diagonal form of a—comriance is basic
independent, hence means CPT -covariance, if ’l('h) are the same

for fields ’b‘ transforming under the same representations of SL(2 C)

13 ﬂ‘n the theory of Wightman finite-component fields the condition
@ (") is fulfilled moreover, S being the spin operator, and
(-1 238 being a superselection operator called the univalence opera-
tor.’ Using notations of secti one can write t

condition in the form U([(O’ "]) U([(o 1) e_7 !U([(o ’ }.])

which implies that (U(,) d ‘e .;.r) is actually a representanon
of the group § (section 1.3,f).



§2, The Condition of Covariance Under Space-Time
Reflection for Infinite-Component Fields is Independent
of the Basic Principles (the Wightman Axioms)

2,1, Examples of -9; -Noncovariant (Bose and Fermi) Infinite-

Component Fields ~

We shall construct free infinite—~component field, ? , transfor-
ming (with its hermitian conjugate, (f*) under the self-adjoint Majora-
na representation X = x*"[o. '/:,] of the group SL(Z,G). The
fields § and ?* satisfy the Klein-Gordon equation and thelr
(anti)commutators are multiples of the identity operator, All the Wight-
man axioms are fulfilled, the fields Y and ?* are ?*-noncova-
riant nonetheless,

Let .D.x be the space of the irreducible representation A=
-'-‘[0, '/2] of SL(Z,C) realized by homogeneous e ~functions
in the complex domain ,ac,,\ {o}  /5/. There is an invariant
hermitian positive-definite form ( ﬂ,) on D.x y and we denote
by x the completion of the pre-Hilbert space b‘l with respect
to this scalar product. Closures, V(A), of the representation opera-
tors, T'X(A)’ are unitary operators in X . Moreover (see/19/,
section 2,2,7), there is a covariant 4-vector of essentially self-
adjoint operators r k defined (with all polynomials in r k ) on

S-z which commutes with the involution operator in x (the
involution being the complex conjugation), Covariance properties of
r' r are expressed by V(A)r * V(A)-'aA(A)Fv P ‘f The last proper-
ty we need is the following: the spectrum of the operator [*°
is discrete and bounded from below:

M’ a a >0. (2.2)

The covariance of r‘ "implies then

PFFI"Z'O'VG-& for P‘ V+={PGR‘: P°>|F,}. (2.2)

24



We define a free field 'f‘ (x;f) = ?(x; {) and its hermitian
conjugate th(z;{)=(tf(x;?))* (where ;G D‘l ) by the follow.ing

two-point functions

&0 R -
B s> = ,§_,wa (irsL) [9)- FD, en)e
where M(KL(MS;)) are 2 x 2 complex matrices, and %D; Z-y)=

B(-g-;)-s I 9 (PO) S(P"_ml) e-‘r‘ J~P is the two-point function of the:

free hermitian scalar field with mass M 90, The ?1 and "L are
Bose (respectively, Fermi) fields if B is even (respectively, odd).
The trancated vacuum expectation values of order b 22 are assu-
med to be zero, .

" M - .
Proposition.  Let be 2 x 2 hermitian matrices (K=0,1,...,n)

of the form’

M(k)= rx ;k for L+K even, (2.4.8)
e N
1 0
M(k),-_- f"- (0 -4 ) for N+K odd, (2,4.b)

where r‘ and fﬂ. are real numbers, and f g are complex num-
bers, Let the following conditions be fulfilled (where >0 stands

for positive definiteness of a matrix):

R
® . x
M(ﬁ)>o' KZOM A ZO for any A@ [md,eo) (2,5)
=
(@ being defined by (2.1)). Then the two-point functions (2.3) define

infinite-component free fields (’12? and Y&=?* transforming under
representation l=[0, '/!.] of the Lorentz group and satisfying

all the Wightman axioms, the statistics being of the Bose (respec-
tively, of the Fermi) type if R is even (respectively, odd).

Proof, According to the Wightman reconstruction theorem/6/ it is
sufficient to verify the following condition, 1) through 6), for the
two-point functions (2,3),



1) The condmon for_hermitian comugatlon of fields,

Pt

Ol )™ Fa g 90> = ol o (s ) s Ploy, @9

is implied by the hermiticity of the matrices M(K).

2) The posmve definiteness condition implies

N1
1%1 gﬂ J<°|‘fw m ) 98 (y {(‘) Jo)- “'u,( )u (1) d' d']_z_o,@”)
for any {&I € D'X, (J, S(M) N. Vector functions H(x; z):

hy(x;2)
(h; (;2) with by (x; z)-z u()(z) f (‘” form

an algebraic tensor product S(Mq) 9 where .D s_x e D-x,

and (2,7) is the condition of positive definiteness of a hermitian

functional defined on this space,

The necessary condition for (2,7) is the inequality

z M () 4y) 20 e
for any {H&IG D-X and Pe‘v:‘s{P: P°>0,(P)z=mz'}.

Indeed, due to (2.8) for N=1, the distribution F(x) defined by

ik PACIACTAR PRI DI

is positive definite, Thls implies (/20/, ch, If) that the Fourier trans-

form of F(%) ,
E(P) ({i\ Z M"’P PI"' ) ”P) Pt mz) (2.10)

is a non-negatwe measure, hence (2.8) is implied by (2.7).
On the other hand, (2.8) is sufficient for 87) .Substittuting

N .
Zj-l (P){“ instead of {‘ into (2.8), where “v (P) are arbitrary
functions of ( )we obtain, for P€ r ,
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N

S0, =0 ol < ) gl >
T ""1“’ ()% (P)({d- |xz=.wa (P'J"l‘) I{p )=0,

and this Is equivalent to (2.7). _
It remains to see that conditions (2.5) on the matrices M(')

are sufficient for inequality (2.8) to be satisfied, We have pointed out
that the operator [*°, hence pal'F  for pe V._ ,

is self-adjoint and possesses a discrete spectrum, Let {e,}:’ be
the basis in X of eigen-vectors of the operator P’. f"" , 3, cor-
responding to eigen-value A, , and let. { !'} be components of

a vedtor ‘ G b_x.Then the left hand side of (2,8) takes the form

(» R\ Ty Y
z 2 Z (Mg )iy
and is non-negative due to (2.5).
3) Relativistic cgovariance, .

Ol (A= sa: VDY) (AN 0 V(AP D=
=) MDD e aeT,, AeSLi)

is evident.
4) Spectrum condition implies that the Fourier transform, (2.10),
of the distribution F(z) defined by (2,9) has a support in V* .
5) Locality implies

Lo o 4

Ol ) (5 I0>= (0" Clpglysg) ful:p) 0> 22
for (2-’)"(0 , Or, equivaler}fly,

Clofs) el )Io=60"gr,, S Gr @l el 7)™ 0y (2D 10,

where 6"8 J; 3 (x.’)"(o . We substitute (2.3) here and re-
»
member that the operators r'" commute with the involution in

Enence. (il P”.'.. l""‘l:) I({lr”‘...r‘"l’)].Since :— D; (3'}) =
=:_D;(,-z) for (I")"(O , we obtain

'
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n+ik

“’-(-«) ze GuMpy e ML)

where A denotes the transposed of a matrix A This is the

é M(*)Td (2.13)

way we come to (2.4).

6) Cluster decomposition propertyx/,
’

F(:r,-.-xa.) —0 in S(R)) for A-—+oo, (2.14)

where F(x) is defined by (2.9) and O is an arbitrary space-like

vector, is implied by the fast decrease of Dm (x) for xz""‘“.

Proposition is proved,
Let us investigate when the fields %=(P and ?&=?* defined
by Proposition are ,,?:'_ ~covariant, According to section 1.5,
4 —covariance implies the existence of an antiunitary operator,

J s which leaves the vacuum invariant such that

J ¢ (2 4) 37 = Z ?F( x; {) (2.15)
where #2(@yq) 1s & 2 x 2 matrix sucn tha

At =y , (219

Qgy= By, Ry = 8y (2.17)

(cf. (1.31), (1.32)). In terms of the two-point functions, (2,15) takes

the form

Clp 7,g)lo>— Z o Oai @l?s(zaz) Brly )lo>

(2.18)

x/The cluster decomposition property guarantees the uni-
queness of the vacuum ray,
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(cf. (1.37)). These results in the following restriction on matrices
in (2.3):

n"" =A-N0T. £ 'T, K=0,1,....n, (219

K)
where n( =6'M(“)are matrices with elements

() (x) _
H*P = Ms-&,p . . (2.20)

We assume that the following condition is fulfilled: at least
K]
one of M( ) with odd R+l is non-zero, Then (2.4.b) and (2.19)

give .
det A =-1. | (2.21)

Using (2.4.8) we reduce the equation (2.19) for even KR to

. - - . -4 - > .
ATy ==0yy e = I(“'1z§n aaa§;)- (2.22)

Equations (2.17), (2,21) and the inequality n*o glve

a,"=o, |Q1&|=1,IM(Q":§R)=0 for even K+¥R, (2.23)

W Our final result is as follows. Let, for at least one odd K+h,
M % 0.There is an antiunitary operator, J , such that (2,15) is
fulfiled (the matrix A in (2.15) being equal to

0o ¥
A = ('\7 0 ) , |V =1, (2.24)

and 3" being equal to 1) if and only if

SK.- + l;nl‘v for all even K+R and some?,: lﬁ=1(2,25)

(;t being defined by (2.4.a)).

i
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It is clear that the condition (2,25) is not fulfilled in general,
Let us consider two examples, We define Bose fields ? and ?*
putting in (2,3) 0 =2 and

0 i ) 10 ) [1 ¢ "
M(.,' e(—t R ). M -g(o -1). M( I(E /. | (2.26a)
Analogously, Fermi fields may be defined if we put %3 and choose

W (1) ] W0 W),

€ in (2.26) being a sufficiently small positive number which guaran-
tees the fulfiliment of (2.6). The fields so defined satisfy all the
Whightman axioms but are ’;., -noncovariant,

2.2, An Example of a. PT -Covariant but CPT-Noncovariant
Infinite-Comp onent Field

At last we consider an example which illustrates that the
a ~covariance condition in the form of the CPT-covariance (auto-
matically fulfilled in the Wightman theory of finite—component fields)
is too restrictive in the infinite~component field theory, .

In the notations of section 2,1, we deflne Fermi fields Y and r*
(first Introduced in/11/)by the following two-point functions:

Oltepepg) o= (lir L veld)-Lo, =-y),

Ot 1> = i - el 1D, (v), p 22
Ql9ed)2(3:9) 10> = <A 9(x; ) 9(y39)* 1oy =0,

where § is a real number, 0 <|€|< ma.(2,27) is a special case
of (2.3) for h={ and
() .(1 0 o _ (1 0)
MY= ¢ o -1/ » MY = 0 1/)-
The criterion (2.25) gives that, for any 4 of modulus 1,
there is antiunitary operator 33 3(’0) (with J "'-"-1 ) such that

30



Tea:p)3 = F gl ), Itm) =1 d). oo
For definiteness, we take 'V‘l. In agreement with the section

1,5, the matrix # in (2.15) can be diagonalized if we pass to

"hermitian" fields f, (z;;) = 'z(lf(x,{)-'- .r*(zif)) ) ?’,,(xi l)z
= (t=h- ')

Ihp'=s st peshl | e
J ‘fz(z;()5"--?,'(-::;{)*[1-?,_(-:;;’)] ) |

But there is no antiunitary operator 9 satisfying the condition
(1.39): s

O9(x:{)07'=1 plx:f)’, O9Lud) 07 = plxsf) , 0

since the necessary condition of CPT-covariance, namely,
<ol 9 (=5 )% (35 9) 10) = <ol 9(x: 9)-9(y: )" o>
is not fulfilled (cf. (2.27)).

The structure of the two-point functions (2,27) implies that
one-particle subspaces H and 7'/?* obtained by applying fields
(f and (,* , respectively, to the vacuum are orthogonal. Hence,
one may imagine superselection rules which , separate ;I? from N,*
Let us agree to call the vectors of y’ and . r* "particle" and
"antiparticle” states, respectively, Then the operator J in (2.28)
realizes spacé—time reflection and leaves particle and antiparticle
subspaces invariant. It is naturally to call 5 the PT -operator.
Thus, the fields § and Y* are PT -covariant but not CPT-covhriantx/,

The author would like fo thank M,K, Polivanov, LT, Todorov

and V.N, Sushko for valuable discussions.

x/If we put £=0 in (2.27) then guare are both the operator
3 satisfying (2.28) and the operator & satisfying (2,30), i.e. the
resulting fields are both ‘PT= and CPT -covariant.

$
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