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Introduction 

The contemporary interest in infinite-component fields 

to the fact that they allow to descrlbe in the unified rnilnne1 

second quantization and interactions of infinite rnultiplets. S' 

plets appear in attempts to relativize internal symmetries of 

tary particles/1/. Nevertheless , at the preliminary stage of 

infinite-comp<>nent quantum fields it is useful (as it has ~e 
sed by Feldman and Matthews/2h to digress from inner' sm . 
of particles and to study the "pure inflnite-componentness", 

treating infinite-component fields as fields transforming undE 

dimensional (mainly, irreducible) representations of the conr 

Lorentz group L.t xf. 
In accordance with the Wightman scheme a quantized 

transforming under irreducible representation 'Xc(k,~ of t 

Lt (where k is a (half-)integer and C is an arbitra~ 

nl>lmber) is defined/4/ as a continuous bilinear operator-vall 

x/ Proceeding from analogy with the construction of. I 
algebras on basis of the Wightman finite--component· fields 
(under usual assumptions) define the Haag-Araki algebra/3J 
from infinite-component quantum fields. The properties of ir: 
component fields differ eonsiderably from those of finite--cor 
fielps (e.g., CPT-theorem and the connection of spin with s 
fail), hence the study of· infinite-component fields can give 
into problems of the theory of local algebras), 

3 
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Introduction 

The contemporary Interest ln infinite-component fields is due 

to the fact that they allow to describe in the unified manner the 

second quantization and interactions of infinite multiplet&. Such multi­

plet& appear in attempts to relativize internal symmetries of elemen­

tary partlcles/1/. Nevertheless , at the preliminary stage of developing 

infinite-compOnent quantum fields it is useful (as it has been propo­

sed by Feldman and Matthews/2h to digress from inner structure 
' of particles and to study the "pure infintte-componentness", 

treating infinite-component fields as fields transforming under infinite 

dimensional (mainly, irreducible) representations of the connected 

Lorentz group L.t x/. 
In accordance with the Wightman scheme a quantized field 

transforming under irreducible representation l•[k,c:] of the group 

Lt (where k is a (half-)integer and C is an arbitrary complex 

number) is defined/4/ as a continuous bilinear operator-valued functio-

X/ Proceeding from analogy with the construction of. local 
algebras on basis of the Wightman finite-component fields one can 
(under usual assumptions) define the Haag-Araki algebra/3/ starting 
from infinite-component quantum fields, The properties of infinite­
component fields differ considerably from those of finite-component 
fielps (e,g., CPT-theorem and the connection of spin with statistics 
fail), hence the study of · infinite-component fields can give an insight 
into problems of the theory of local algebras), 

~ 3 



nal ~(lA.; 4) over (I.C..~)E S(M..)tl>-X with ,common dense domain 1)0 
in the Hilbert space W of state vectors; hereS{~) is the Schwartz 

space of rapidly decreasing e· -functions in Minkowsky space M.,; 
l)_

1 
is the nuclear space/5/ cif representation T-x, of the group 

SL.(l,C). Therefore, for fixed ~&:J).l , 'P(IL;/) is an operator-valued 

distribution in M~t . 
All the Wightman axioms/6/ are imposed {except the finite­

componentness of fields). In particular, the condition of covariance 

under the connected Poincar/ group ~+ (the connected inhomo­

g?neous Lorentz group) is 

u(~.,A),(x;l) U(o.)trt =f(A(A)x+A; T_1(A)I}, (0.1) 

where (L fi Tit (the group of translations), AsSl(1,c), U(a,,A) 
is the unitary representation in )I of the universal covering group ...,, 
~ of the group ~: 

the representation X 
. Note that if the field f transforms under 

then the hermitian conjugate field f*, defined 

by 

'*<"•/)= ('f(tt;1>)*jn, , ( w. E S(M~>.I~ l>-x•) (0.2) 

transforms under the complex conjugate representation y..+a t-k,e]. 
The field f transforming under the representation X can be 

realized in another equivalent way/7-8/ x/ as an operator-valued 
. 0 

SL(2.1C) -covariant distribution cp(~iZ) in the domain M,.)fCCl (where 

C
2
;= (t"-' {o} is the two-dimensional complex space without the 

origine), the following homogeneitY condition being fulfilled: 

x/The equivalence of this realization and the r:;ne 
above is based on an isomorphism of the space ;1)_% 
cal dual to l>-x,and the subs~ce tl;c of distributions 
homogeneous of index X (cf./4/, Appendix A). 

4 

~ 

presented 
~ to,s>alogi-

m ¢~,=¢.l'{o} 

" 

·" ,_ /. .~ 'I' ) t-1 .ItO(, -
fl't; "f e z =f e '(~;Z) for any f > 0 I fl(, = 0(, • 

A finite-component field with m undotted and n de 

transforming under the finite-dimensional representation l 

of Lt is a special case of infinite-component fields whE 

is a homogeneous polynomial in (z, i) of the hi-degreE 

ID(:t·z\- ~ r1 I ) " 1 
"•(-);' t-) 

1 1 1 - ~ '-'1-·Gf. . ... . \.X ' Z. ... Z Z. ... \Z 

"'''"•n=t.t -~ ~"' 
There is the famous CPT -theorem for the Wightman 

ponent fields: an antiunitary operator, e . exists such 

any field f transforming under an ~c!l;l,!; represent; 

i f(~;l) 9-t = Hf) · tp(-x;/) *, (l,('f)l=1. le})_l 

holds, Feldman and Matthews(/2/, 1967) have posed the 

whether the CP'f-theorem is valid for infinite-component fiE 

positive answer has been of doubt since all proofs of tr 

rem are based essentially upon the finite-componentness 

(see the discussion by Stoyanov and Toctorov/10/), IndeE 

are examples/11/ of CPT -noncovariant free fields transfor1 

irreducible representations of the group Lf and satisfyi1 

Wightman axioms, except the finite-componentness of fielc 

connection of spin with statistics may be chosen normal 

as abnormal). 

In view of absence of CPT -theorem for infinite-camp 

it is desirable to investigate other possible forms of cov. 

condition {compatible with the locality) for infinite-compom 

x/A similar problem has been posed by Epstein in 
algebra approach/9/, 

5 
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under space-time refiection. Of course, such cove.riance Is to have 

an obvious group theoretical meaning and to be based on an ana­

lysis of s~metries with respect to the special Poincare grout "! • 
•!J:U s-: generated by the connected Poincare group, lJ+ , and 

the space-time refiection, I. 

§ 1 of the ·present paper Is devoted to the analysis of symmet­

ries with respect to the group :/+ in quantum field theory. An analy­

sis of this kind would be incomplete without taking into account super­

selection rules: it is well known that the neglect of these does not 

permit a consistent treatment of symmetries even for the Wightman 

ordinary fields. To clarify our point of view we expose in section 

1.1. what . we mean by symmetry in the presence of superselec-

tion rules. Respectively, in section 1.2 we state the notion (adopted 

further) of local covariance of quantized fields with respect to a sym­

metry groupx/. In section 1.4 the characterization of symmetries 

with respect to the group ~ , in the presence of superselection rules 

is given. Using the Wigner analysis/12/ of projective unitary repre­

sentations of fit we show that every f. -symmetry can be ~s­
cribed by a unitary-antiunltary: representation of the group D: 
(the description of the group §!. and other groups associated with 

~ is presented in section 1.3). In turn, any such representation 

U(JLof ~ is uniquelly defined by a unitary representation U(•~A) 
of J: and an antiunit.ary operator:J satisfying the conditions: 

~ U( .. ,A) 3-' II U(-ca.,A) (o.5a) 

32. is a unitary superselection operator 
1 

( 3')1 • f. (0.5b) 

x/Most of concepts of § 1 are far from being original and are 
drawn to make the treatment self-contained. 
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Sections 1.5-1.6 deal with the statement of ~- and 

riance conditions. Let (.t •{cp.,, ... , 'fN} be a complete finite 

involves with every fields its hermitian conjugate) of infin 

nent fields transforming under irreducible representations 

and satisfying :1: -covariance condition (0.1). Let further 

metry in the Hilbert s~ce 'N be defined by the unital 

sentation U(o.,A) of ,.f and the antiunitary operator :J 
(o.s). Then the '!-covariance condition of fields 'ft•···• 'fli 
the field l!f,!t' (£•t, ... ,N) at an arbitrary point ze M,. is 

combination of the fields Cfp· .. , cp11 at the point -X x/. Tt 

variance condition (0.4) is the special case of the ~ -co 

condition. 

To show that the ~ -covariance condition for infini1 

quantized fields is independent of the basic prmciples, e:x 

of free SD+ -noncovariant infinite-component fields are give 

tion 2,1xx/. Since free fields are characterized completely 

point functions, it is a straightforward tas~ to verify all tn 

tions of the Wightman reconstruction theorem for these fie 

example of section 2.2 illustrates the fact that the "! -co' 

condition is more flexible than the CPT -covariance. Name!) 

sider fields If and 1* (introduced earlier in/11h trans! 

under the Majorana representation X•[O, t,'.t,] ;there is nc 

e satisfying (0.4) but an operator 3 exists such that 

J 'f(z; I> :r' = cp(-:c; 1) , :If*(:c.; I> :r' = y"(-:x.; f> 

x/Though a quantized field 'f(~) is an operator-valw 
bution one may say about the value of the field at a poin 
~ea.rjng in mind a sesquilinear form defin~d on a dense d 
m , • \ 

xx/It is likely that using fields similar to those of sec 
one can obtain CPT -noninvariant local algebras. 

7 
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riance conditions, Let Q •{cpi, ... , fH} be a complete finite set (which 

involves with every fields its hermitian conjugate) of infinite-compo­
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metry in the Hilbert s~ce 'J:I be defined by the unitary repre­
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(o.s). Then the 9; -covariance condition of fields ~, ••• , 'f11 means that 

the field :Jcr,:t' (l•t, ... ,N) at an arbitrary point ze M, is a linear 

combination of the fields Cfta"', 'fH at the point -% x/. The CPT -co­

variance condition (0,4) is the special case of the ~ -covariance 

condition, 

To show that the 3i -covariance condition for infinite-component 

quantized fields is independent of the basic prmciples, examples 

of free SD+ -noncovariant infinite-component fields are given in sec­

tion 2.1xx/. Since free fields are characterized completely by two­

point functions, it is a straightforward tas~ to verify all the condi­

tions of the Wightman reconstruction theorem for these fields, An 

example of section 2,2 illustrates the fact that the J! -covariance 

condition is more flexible than the CPT -covariance, Namely, we con­

sider fields 'f and '* (introduced earlier in/11h transforming 

under the Majorana representation X. • [0, fJa.] ; there is no operator 

® satisfying (0,4) but an operator :J exists such that 

J tf(zi I> :r• = f(-:JC; l) , :J 1'(:c.; I> :r'wa y"(-%; f> (0,6) 

x/Though a quantized field 'f(:Je.) is an operator-valued distri­
bution one may say about the value of the field at a point ~ 
?e~jng in mind a sesquilinear form defin~d on a dense domain 
10 If . \ 

xx/It is likely that using fields similar to those of section 2,1 
one can obtain CPT -noninvariant local algebras. 
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holds, The interpretation of the operator :J depends on superselec­

tion rul6!s, E.g., if the fields 'f and 'f* describe respectively 

"particles" and "antiparticles" (separated by superselection rules), 

then the operator :J in (0,6) has the meaning of the PT -operator. 

Thus, infinite-component field theory allow PT -covariant but CPT -non­

covariant local fields. 

§ 1. Representations of the Special Poincare Group 

in Quantum Field Theory 

1.1. Sym"YYetry and Superselection Rules 

In the sequel we follow the Wigner notion of symmetry of 

a quantum system with respect to a group G 
Let 'N be a Hilbert space of a system and let T/l, be the 

set of all ~nit rays (in '1-f ) representing pure statesx/. We shall 

suppose that the linear hull of the set '/Tt. is dense in 11 . This 

condition is sufficient (/15/, ch. II, section 1.3) to represent (uni­

quelly) 'N as a direct sum 'I/•! 'Nfl.. of a family of subspaces 

called coherent subs paces so that i) 11t·U m~~, where m. is 

the part of m-con;'ine:i in 11. ' ii) for ::.ery 0(, the set of 

projections on rays of the set m., is an irreducible set of opera­

tors in N~~, . 

X/Nowadays the concept of pure state is the one derived from 
the concept of the observable considered 4s the primary object/3/. 
We shall restrict ourselves to the special scheme which corresponds 
to the traditional approach to the concept of pure state in quantum 
field theory/13,14/ and which seems to be sufficient for up-to-date 
needs. This approach takes for granted pure state vectors (other-

;/~~.se, physically realizable vectors/6/, which may be "prepared expe­
:~Rmentally"). The closed linear hull of the pure state vectors can be 
···uniquelly decomposed into direct sum of so-called coherent subspa-

ces (see below), and observables are defined as hermitian operators 
with vanishing matrix elements between different coherent subspaces. 

8 
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A group G is called a symrnetry group of the quar 

if every 1 E G is in line with a transformation, 1: J 
'Rl. of pure state vectors onto itself which preserves tra1 

babilities I( ft, fa >l1(where t1 , f 1 & 7ft. ), the gro 

being fulfilled: 

-r:,t 0 T:,,. = 7:,,,,_ 
Due to the ramification of the Wigner well-known the 

Theorem 1-1), every transformation "t"l can be realized b 

rator T( f), a direct sum or' a unitary operator and of an 

operator, such that 

any )/fA. is mapped by T(J) onto some '//~ ( ~ = ~(1. 
the restriction of T(t) to a coherent subspace ~fl. be. 

or antiunitary operator defined uniquelly up-to a phase. Dt 

operators T(,,)· T(J,.) and T(11J11) realize the same trs 

tion t'lt f1. of 1Tl , hence (in view of irreducibility in 1/-. « 

of projections on rays of 71l._ ) they may differ at most b 

factor on any coherent subspace, Let us introduce the set 

of unitary superselection operators in W , i.e, operators 
form 

.n =~ "'·E ' .... .. 
where £.,. is the projection on i-/., and (I) et, is an arbitrary ' 

number of modulus 1, Then the multiplication law of opera 

can be written in the form 

T(J.)· T(,,.) = .!l(,.,g,} T(,,,,.), .n(,hfa)E 1 
In all cases of practical importance every T (f) must 

unitftry or 1'\nthmif:Firy; (in p.9rticnlnr, this is the only possibi 

the special Poincare group J'; as a symmetry group in a fr 

with the spectrum condition), Therefore we adopt the followi1 
tion. 

9 
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In all cases of practical importance every T ( J) must be either 
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the special Poincare group ~ as a symmetry group in a theory 
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tion. 
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Definition 1. We call the family (T(,): ~&G) of (anti) unitary ope­

rators satisfying (1,2), (1.3) the Unitary....Antiunitary Representation ,..... .... 
up-to a Superselection Factor of the symmetry group G , briefly, 
..,......, .... ": 

UARSF of '"'the group G . 
There is an important class of UARSF. 

Definition 2, We say that UARSF, 'r , of a group G is generated 

by a unitary-antiunitary representation, V , of a group G if 

i) there is a ~omomorphism, f , of (; onto G , ii) for any i Ei G 
operators U(1) and T(/(,)) differ at most by a superselection 

factor, A (7), i.e. U(f} = A(j)·T(f(7)) where l(') 6 CU. 
The following proposition is evident : if J is a homomorphism 

of a group G onto G and U is a unitary-antiurita.ry representation 

of (;. , for any g of the kernel of f U (f) being a unitary super­

selection operator, then U generates an UARSF of G x/, 

1.2. Covariance of Quantized Fields with Respect 

to a Symmetry Group 

To formulate the notion of local covariance of fields it is 

useful to have a unique "big" field ~ instead of a complete set 

of fields 'f• Cf 1, f• ,~... This is a bilinear continuous hermitian 

functional over t(.& S(M,.), FE l> 1 where l) is some topologi­

cal vector space with an involution ~ , ~ (It; F) being operators 

defined on a domain Do dense in fl . Hermiticity of the functional 

~ implies 

~ ( il ; 1 F) = ( ~ ( w.; F >) ~ \ 
Do 

(1.4) 

x~s to projective unitary-antiunitary representations ~which 
correspond to the case when the set 'U. consists only of multi­
ples of the identity operator, i.e. when there is no superselection 
rules) of topological groups see/16,17/. 
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By cp(:~t)F) we shall ~enote the operator-valued distribut 

X&M'I . . 
For example, if Q.w {'ft, ... , 'f,l} is a set of (in)finite­

fields transforming under representations 11• ... , 'XN of 

any fi belonging to Cl which its hermitian conjugate 

then one may introduce a "big" field by 

"' ~(z;F) = L 'fi (~~ ~i) , 
L=t 

where f=•(~, ... ,{,) is an element of the space l) • l)_ 
el)_l• J the involution 1 _being defined by the formula 

),(f,, ... ,/tl) a (~I,, .. ,~N'). 
Let G be a sym'lle~ group which acts on the Mi 

space M't so that (J~-11) =(X-f)l. (i.e. there is a homon 

of G into the full Poincare group fl ). Given a UA: 

of the group G , the most straightforward way to formula 

notion of G -covariance of a "big" field t is to group 

T into a unitary antiunitary representation, U , of a gro 

homomorphic to G , (hence. G also acts on M'l)• Then 

G -covariance condition means, roughly, that, for any J 
the field U{J)~ U(ff' at any point :X is a (anti)linear 

of the field t at the point J Z • 

Definition 3 (Local G -covariance of fields). Let ~ be < 

quantized field in Hilbert space ~ • Let G be a symmetJ 

which acts moreo~r in the Minkowsky space M'l , and . 

its UARSF in N . We call the field cp G -covariant if 

a group e , homomorphic to G , and a pair of unitary­

tary representation, U , and linear-antilinear representati 

of the group G in 'N and l> respectively such that i) 1 

of G is generated by the representation U of G (see 

ii) U ( J) D0 = D 0 , 

U(J)·f(:x; F)·U(Jf' = q,( J X; .r(J)F) . 

11 



class of UARSF, 

that UARSF, 1" , of a group G is generated 

representation, U , of a group G if 

~omomorphism, f , of G onto G , ii) for any i E G 
1} and T(/(f)) differ at most by a superselection 

, i,e, U(J) = J..(g)·T(f(i)) where A.(9) 6 'U. 

-
proposition is evident : if J is a homomorphism 

G and U is a unitary-antiurirary representation 

g of the 

then U 
kernel of j U (f) being a unitary super­

generates an UARSF of G x/, 
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entity operatm·, i.e, when there is no superselection 
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By cp(:~e;F) we shall c!enote the operator-valued distribution in 

x.eM,. . . 
For example, if fk.w {ft »"', 'f,J} is a set of (in)finite-component 

fields. transforming under representations 11, .... 'X.N of SL{2.~ C) 
1 

any '' belonging to Q. which its hermitian conjugate 'fi • • 'f&' 
1 

then one may introduce a "big" field by 

tJ 

~(z;F) = L 'fL (~i fd 
L=t 

(1,5) 

where f=•(/,, .... /,) is an element of the space .1) • l)_Xt e ... 
el)_x,11 J the involution l _being defined by the formula 

l <It·"· ·Itt) • (~'·····IN'). 
Let G be a sym'lletry group which acts on the Minkowsky 

space M~ .so that (f~-11)'-=(X-¥)'-
of G into the full Poincare group 

(i.e, there is a homomorphism 

!/ ), Given a UARSF, T, 
of the group G , the most straightforward way to formulate the 

notion of G -covariance of a "big" field ~ is to group the UARSF 

T into a unitary antiunitary representation, U , of a group G , 
homomorphic to G , (hence, G also acts on Mit)• Then the local -G -covariance condition means, roughly, that, for any J & G , 
the field U(J)~ U(Jf' at any point % is a (anti)linear functional 

of the field f at the point J X , 

Definition 3 (Local G -covariance of fields), Let t be a "big" 

quantized field in Hilbert space ~ , Let G be a symmetry group 

which acts moreover in the Minkowsky s~ce Mit , and let T be 

its UARSF in 1/ , We call the field cp G -covariant if there are 

a group e , homomorphic to G , and a pair of unitary-antiuni­

tary representation, U , and linear-antilinear representation, r. 
of the group G in 'N and J> respectively such that i) UARSF T 
of G is generated by the representation U of G (see Definition 2), 

u) U {'j') .D0 = D0 • (1.6a) 

U(J>·t(x;FlU(Jf1= ~(fx; ,-(J>F). (1.6b) 

~ 
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1,3, The Group .t and its Covering Groups /t 1 ~ 1 ~ • 

Let us define a few groups which are of use in the analy­

sis of symmetries with respect to the :R:>incare group involving 

the space-time reflection, 

a) ~: is the connected Poincare group; this is the semi-direct 

productx/ T,.G L!of the group Tit (of tran,:lations of the Minkowsky 

space M.., ) and of the connected Lorentz group L 1'+ , ,_+ - -t 
b) e+=~<:>Lt (where L+ = SL(2.,C) is the universal cove-

ring group of Lt )
1 
the action of SL(2,C) on Tit therewith is 

defined by the formula Q.A=A(A)Q. where A-+A(A) is the standard 

homomorphism of SL{2,C)onto L~ /6/, 

c) fit , the special Poincare group, is the group of transfor­

mations x ... (a.,A)x=A~+a of the Minkowsky space, where a e T~c 
and 1\ is Lorentz transformation with determinant equal to 1, It 

is essential that f}+ is isomorphic to the semi-direct product of 

two subgroups, !f! and 1{ j the latter consists of two elements­

unity,e•(o,1),and .space-time reflection, I, with respect to the ori-

gine. The action of an oe,c; 1l, on !J: is defined by f''= O(,,o(.-~ 
i.e. 

e I ,r ( ) t 7 =1, 'a.(a./\JII: -o.)A for any fE ~. (1.7) 

By the isomorphism{tpll,]._. £.' «. (where f. E !J:, o(. E 1/. 
we shall identify the groups 9J:e1{ and ,.,.f/J+ 

d) l+ is the semi-direct product of /ll and the free group 

~ = {I"J acO,ti,tl,, ... with one generator ~.The action of the 1 
on ~ E f: is defined by 

x/Let a group K act on a .aroup G , for anyk.&}{ the mapP.ing g ... ~k. 
being an automorphism of C:r , The semi-direct product G&K 
of groups G and K is the set of all pairs [i, Jc] (I EG, Jc • K} 
with the composition law fjr1 k,}{ll•/cl.] = [ ltli•,Jc, Jc,}. 

12 
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i 1 • (Q,,A)! = (-Q.,A). 

The mapping Ill ... I" is a homomorphism of R onto I?, 
1
• 

1>1 r, 1 -gously, the mapping £(0., A),l _., {(o,, /\(A)) 
1 

I"'] 
is a homomorphism of ~ onto 8D+ , _ 

e) l+ is the ser::f-ctirect product of /J!t onto the eye 
- { - -.& ,, .. ~ 
~ • e, I, I 1 .L J of order 4, the action of I • .. I'(. on 

being defined by a formula of the tyi,; (1,8) (with I instea 

~ ~ ~the quotient group ~~Q, where Q is a 

subgroup in :f+ which consists of the identity and {(0,­
There are obvious homomorphisms of every of the gr 

a) - ~ into ~ , and actions of these group on/the Minko' 
I [ ...... ] space is defined thereby, E.g., for ' 11:1 ( Q.,;A) 1 I 

J'x. =/\(A) I"'x +a.. 
+ ..... - iS 

In every of the groups 9; 1 !}+ 1 ·J! 1 !+, ~, J+ WE 

choose elemen~ with the translation vector Q.aO, we obtain 

subgroups Lt,Lt=Sl(2,C),Lt,b+J+-•[+fespectively (i.e, t 

quotients of the above groups by the translation subgroup). 

1.4. .f+ -symmetry 

We are interested in the group -'+ as a symmetry gr 

Our aim is ~ reduce ~ -symmetries to unitary-antiunitary 1 

tations of ~ , the covering group of ~ • 

We start from the description of symmetries with respE 

the connected subgroup '-+tc ,+ (/6/, section 1-4). Of cow 

it is reasonable to restrict ourselves to continuous in fj tr 

mations "t'(,):17t ... m of pure state rays; in this case the E 

of t'(t) to the identity transformation entails that every cohe1 

subspace is invariant under ( T ( ') : a E ~t). Since any , 

can be represented in the form f • (Jl .. ('")I. 1 all T( ,, 
unitary operators (due to (1.3)). Hence there is a unitary re 

13 
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and its Covering Groups 

few groups which are of use in the analy­

with r<'~specl to the 1=\::lincare group involving 

reflection. 

is the connected Poincare group; this is the semi-direct 

L!of the group T't (of translations of ~he Minkowsky 

and of the connected Lorentz group L+ , 
:T,.0Lt (where Lt = SL(1,C) is the universal cove­
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1 
the action of SL(2,C) on Tit therewith is 

formula Q. A=/\(A)Q. where A-+A(A) is the standard 

of Sl(2,C)onto Lt /6/, 
the special Poincare group, is the group of transfor­

A)XEA:t+a of the Minkowsky space, vvhere a E T"r 
transformation with determinant equal to 1, It 

that !}+ is isomorphic to the semi-direct product of 

!f; and 11( ; the latter consists of two elements­

space-time reflection, I, with respect to the ori-

of an OC.E 1?, on f/J: is defined by 1~= O(,,o(.-! 

for any g E 11:. (1. 7) 

ti.] ... 3.'«- (where f. E !J:, o(. E ~ 
groups 9Jte1{ and ,!}+ 

the semi-direct product of (1: and the free group 

generator I . The action of the I - -
is defined by 

act on a ~oup G , for any k.eK the mapP.ing g .. 8 k. 
m of {.7 • The semi-direct product G&K 
is the set of all pairs [i,Jc] (/EG,Jc•K) 

law fj,,k,}{/l•kJ.J= [3t"ll•,Jc,/r.,}. 
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i 1 • (o,,A).l = (-Q., A). (1.a) 

The mapping I"'-+ I II. is a homomorphism of R, onto 1?. ; ana!o-

g~usly, the rr:pping [{Q.,A).lJ ..... [(o,,I\CA)), I"} 
is a homomorphism of 3'; onto ~ • _ 

e) !+ is the ser:'-ctirect product of t4t onto the cyclic group 
- { - -a ,, - ;!§ art R• e.I. I ,.L J of order 4, the action of I• .. lt on oT+ 

being defined by a formula of the tyi,i (1,8) (with I instead of ! ). 
~ ~ ~ the quotient group ~A~ , where Q is a centaal 

subgroup in ~+which consists of the identity and [(o,-t), r 'j. 
There are obvious homomorphisms of every of the group 

a) - ~ into ~ , and actions of these group on/ the Minkowsky 

space i~ defined thereby, E.g., for f 1 
• {( O.,,A) 

1 
I II.} E ~ 

1 

f'Jt =/\{A) I"'x +«. (1,9) 

+ ..... - ~ 
In every of the groups ~ 1 !}+ 1 J! 1 !+, J! 1 Ji. we may 

choose elemen~ with the translation vector ct=O, we obtain thus 

subgroups L!, L!=SL(2~C)1 lt, b+,t..,,[+,respectively (i.e, the 

quotients of the above groups by the translation subgroup). 

1,4, -'+ -symmetry 

We are interested in the group .$'+ as a symmetry group. 

Our aim is ~ reduce $+ -symmetries to unltary-antiunitary represen­

tations of -':. , the covering group of ~ • 

We start from the description of symmetries with respect to 

the connected subgroup '-+*c .fl+ (/6/, section 1-4), Of course, 

it is reasonable to restrict ourselves to continuous in g. transfor­

mations t'(,):J1t ... m of pure state rays; in this case the equality 

of t'(8) to the identity transformation entails that every coherent 

subspace is invariant under (T('): IE 9!,+). Since any 'JG 9+f 
can be represented in the form J•(Ji .. (f•)". allT(f)are 

unitary operators (due to (1.3)). Hence there is a unitary repre-

~ 
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sentation up-to a phase of the group ~l' in e,·ery coherent sub­

space 'Ht(, , The Wigner analysis i 12,16/ of projecth·e unitary 

representations of !f..t' gives now that ev~ry UARSF of !Jt'r is gene­

rated by a unitary representation U of ~'r (see section 1,1, 

Definitions 1,2). 

'I'he representation of the abelian subgroup of translations, 

(U(Q,,f): CUi T4) has the form U(a.,1)•ex~(,Pa) where P is the 

4-mo·nentum operator (whose components are self-adjoint com!'Tluting 

operators), We suppose that the ;R;S:!r~.,.sl(.n~~ is fulfilled: the 

spectrum of t.!2_e operator P lies in Vt•{p& R.,.: p• ~ lpl} 1 

the point Ota V+ corresponding to unique (vacuum) ray in 'N . 
Now we can characterize UARSF of the group 5'; 

Proposition. Let T be a UASRF of the group J!.+ in 'H , hence 

there is a unitary representation U of the group ~ generating 

T. Let the spectrum condition be fulfilled, The family (T(,): 16 'tt) 
can be continued to a UARSF (T(f): 1 '«!~)of the group .1; 
if and only if there is an antiunitary operator, J, satisfying (1,2) 

such that 

i) J·U(f)·3-1 = U(JI) 
... y .... , 

where J ... E '+ is defined by (1.8); 

ii) l" is a unitary superselection operator x/, 

~ E 'i'.t + ( 1,10) 

(1,11) 

As this takes place, a UARSF T of 8'+ may be defined by 

T([f,I})= T(,)·J" where 1fi 1:. n=0,1 ; (1.12) 

this may be considered as a 

tary-antiunitary representation 

1,3, d) defined by 

V([J.J~l) = U(J)·3"' I 

UARSF of ~ generated by the uni­

V(f} of the group 9!, (see section .. -
i& ~t 
I +I ll•O,tf,tt, ... ( 1.13) 

x/Condition (1.11) means that 31 is a unitary operator with 
discrete spPctrum and every pure state vector of N is an eigen­
vector of Jl . We call the operator :Jl the superselection opera­
tor with respect to the space-time reflection, 

14 
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I . 

Moreover, multiplying the operator :J by a superselection 1 

one is able to fulfill the equality 

iii) (~L)I. w:: 1 ; 
then the UARSF T of the group ~ may be considered as 

generated by the unitary-antiunitary representation U of the 

~ (see section 1,3, e) defined by 

U(£;1 i 'J) = U(j)·JIL I i'e!t 
f +I 1•0,1,1,3. 

Proof, 'I'he sufficiency of (1,10), (1.11) follows from the formU: 

(1.12), (1.13), Let us prove the necessity of (1.10), (1,11)x/, 

Let (T(f;1c(}): $ E~'>t~R) be the UARSF of ~ 

T([31~rl,J)·T(q,.~~.~J)=!J.([f,~"'•J.['/J..~)-T(flilt4,«t«.._ 
It has been pointed out that, under suitable choice of supers 

tion factors l(a.,A)e1l.,operators 

U(o,,A) = l.(o,,A) · T([(o,,A(A)), e}) 
form a unitary representation of ~+ . 

Denotingl:T(I)we want to prove that :J satisfies (1,: 

(1,16) implies that the left and the right sides of (1.10) may d 

at most by a superselection operator: 

~ Tl(J)J-' = !l'(J}U(jl) = U(J 1) . .D.'(JJ 
where 

!l'(j) = L W~(J)·£ .. 
.c. l w~(J)J = 1. 

xf Our argument is close to the Wigner analysis/18/ of ir 
under the full Poincare group, the only difference is that we 
porate superselection rules, 
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espect to the space-time reflection, 
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..... 

I. 
I, 

Moreover, multiplying the operator :J by a superselection factor 

one is able to fulfill the equality 

iii) ( .11.) a. 'C 1 t (1.14) 

fhen the UARSF' T of the group ~· may be considered as being 

generated by the unitary-antiunitary representation U of the group 

~ (see section 1.3, e) defined by 

U(['f, i "J) = U(;)·JIL I 
"'t fe1t, Jl:0,1,1,3. (1.15) 

Proof, The sufficiency of (1,10), (1.11) follows from the formulae 

(1.12), (1.13), Let us prove the necessity of (1.10), (1,11)xf, 

Let (T({f,et.}) :3 ~ '-t",«~l/.) be the UARSF' of J! : 
T([31,rlrJ}·T(q,.~r~.J)=D.([f .. "',J.4..~)-T([1t·J.""',r~.f1.J).(1.16) 

It has been pointed out that, under suitable choice of superselec­

tion factors .A(a.,A)e'&l., operators 

U(Q,,A) = l(Q.,A) · T([(o.#A(A))
1 
e]) 

form a unitary representation of ~+ , 
Denoting:f:T(I}we want to prove that J satisfies (1.10), Indeed, 

(1,16) implies that the left and the right sides of (1.10) may differ 

at most by a superselection operator: 

lll(f)J-1 = .n'(J}U(J1) = U(; 1) . .D.'(JJ (1.17) 

where 

.n'<JJ = r W~(J)·£ .. , .c. J w~(J)J = 1. (1,18) 

x/ Our argument is close to the Wigner analysis/18/ of invariance 
under the full Poincare group, the only difference is that we incor­
porate superselection rules, 

, 
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But3+i! is an automorphism of ~~~ hence J U(J) j•t and 

U(J !)'~re two representations of J!_t, ...;Eq, (1,17) implies then 

that nrJ)is also a representation of 9ft which is reduced to 

a one-dimensional representation, (A)~ ( J) , of '1t+ on every 

coherent subspaces 1/tl. , The only possible such representation 

CJ.) ~ (;) is trivial, hence .Q ~)J) = 1 and ( 1,10) is proved, 

In particular,~U(Q.,t)j =U(-Q.,~for any aeT~. Recall that, 

with our definition of a UARSF', the operator J is eith~r unitary 

(hence jp:J-1:-P ) or antiunitary (hencejPJ•
1•P). But the 

only possibility (except for trivial one-dimensional 1/ ) compatible 

with the spectrum condition is the antiunitarity of J 
We have: :J is the antiunitary operator, and J1 

is (due to 

(1,16)) a unitary superselection operator: 

Jt = L. J~~~.. E.c. 
oC. 

I ~.,J = 1. 
(1,19) 

F'or a coherent subspace 'Hot. 
1 

there is one of two possibilities: 

a) 'Nc(, is invariant under J , hence the equality J E .. =£ :J 
holds; then the identity j ( jl.):. (j1) J implies ~ • ~ .. , i,e, ! .. ::!: 1; 

b) There is another coherent subspace ~ot.' such that 3 W'ot= ~' 
and J'Uet.,=~oe.,hence :fE .. =E,L'j and jf .. ,•Etl.3; then the identity 

3 ( ~~ :J•1 = ~ 1 implies 'J:,.1• ~c(, . 
Let us intriduce instead of J a new operator, :J1 , which 

differs from 3 by a superselection factor .!2 : 
:1,= .n j ' where .Q = L 'cc.' E fl. 

tC. 
~nd ~ .. = t V'L.' . (1.20) 

Using the equalities Iee. = t 1 in the case a) and f:, = ~ar. in the 

case b), one easily verifies that J1 so defined satisfies (1,14), 

This completes the proof, 

Example, Let us describe possible "+ -symmetries assuming that 

the space ~ does not contain zero-mass states, A UARSF' of 

3+ in 1/ commutes with operators of mass and spin. Hence the 

subspace 
1 

W' , orthogonal to the vacuum can be represented as 
'lllll& 

a direct integral (or sum) of spaces 1f with definite values 

16 

~ I . 

of mass (m >O) and spin (SaO, %, 111 ... ) and the representa· 
~ lrLS -.:It. in '/.11 is reduced to representations U of ~ 

"t/lllS , 
By 1"1 tC. we shall denote a contribution of a coherent s1 

'Htl. C: ~ to ~ frtS , W ""= ~ '/4 :•. Let H MS be the space of 

cible representation of ~: with mass m. and spin S , 

may be realized by functions ~( p; ~) of p , a vector on 

hyperboloid of mass m. in R ~ 1 and of ~ , a two-dim~ 

complex vector, ~(pi ~)being a homogeneous polynomial of dE 

~.The scalar product in Hft\5is given by 

0 ,.. d )1$ 1 J. 3 

< f, f> = J ( 'ff·~ W f (Nl·/(r;~) rr. 
where ... ( ~ o _ ~ 3 - ~ 1-t L p ~ ) 

p= -~1-~~1. ~0 ... ~3 

(cf./6/, section 1-4), Every 'N :s as a space of representat 

with mass ln. and spin S , can be represented in the fc 

=HilLS~ fi ... Then elements of the ~:' are vector-valued 

functions F':5
(p;t)with values in $._such that 

r .... ~.s ce 
ij F:ll

1
• J ( ~·~· ~'f J ( F:s<r;~), F:'(p;~)) y.-a. 

- p 1 
and the representation of fl./ has the form 

(u:'(~,A) F:S) (p;~) = ei~o. F:s(,r'.(Ah ~A). 
Due to Proposition, for the definition 

sufficient to define in every 'N II!.S 
'.UMS 

which maps every "OC. onto some 

to OC. ) and satisfies the equation 

of a UARSF' of ~+ 
an 
'2/ MS 
, ot.' 

antiunitary ope 

( ( «.1) 
1 

be in 

l .. s. uii\S(Q.,A)· (.1"''r1 = u'"'(-Q.,A). 
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I -+ ·t 
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re two representations of ~t . ..,;Eq. ( 1.17) implies then 
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spectrum condition is the antiunitarity of J 
e have: J is the antiunitary operator, and :J1 

is (due to 
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oherent subspace t/" 
1 

there is one of two possibilities: 

'No(, is invariant under J , hence the e~ality JEll..= Eor. :J 
hen the identity j (j.?.)::.(j1) J implies !.t. c fc. 1 i.e. Iac. = l 1; 
'I'here is another coherent subspace ~ere' such that :J W'ot= ~' 
~I= '/./11(. 1 hence :J Eot. = E.c.' j and j f", 111 t" j j then the identity 
-1- ., .t. · 1· T • ~ 

- ,J 1mp 1es .)et' S"oC. • 

t us intriduce instead of :J a new operator, :J1 , which 

3 by a superselection factor ..Q. : 
and ~ae. = ± vL.' . (1,.20) j where .Q::. L ~a(.· E 11.. 

ae. 
he equalities ~ae. = ± 1 in the case a) and f:., = ~ae. in the 

, one easily verifies that J1 so defined satisfies (1.14). 

mpletes the proof. 

• Let us describe possible 3>+ -symmetries assuming that 

- '1/ does not contain zero-mass states. A UARSF of 

commutes with operators of mass and spin, Hence the 

e 1 ~ 
1 

, orthogonal to the vacuum can be represented as 
'll m.s 

t integral (or sum) of spaces " with definite values 
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.,. 
• 

of mass (m.>o) and spin (sao,Yt 11, ... ) and the representation of 

~. in U' is reduced to representations u III.S of ~t in '/./ m~ 
"ltlllS 

By rr ae. we shall denote a contribution of a coherent subspace 

'H~~..c:. 'H to 1Jirt5, ~lftS=~ P/:'. Let HMSbe the space nf the irredu­

cible representation of ~: with mass m. and spin S , which 

may be realized by functions ~( p; ~) of p , a vector on the upper 

hyperboloid of mass tl'l.. in R "t 1 and of ~ , a two-dim9nsional 

complex vector, ~( f>i ~)being a homogeneous polynomial of degree 2s in 

5". 'I'he scalar product in H"''is given by 

< 1', I> 
a ,.. 'd )u , r1. 3 P 

= J ( ~·~ W /(.N)·/(r;~) vr.; .. 
_ ( ~o-~3 -p'+~p._) 
p: -~1-~~f. ~D+~l 

where 

/6/ 'HillS ~+ 
(cf. , section 1-4), Every "II. as a space of representation of v+ 
With maSS m.. and Spin s I can be represented in the form w:s= 
- Hllt.S c: 'lJIIIo$ 
- ~ J.lec.·'I'hen elements of the f'l-. are vector-valued measurable 

functions /=:5
(p;t)with values in ~or. such that 

f 
- 2.S ,3 

111J 1 1 l. f IllS III.S Ill.~ UF~ II • (~·Jk·if) (F .. (r;t},F .. (P;tl)y.. < 
- ~ +~ 

and the representation of ~t has the form 

001 

( U ""' Ill.$) L r o. · 
-.(~,A) F ~~.. (P>~) = e F:s(,r'(A); ~A). (1,21) 

Due to Proposition, for the definition 

sufficient to define in every 'N 1!1.$ 
'illt\S 

which maps every "OC. onto some 

to 0(. ) and satisfies the equation 

of a UARSF of ~ it is 

an antiunitary operator lit\$ 
w;s ( («.')' being equal 

:r•s. UII\S(Q,,A)· (3""'r1 = U"''(-Q.,A). (1.22) 
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As it has been mentioned above, there are two possibilities: 

a) tC.
1
• lit. , then in view of '(1,21) and (1,22) j:•, the restriction 

"'"'' ~"" of \J to " " has the form 

""" ts 
(:J:' ~:')(p;~) = (~'~·i\:) J~~:s(p;t) 

where':(..~ ~)and J~ is an antiunitary operator in J$., such 

that (j.,)" 
b) -''* 0(, 1 

onto 1/:S 
equals up-to a phase factor to the identity operator; 

then jffl.S maps~:: onto 'JI:;' and, vice versa, 'N:: 
¥'N . . JIlL 1/IU 1/lllS "'IC. , the restrtction of I to 11

114 
$ PT 

1141 
, has the 

form 

G:: ( ;;)](Ml"(~'~aYt ( .o , ... ~~.-~J./F~(~t~, t " I« D /lF ... rP>tl} 
where i 1 is an antilinear isometry of C. onto ~ 1 

~·· ~~- ~- ' l. is 
an arbitrary phase factor, 

1,5, ~ -Covariance Condition for Infinite-Component Fields 

We have proved in section 1,4 that any t/'+ -symmetry is 

defined by a unitary-antiunitary representation, U , of th~ group ~. 
In line with Definition 3, we may take G. '+ and e = ~ to' formu­

late a ~ -covariance condition for a "big" field ~ , As ~e group 

.¥. being generated by the subgroup !,.t and the element I , it 

is sufficient to fulfil ~ 1,6b) for J E ~t and 'j a 'f separately, It is 

natural therefore to take the following ' 

9i -covariance condition: 

i), There is a UARSF of J'; in '/1 which due to Proposition of 

section 1,4 is defined by a unitary representation 
1 
U , of 1+t 

and an antiunitary operator, J , satisfying (1,2), (1,10), (1.11), (1,14), 

The !J++ -covariance condition for a "big" field ~z; F) is fulfilled 

in the form 

18 
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U(a.)A) ·t(x; F)·U(a.,Af' = f( A(A).x+a.; !'(A) F) , 

where T(A} is a representation of Sl(2,C)in l) (cf. (0,1)), 

ii). There is an anti!inear operator 1 in l) such that 

d !'"(A) = .r(A) 1 

(1)''=1 

and the field ~ satisfies the condition 

J f(x;F)j-t= ~(-:t;1F). 

Taking hermitian conjugation of ( 1,25) and using anth..tr 

we obtain 

~ '{~;F) J-t = cp {-;,c; 1.11-t F) , 

where l, is the involution in J) (cf, (1,4)). For 

with (1,25) we shall assume that operators 1 
lJ=1l. 

compatibility 

and ~ con 

We discuss in more detail the case of infinite-com om 

(see Introduction), Let fl = l 'f, f *, t, ~ ~ •" } = 
be a complete finite set of infinite-component fields transforn 

under irreducible representations X.1, ... ,lN of Sl(2.,C). 
Wightman axioms are assumed, To get rid of non-significar 

loading we make additional assumption: for any two fields f1 
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mentioned above, there are two possibilities: 

in view of (1,21) and (1,22) :J:', the restriction 

has the form 

( 
;: I ).f.S ' IllS = ~'m·'if J"~"(pjt), 

~)and J~ is an antiunitary operator in $., such 

up-to a phase factor to the identity operator; 

j~ maps;/:;' onto 'JI:;' and, vice versa, 'N':f 
¥-.s J 11 as 'N"s \J , the restriction of 11\1 to 1f. $ 

1 1 
has the 

1(. fl. fl. 

;;)]c~·~l=(~,ttt ( .0 

fl. J« 
isometry of~ .. onto 

'"·J~~-tl. (F~(r;tl), 
0 I F", (p;t)} 

J5 .. , , l 16 is 

-Covariance Condition for Infinite-Component F'ields 

proved in section 1,4 that any c1+ -symmetry is 

unitary-antiunitary representation, U , of th~ group ~. 
3, we may take G • '+ and ~ = ~+ to· formu­

condition for a "big" field ~ , As the group 
~t -by the subgroup J+ and the element I , it 

,.. - ,., ,. 
for J E !'tt and 3• I separately, It is 

the following 

~ in ;{ which due to Proposition of 

defined by a unitary representation 
1 
U , of 1+t 

operator, :J , satisfying (1,2), (1,10), (1.11), (1,14), 

e condition for a "big" field ~z; F) is fulfilled 

18 
..... .. 

U(a..A)·~(x; F)·U(o..Af1 = f( A(A)x+ct; !f(A) F) 

where !'(A) is a representation of Sl(2,C}in J) (cf, (0,1)), 

ii), '!'here is an antilinear operator 1 in l) such that 

d .f(A) = .1"'(A) 1 

(1)~=1 

and the fiel:d ~ satisfies the condition 

J f(:r;F) J-t = ~(-:t; ~F). 

(1,23) 

(1,24,a) 

(1.24,b) 

(1,25) 

'I'aking hermitian conjugation of ( 1,25) and using anti•_mitary of 

we obtain 

~ t{~;F) J-1 = cp {-x; ~ 1l-t F) , (1,26) 

where l is the involution in j) (cf, (1,4)), F'or 

with (1,25) we shall assume that operators 1 
l1=1l. 

compatibility of (1,26) 

and ~ commute: 

(1,27) 

We discuss in more detail the case of infinite-com anent fields 

(see Introduction), Let U = l 'f. 'f*• t. f~ "'} = 
be a complete finite set of infinite-component fields transforming 

under irreducible representations X.1, ... , lN of Sl(1,C), All the 

Wightman axioms are assumed, 'I'o get rid of non-significant over­

loading we make additional assumption: for any two fields 1• 1 1j E. Q 

• 19 
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either X,=X.j or 'X.(rlc±'X.j (the latter means that Xi and Xj 
are non-equivalent), By 'filE Q we denote the field hermitian con­

jugate to 1i. (see (0,2)): 

* ~i' =(fJ . (1,28) 

Let ~(:t; F') be the .9'T -covariant big field corresponding 

to the set ~ (see section 1,2) and j be corresponding anti'­

linear SL(1,C)-invariant (due to (1,24)) operator in l):l}_X~"·•l)-Xw· 
According to/5/, the most general form of 1 is 

N - N -
(1,29) J (If I"' ·IN) = ( j~ Q.fj lj' ..... ~ Q,Nj fj, ) I 

where fj el)_Xj and (a,i) is N•N complex matrix such that 

Q.i.j :0 if X~:/= 'Xj , Now (1,25) takes the form 

N 

3 fd~i/):rf= j~ ay ('rj(-:t.;l))~, I,. D-xj . (1,30) 

Equations (1,24) and (1.26) impose additional restrictions on the 

matrix ~ =· ( a,j) : 

.A~=1, 
(1.31) 

Q..,., = a, .. 
L J LJ (1,32) 

Note that by a linear nonsingular transformation, 

,~(~;!) = 4:. B;r ~(:x.; f) I where B,j::: Q if -x., ¢ Xj • (1,33) 
J 

identity (1,30) allows to come from the set (,t • {ft, ... , ~~~ J of fields 

to a new set Q.1 ={'ft, ... , t11} of fields (also transforming under 

irreducible representations of SL(21G)) so that the new matrix .1(
1 

in 

( 1,30) will be diagonal, the diagonal elements being equal to i It 
(It:: O,f.1,3): 

J'/j{:t;/)3-t=,(ft)·(t(-x;l))t > 1(~·)•1,-f,i,-i, (1,34) 

20 

.tta 

Indeed, the new matrix .,41 is obtained from A by a tran - __ , 
A

1
= SA- 8 and equrttion (1,31) guarantees the existence 

- • A B which transforms ..1t to diagonal form, 

It is easy to translate the f}+ -covariance condition in 

language of Wightman distributions, Let 

~1' .. i~ (:r,, ... ,x~; l1·· .. , ~1\)=(ol ~~4 (x.;{i) · · · fi~ (x~; f~) I o) 

be vacuum expectation values of infinite-component fields ~i 

(here lt.=0,1,... ; ~, ... )n. = t,, .. ,N ; fj e .D -Xj ). Let .A:. (' 
N X N matrix satisfying ( 1,31), ( 1,3 2). One verifies immediatel-y 

6'f -covariance condition implies the following relations bet 

the Wightman distributions 

CIJJ- ( J I ) = \ a. · • .. a . · 
"t

1 
... Ln. ~, .... ,XA i th·"•tn. . L:-- 'tJt ~~J" 

Jt>· .. ,)n. = f, .... tl 

x "J~~. ... j, (-x,.,,: .. ,-x, i (n., ... , /, 

for any R.:0
1
1

1 
... ; Lh ... •~l\ = 1, ... ,N. On the other hand, dL 

the reconstruction theorem/6/ the distributions \1.35) define 

tely the set '0[. of quantized fields, and the fulfillment of 

is the sufficient condition for the existence of an antiunitar 

tor J satisfying (1.10), (1,14), (1,30) (/6/, theorem 3-9), If ir 

tion :J satisfies the condition; j maps every coherent subs! 

onto some coherent subspace 1/", and (oe,')'= OC. (cf,(1,2), I 

then the set "Q: of fields defined by distributions '1,3.5) sati 

the 9!. -covariance condition, 

In particular, a set Q. of infinite-component free fielc 

which (anti)commutators are multiples of the identity operate 

uniquelly defined by two-point functions, and the covarianc• 

tion (1,36) is equivalent to the following restrictions on two 

functions 
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,= "tj or X.~'#-± 'X,j (the latter means that XL and Xj 
uivalent). By <fi' E a we denote the field hermitian con­

~i. (see (0.2)): 

* ~L' =(~J (1.28) 

ct(:t; F) be the 9''t -covariant big field corresponding 

Vt {see section 1.2) and 1 be corresponding anti­

Sl{1,C)-invariant (due to (1,24)) operator in l)=l>-x.~···· .D-XN' 
to/5/, the most general form of t is 

N - N -

, .... JN) = ( t. fl.tj I.J'I, ... ' L CLNJ' IJ·') ' (1.29) 
t J=l j:t 

j ED~ Xj and ( a,j) is N IC N complex matrix such that 

if X~:/: 'Xj , Now (1,25) takes the form 

N 

d:t.;f)j·f= j~ a,i (yj(-x,n)•, l.a .D-x; . (1.30) 

~1.24) and (1,26) impose additional restrictions on the 

~ =· ( a,j) : 
.A~=1, 

a.,., 
L J = a.,j 

that by a linear nonsingular transformation, 

(1.31) 

(1.32) 

) = ~ BLj' ,j (~~f) 1 where .B(j = 0 if Xi¢ Xj , (1,33) 
J 

(1,30) allows to come from the set (,t a{~, ... , ~t<IJ of fields 

set fl,={'ft, ... , ftl} of fields (also transforming under 

representations of SL(2,C)) so that the new matrix ~~ in 

be diagonal, the diagonal elements being equal to L It 
.1,3): 

/) j·'= '(t)· (1/'j(-x;l))• > ~(t·) •1,-f, i,-i. (1.34) 
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Indeed, the new matrix .,4
1 

is obtained from ,A by a transformation - -_, ~1= S.k 8 , and equation (1,31) guarantees the existence of a 

B which transforms .Jc to diagonal form. 

It is easy to translate the !J+ -covariance condition into the 

language of Wightman distributions. Let 

( l,l.i) 

CW:f .. in. (:r,, ... ,x~; ~, .... '~1\) =(o \ ~~.(x,;f.) ... ~L" (xt\; f~) \ o) 

be vacuum expectation values of infinite-component fields II,· 1,1. ""'- "' .:A. l'l''"'/~1&-1.11. 
(here n.::.0

1
1

1
... ; ~ 11 ... ,~n. = t1, .. ,N ; fj E l) -Xj ). Let :. ( a,j) · be 

N X N matrix satisfying (1,31), (1.32), One verifies immediately that the 

eft -covariance condition implies the following relations between 

the Wightman distributions 

( 1.36) 
CIJI- ( I l ) = \ a.. I .. a . . w: 1 ~, ..... x~~.; 1>"·• " L._ ~,J, ~~Jn. 

~,. .. ~~ . . 
J, .... ,J,.,=f ..... ~ 

)( 

x Wj~~, ... j, (-x,.,, ... ,-x,>fn, ... ,(,). 

for any n.:0,1, ... ; Lh .. .,LI\ = 1, ... ,N, On the other hand, due to 

the reconstruction theorem/6/ the distributions ~1.35) define comple­

tely the set 1JL. of quantized fields, and the fulfillment of (1,3G) 

is the sufficient condition for the existence of an antiunitary opera­

tor J satisfying (1.10), (1,14), (1.30) (/6/, theorem 3-9), If in addi­

tion j satisfies the condition; :J maps every coherent subspace U-. 
onto some coherent subspace 'IJ", and (oe.')'= Q(, (cf.(1,2), (1,11)), 

then the set 'f.l of fields defined by distributions l1,33) satisfies 

the ~ -covariance condition. 
In particular, a set 'Q. of infinite-component free fields \for 

which (anti)c·ommutators are multiples of the identity operator) are 

uniquelly defined by two-point functions, and the covariance condi­

tion (1,36) is equivalent to the following restrictions on two-point 

functions 
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~j (:t; ,,, ) = L. 'i~t 4jlll 
l,M c:t, ... ,N 

w., (X ; 1· ') I (1.37) 

where 

£,j:t, ... ,N; 'Wcj (z-y; f, 1) = ~j(x,y; f,1). (1.38) 

Remark. The G-covariance condition (section 1.2) involves a free­

dom in the choice of a group G , homomorphic to G . Given a 

UARSF of a group G , the larger the group G , the easier is 

to satisfy the- resulting G -covariance condition. In the case of 

G = ~ one could take the group !+ (see section 1.3,d) as ~ 
This results in abandoning the restriction (1.14), (1.24,b), (1,31) 

of the above treatment. There is a case when the choices of the 

groups !+ and ~ are equivalent. Namely, if, for any unitary 

superselection operator .Q E 'U 1 there is an operator (J in l) 
such that n cl(:t;F).n-'=t(:t;O'F), then the operator :J satisfying 

(1,25) but not (1,14) may be substituted by an equivalent operator 

l1=.n:J such that {j1 )
4= 1 (cf. Proposition of section 1.4). 

1.6. CPT -covariance 

It is complicated to formulate in field theory general CPT -cova­

riance condition with reasonable physical meaning; this would demand 

a detailed description of superselection rules (in particular, the se­

paration of "particle" and ''antiparticle" J:?Ure states). "lie shall con­

tent ourselves with the standard version of CPT-covariance which 

requires that, for a field 1 tra~~orming under an ~'!!~ refre-

sentation of Sl(2.,C),the field J cp ~ is equal up-to a factor to f 
( :1 being space-time reflection operator). 

CPT -covariance, Let Q: { ,1, ... , fw} be a complete set of infinite­

component ~-covariant fields (see section 1.5) transforming under 

irreducible representations of SL{.2, C). We call the fields CPT -covari­

ant and write 9 instead of J if 

22 
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G cp(xi/) s-'=~(~)·(cp(-:x.;l)t ~ ~(f)= 1,-1, £,-i 

for any field ~ , the linear combination of the fields ft , ... , 
which transforms under an irreducible representation, X. , of 

(i.e.lf(X.)~) =f. (!i 'f/X;~)and ~· =-0 if 'Xj+X ). 
The standard interpretation of GJ as the CPT -operata 

as follows. First, i transforms fields at a point X to fielc 

Second, let, for a field f , one-particle states obtained by 

~ and cp* to the vacuum be called - in line with some ,; 

selection rules - respectively "particle" and "antiparticle" s1 

then, due to (1.39), @ converts particles into antiparticle 

vice versax/, 

We have seen in section 1,5 that, starting from a set 

:{cp1, ... , fN} of ~ -covariant fields transforming under irre 

representations of SL(2., C) 1 by a (local) linear transformation 

one may obtain a new set, af , of fields so that the transfc 

tion low under space-time reflection takes· the "diagonal" for1 

It is evident that this diagonal form of ~ -covariance is be 

independent, hence means CPT -covariance, if ~ ( 'l'i) are the 

for fields fi transforming under the same representations c 

& xi,- the theory of Wightman finite-component fields the 
Q •(-t) is fulfilled moreover, S being the spin operator 
( •1)18 being a superselection operator called the univalenc 

tor. Using notations of sections 1,3 and 1.4 one can write tl 
condition in the form U([(O,t),1'J)· U([(O,-t),t.J}• U([(o,-1)1' 

which implies ,ll;lat ( u (I'): I I e ~) i.;, actually a represen1 
of the group 3'+ (section 1,3,!). 
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(x;f,g) = L. 4 tl 4i• W,e(z;1,fL (1,37) 

l,M:t, ... ,N 

=t, ... ,N; 'Wcj (z-y; f, 1) = ~j(x,y; f,1). (1,38) 

'I'he G -covariance condition (section 1,2) involves a free--the choice of a group G , homomorphic to G , Given a 

of a group G , the larger the group G , the easier is 

the resulting G -covariance condition. In the case of 

could take the group JD+ (see section 1,3,d) as (:. -in abandoning the restriction (1,14), (1,24,b), (1,31) 

treatment. 'I'here is a case when the choices of the 

and ~ are equivalent. Namely, if, for any unitary 

operator .Q E 'U, there is an operator (J in l) 
.Q 4(x;F),n·t=f(x;O'F) 1 then the operator 3 satisfying 

not (1,14) may be substituted by an equivalent operator 

such that {j1) ~ = f (cf, Proposition of section 1,4). 

CPT -covariance 

in field theory general CPT -cava­

with reasonable physical meaning; this would demand 

description of superselection rules (in particular, the se­

of "particle" and "antiparticle" pure states), 111/e shall con- . 

with the standard version of CPT-covariance which 

repre­

-- * is equal up-to a factor to f 
space-time reflection operator), 

.... ance, Let f.t={ft>'"•f~o~} be a complete set of infinite-

9!, -covariant fields (see section 1,5) transforming under 

representations of SL(.2, c). We call the fields CPT -covari­

g instead of :J if 
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G cp(:r.;/) 9-'=~(~)·(cp(-x;n)*", ~(cp)= 11 ·1, £,-l I (1,39) 

for any field ~ , the linear combination of the fields 1t I'·· 1 ~N 1 

vvhich transforms under an irreducible representation, X. 1 of Sl(.2,C) 
(i.e. Cf(:t.;~} = ~ f!i 't(X;/)and ~- =-0 if tr+X ). 

'I'he star!dard interpretation of @ as the CPT -operator is 

as follows, First, 8 transforms fields at a point :X to fields at -.X. 

Second, let, for a field f , one-particle states obtained by applying 

'f and 'f f to the vacuum be called - in line with some super­

selection rules - respectively "particle" and "antiparticle" states; 

then, due to (1,39)
1 

@ converts particles into antiparticles and 

vice versax/, 

We have seen in section 1,5 that, starting from a set '(K : 
={cp,, ... , fN} of ~ -covariant fields transforming under irreducible 

representations of SL(2.,C) 1 by a (local) linear transformation (1,38) 

one may obtain a new set, Qf 1 of fields so that the transforma­

tion low under space-time reflection takes the "diagonal" form (1,34). 

It is evident that this diagonal form of S!, -covariance is basic 

independent, hence means CPT -covariance, if ~ ( fi) are the same 

for fields ~L transforming under the same representations of SL{2,C). 

l\& ( x)lf- the theory of Wightman finite-component fields the condition 
~ • •I is fulfilled moreover, S being the spin operator, and 
( -1)tS being a superselection operator called the univalence opera­

tor, Using notations of sections 1,3 and 1,4 one can write tQjs 
condition in the form u ([(o, t), I 'J) · U([(o,t)1 eJ) • U([(o,- t), r'J) = 1 
which implies that ( u (I'): 1 I e ~) Ls actually a representation 
of the group ~ (section 1,3,(). 

, 
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§2. The Condition of Covariance Under Space-Time 

Reflection for Infiry!te-Component Fields is Independent 

of the Basic Principles (the Wightman Axioms) 

2,1, Examples of "! -Noncovariant (Bose and Fermi) Infinite­

Component Fields ~ 

We shall construct free infinite-component field, 'f , transfor­

ming {with its hermitian conjugate, 'f*) under the self-adjoint Majora­

na representation X= x,+a[o.I!J,] of the group SL(2.,t). The 

fields 'f and 'f * satisfy the Klein-Gordon equation and their 

(anti)commutators are multiples of the identity operator, All the Wight­

man axioms are fulfilled, the fields 1 and 'f flo are ~ -noncova­

riant nonetheless, 

Let l).X be the space of the irreducible representation X= 
= [o, %. ] of SL(1,G) realized by homogeneous e· -functions 

in the complex domain C1• e~.' {o) /5/, There is an invariant 

hermitian positive-definite form ( /1 ') on J)_X 1 and we denote 

by X the completion of the pre-Hilbert space $:}.x, with respect 

to this scalar product. Closures, V(A), of the representation opera­

tors, T..x(A}, are unitary operators in X . Moreover (see/19/, 

section 2,2, 7), there is a covariant 4-vector of essentially self­

adjoint operators r" defined (with all polynomials in r~' ) on 

l>.~ which commutes with the involution operator in X (the 

involution being the complex conjugation). Covariance properties of 
- f Jt " r" are expressed by V(A)r~'-V(Af ·AlA) 'i r. The last proper-

ty we need is the following: the spectrum of the operator ro 
is discrete and bounded from below: 

ro ~ Q. Q, > 0. (2,1) 

The covariance of rl' implies then 

~"r" ~ .. f<P5" for ~ E v+ = { ~ E R'l: p0
> I PI J. (2,2) 
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We define a free fie~ ~t(xil)• 'f(:t;/) and its her 

conjugate 'fa.(x;l)=('f(X;~))* (where /6 D-t ) by the fc 

two-point functions 

(ol f· (~~ ~V,(N.llo) = ( ~ t ~ (i rl'~~-) kIt). t-D~ (oc· 
(IC\( (~e)) IC=o f . 

where M 'E MilA are 2 x 2 complex matrices, and "'"' ])
1 

I 
li . t 

•(:•)S 9(p•) b(~l._rrt.l) t,-LfX' ,l~p is the two-point function of 

free hermitian scalar field with mass rn. )0, The ~f and q 
Bose (respectively, Fermi) fields if n, is even trespectively, 

The trancated vacuum expectation values of order n. ) 2. are 

med to be zero, 

Proposition. Let M (K) be 2 x 2 hermitian matrices (It • ( 
of the form 

(
riC ~k) 
'fee rlt 

MtiC)= for n 1'1t even, 

M(lt) - . ( 1 0 ) - f~t 0 -1 for l'l + It odd, 

where rlr, and ft are real numbers, and tIt are ComplE 

bers, Let the following conditions be fulfilled {where ) 0 stc 

for positive definiteness of a matrix) : 
n. 

(ft) ~ (It) It M >0, L M A ~ 0 for any ltr [mtt,oo) 
lt•o 

(a being defined by (2,1)), Then the two-point functions (2,3) 

infinite-component free fields tf1 • 'f and ft = f tt transformir 

representation X= [0 1 y,] of the Lorentz group and satisfy! 

all the Wightman axioms, the statistics being of the Bose (re: 

tively, of the Fermi) type if n. is even (respectively, odd), 

Proof. According to the Wightman reco:'lstruction theorem/6/ i' 

sufficient to verify the following condition, 1) through 6), for 

two-point functions (2,3), 
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2. The Condition of Covariance Under Space-Time 

Reflection for Infirli.te-Component Fields is Independent 

of the Basic Principles (the Wightman Axioms) 

Examples of 9! -Noncovariant (Bose and Fermi} Infinite­

Component Fields 

shall construct free infinite-component field, 'f , transfer-

* its hermitian conjugate, f ) under the self-adjoint Majora-

entation X= x+. [o, .,, ] of the group SL(2.,C). The 

and 'f * satisfy the Klein-Gordon equation and their 

tators are multiples of the identity operator, All the Wight­

are fulfilled, the fields 1 and f • are '! -noncova-

.D.x be the space of the irreducible representation X • 
SL(!,C) realized by homogeneous e· -functions 

domain C1: Ct' {o} /5/, There is an invariant 

positive-definite form ( /t ') on D. X , and we denote 

completion of the pre-Hilbert space 1).X with respect 

product. Closures, V(A), of the representation opera­

( A}, are unitary operators in X . Moreover (see/19/, 

7), there is a covariant 4-vector of essentially self-

r~' defined (with all polynomials in r" ) on 

which commutes with the involution operator in X (the 

being the complex conjugation}. Covariance properties of 
- '/ f /'- II 

expressed by V{A)r"VtAr ·AlA) 'I r. The last proper-

is the following: the spectrum of the operator r• 
and bounded from below: 

ro ~ Q. Q, > 0. (2.1) 

of r"' implies then 

V[p)J. for p E V + = { ~ E R~ : p 0 > I PI 1. (2,2) 
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.... 

We define a free fie~ ft ("-il) • 'f(X; n and its hermitian 

conjugate Cfr.("-i/)=('f{3C;~))* {where /6 D-t ) by the following 

two-point functions 

(ol f· (ot;~~ ~,(N)io) =( ~ .t ~ (i rl<~~l I'). r D~ (o:-y),l2.J) 
(IC\( {It)) IC:o f -

where M E MiliA are 2 x 2 complex matrices, and ~ ])IlL(~·!)= 

f 
-r . L 

•(:7t)l 9(p') ~(pl._rra.1) t-LtJC i'p is the two-point function of the 

free hermitian scalar field with mass 11\. ')0, The 1t and 'ft are 

Bose (respectively, Fermi) fields if n, is even ~respectively, odd), 

The trancated vacuum expectation values of order n. ') 2. are assu­

med to be zero, 

Proposition. Let M(K) be 2 x 2 hermitian matrices (It •0, 1, ... ,n.) 
of the form· 

Mtk)= ( riC ~k) 
riC riC 

for l'l 't It even, (2,4,a} 

MOt)= f . ( 1 o )· 
It 0 -1 for n + It odd, (2,4,b) 

where rt. and ft are real numbers, and tIt are complex num­

bers, Let the following conditions be fulfllled lwhere ) 0 stands 

for positive definiteness of a matrix) : 
n. 

M(\\)>0, L M(lt) A K ~ 0 
lt•o 

for any l'C [m«.,oo) (2,5) 

(a being defined by (2,1)), Then the two-point functions (2,3) define 

infinite-component free fields Cft .. 'I and r~. = f"' transforming under 

representation X= [0, y,.] of the Lorentz group and satisfying 

all the Wightman axioms, the statistics being of the Bose (respec­

tively, of the Fermi) type if h. is even (respectively, odd), 

Proof. According to the Wightman reco:1struction theorem/6/ it is 

sufficient to verify the following condition, 1) through 6), for the 

two-point functions (2,3), 
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1) 'I'he condition for hermitian coniu.gation of fields, 
r ......._ "'4 .,....., ,.. • """" • ......_, • 

(oly._(x:,f}*·f~l'; ')jo) = (olf~(~;$)": f.,(x»/)lo), 

is implied by the hermiticity of the matrices M(IC), 

2) 'I'he positive definiteness conditio!) implies 

(2.6) 

111'1 .. - -

~ f_ J (ol M ~. ~~'t 1~ (~ • tr'J lo >·It (j
1(zJ Jlt, l J. 'x l3 ~o~ 2' 

71 

JJ-t ·--· ( ') ( ') 
for any ~~ E l>.x, u JE S(M,)) N. Vector functions H (X; z) = 
- ( ~t (o:t; 'Z)) ~ (.i) (j) 
- '- ( ) with ~ec.(X;t)= ?- W. (l)·/ fl.{%) form 

n2. o:t; 't J:t 
an algebraic tensor product S(M~)QD l) where 1) = l>_x e l>-x' 
and (2.7) is the condition of positive definiteness of a hermitian 

functional defined on this space. 

'I'he necessary condition for (2, 7) is the inequality 

n. 

~ Cf...l f. M~~ (p,. r") ~ 1 ~p) ~ o (2.•1 

for any ~.) /., t& .:D_x. and I' 6 V':. { ~: ~ 0 > 0) (p)'-· "'~r 
Indeed, due to (2.8) for N: 1 1 the distribution l={x) defined by 

F(ot) = k ~ (oJ f,.(x; I .. )*· Vp (1; fpl J o) (2.9) 

is positive definite. 'I'his implies (/20/, ch, II) that the Fourier trans­

form of F(~) , 
n. 

F(p) • L C4 .. 1 r M~K) (p r~t/11 ) . 6(po)r(pt..,...~)) (2.10) 

·~~ ho P 14 ~ 
is a non-negative measure, hence (2,8) is implied by (2.7). 

N On the. other hand, (2,8) is sufficient for ~· 7).Substittuting 

rj:t~(J~p)/~linstead of I~ into (2,8), wh~e ito(. tP) are arbitrary 

functions of S(Rt.},we obtain, for ~ E 'IJ' + , 

26 

--

i J:. ;wlPJ·i<1~p}( /!Jll i M1
K
1 (p,.r"t I!~)~ 

j,l•t "''"'1 lt=o ..,. 

and this Is. equivalent to (2,7), 

It remains to see that conditions (2,5) on the matrice1 

are sufficient for inequality (2,8) to be satisfi~ We have 1 

that the Operator r• I hence ~/'·r,. for p. v ... 1 

is self-adjoint and possesses a discrete spectrum. Let { E 
the basis in X of eigen-vectors of the operator,_,. r", 
responding to eigen-value Av, and let.{ J''f be compone 

a velltor ~ ~ .D-x. Then the left hand side of ~2.8) takes 

i:. I L ( M(•\ (rn.l.,) .. )·F -~., 
lJ "'~ k. ·~ .. s ~ 

and is non-negative due to ( 2.5). 

3) R!!_a~vi~t!_c c~~!anc::«!• 
~4/WUU:WVMU. 4 M4AI 

(0\f.,(A(A)x+A.; V(A)I)~ f~(A(A)J+a.; V(A)J) lo)= 

= (ol f .. (x; /)tr ·fp(J• J) lo> for any « e- T, , A 
Is evident. 

4) Spectrum ~ond!tJ.~ implies that the Fourier tre.nsfonn, 

of the distrlbui.on F(z) defined by (2,9) has a support in ' 

5) Locality implies -------

(0\1.,.(:~t;I>'-Cf,(Ji f)lo) = (-t)"' (olfta(f ;f)· 'f.,(~il)* lo: 
for (x-1J'< 0 , or, equivale'fy, 

(•I 'l.[zif)~'f~;t)lo>=(-t}"'~, 6_.,· ~r(oJ -,,(l; f)*-1rf:~ 
where ~ .. ,• (.3., , (X-I)'<O . We substitute (2,3) herE 

member that the operators r" commute with the involutiOI 

tence, (jl r"~ .. r"•lf>. (41 r"~ .. r"•tt>].since t D; I 

=rD~{~·X)for (7.•J)'<O, we obtain 
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of fields, 

· ft·fpl~; ')1°) = (olfp(~;1t f,..{x;/)lo), (2.6) 

by the hermiticity of the matrices M(IC), 

~;:u,iti'::e definiten::s conditio~ implies 

J <•I 1-J "' /~1t rP ( ~, t~1J I o > ·w. wc.q J4t ~ l .t '..l; ~o .''· ?) 
(') (') 1: E l)_X, U JE S(M,), N. Vector functions H (X; 1) = 

) 

N 
; 'Z) (j) OJ 

) 
\dth ~ .. (x;'Z.)= ~ U (z)· J «. {Z) form 

l. J:1 t 
tensor product S(M.,)QD l) where 1) = l)_x e l>-x, 

is the condition of positive definiteness of a hermitian 

defined on this space, 

necessary condition for ( 2, 7) is the inequality 

n. 

~\ to M~K~ (p~ r~) It I~~) ~ 0 (2,8) 

~.,j.,te .l)_'X. and p£'1J':-.{~: p0 >0,(p}!l.•trLt]. 
to (2,8) for N: 1 , the distribution f:(x) defined by 

= k ~ <•I f,.(oc;t,.)*·Vp(7;{~Jio) (2.9) 

definite, This implies (/20/, ch, II) that the Fourier trans..: 

F(~) , 

L. (4,..1 i M~•l ( p r")"l f ) . B(p') r(~t..,.l), (2.1o) 
"'J~ ho ~ 14 ~ 
egative measure, hence (2,81 is implied by (2. 7), 

the. other hand, (2,8) is sufficient for ~· 7).Substittuting 

{~)instead of {«. into (2,8), whe~e jl ,/(p) are arbitrary 

of S(R.,),we obtain, for ~ E 'IJ' + 
1 

26 

_.: 

i t ii: (J)(p)· -~1') a!J)I i M~1 (p,.r"t ll~1) ~I) ' 
j,l•t tl,,-&1 lt:o , 

and ~ Is equivalent to (2,7). . 
It remains to see that conditions ( 2,5) on the matrices M (") 

are sufficient for inequality (2.8) to be satisfii:Ki. We have pointed out 

that the operator r• . hence t-l'·r,. for , • v ... . 
is self-adjoint and possesses a discrete spectrum. Let {ell}-; be 

the basis in X or eigen-vectors of the operator!',. r", e~' cor­

responding to eigen-value l.-, and let { J»f be components of 

a veator ~ ~ .D-x. Then the left hand side of ~2.8) takes the form 

L L I. { M(lt.) {Ml.,)rc.).;1.~v 
- ., "' ... , 5., s ~ 

and is non-negative due to (2,5). 

3) R!!_a~vi~f!c c~ar!a~~· 
~~~ ... ·-~ .. ~..-. 

(0\f.,(A(A)x+a.; V(A)/)~ f,(A(Alt +a.; V(A)J) lo) = 
(2.11) 

= <01f.,(x; I>" ·fp(f;f) lo> for any « ~ T, ) A E SL{z~c), 
Is evident. 

4) Spectrum ~ond!t!<n implies that the Fourier transform,J..2.10), 

of the :fistrlbu1ion F{z) defined by (2,9) has a support in V't . 
5) Locality implies 

r e •• 

(0\'f.,(~~,t·'f,(J;f)lo)= (-t)"' (olfp(' ;f )·f.,('t;l)*lo> (2.12) 

for {~-1J'< 0 , or, equivale'fy, 

<•ltc{zil)~'f~;t)lo>·~t)"'~1 6_.,·~r(olf,(dif)*-1r(:z;?J lo), 
where ~ .. ,• f...s-, , (X-1)'<0 . we substitute (2.3) here and re­

member that · the operators r" commute with the involution in X 
tence, (jf r"! .. r"•lf) •(41r"~ .. r~'•(t)].since r D; (~-~)a 
=f-D;{~-X)for (7.-J)'<O, we obtain 

.. 
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) 

M(lt.)=(- )n.+lt.."' ~ ,/ ·M(K) . M(ICL(-1)n.-tlt-""·M(IC): ~ (2.13) 
t(,~ '\ £_ott( b~' I( 1 1.e. - o o 1 

T r~r 
where A denotes the transposed of a matrix A . This is the 

way we come oo (2.4). 

6) Cluster decomposition propertyx/, ... ,...,_,,.,....., .......... ._.., .. 
F(-z+).·A.)-+ 0 in S '( R,.) for l_.oo, (2,1,4) 

where F(:~r.) is defined by (2,9) and «. is an arbitrary space-like 

vector, is implied by the fast decrease of J>; (%) for ~.t. ... - 00, 

Proposition is proved, 

Let us investigate when the fields 'ft = 'f and f, = tp*' defined 

by Proposition are ~ -covariant. According to section 1,5, 

~ -covariance implies the existence of an antiunitary operator. 

J , which leaves the vacuum invariant such that 

3 f«-(x;/) j-1 =f 4~·1~(-:t.;/)*" (2.15) 

where A=(Q..c.~) is a 2 x 2 matrix such that 

A 4 = 11 (2.16) 

- -a.1a. = Q.tt , a.,.t = au. (2,17) 

(cf, (1,31), (1,32)). In terms of the two-point functions, (2,15) takes 

the form , 
<o\f~(x;~)·1~(1;,)\o)= L 7i.q ~J'(olf,(:t;J}-ftl1~ /> lo) 

r~•=• 

x/The cluster decomposition property guarantees the uni­
queness of the vacuum ray, 
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(2.18) 

(cf. (1,37)), These results in the following restriction on ma1 

in t2.3): 

n(lt.) =A· nc~,T .j' T K=0,1, ... ,n. 

where 
...t~t) Ill! M(t.) I r :: g · . are matrices with elements 

one 

give 

n (It) = M (t.) 
.C.f ~-·~ p. 

We assume that the following condition is fulfilled: at 

of M(ltl with odd lt+n. is non-zero. Then (2,4,b) and ( 

J.ef ~ = -1. 

Using (2,4,a) we reduce the equation (2,19) for even It+ n. 

Q.tt· Y'lt =- 4 u·rlt =-r ( a.1t. ~ 1t- a"' 'ftt) · 

Equations ~2.17), (2,21) and the inequality rn. :/:0 give 

A-
11 

a 01 \ct11,\ =1 1 Im. ( Q.1i~tt) = 0 for even It i"n., 

( Our final result is as follows, Let, for at least one 01 

M It):#: 0. There is an antiunitary operator, :J , such that (2, 

fulfilled (the matrix A in (2,15) being equal to 

A=(! :J , \-&l=t 
and 3.1. being equal to 1) if and only if 

~It-± l~ltl·-t for all even It+ n. and some-t,' I· 
( ~ lt. being defined by (2,4,a)). 
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n.ot-lt·"'.J ./ ·M(K). M(IC)_'-1)1l-tlt_.~,M(IC)~~ (2,13) 
~ 0"( b~S f( , t,e, -\: 0 g , 

r~o 
the transposed of a matrix A . This is the 

nrnnPrh..rx/ 

for 1 ... 00. (2.14) 

is defined by (2,9) and ct is an arbitrary space-like 

of D; (ox) for x"--.- oo. 

is proved. 

investigate when the fields ft '= tf and f,: f• defined 

!J+ -covariant. According to section 1,5, 

e implies the existence of an antiunitary operator, 

«.(%.; /) j-1 = t «.c.p· ~~(-:t.)l) • . (2.15) 

2 x 2 matrix such that 

.A4=1, (2.16) 

- -
a.1t = Q.t1 , a."'' = au. (2.17) 

(1,32)). In terms of the two-point functions, (2,15) takes 

, 
(~;3)lo>= L. a.q a;"<olf,(z,,lftl1t /) lo> 

( 1I:t 

cluster decomposition property guarantees the uni­
the vacuum ray, 

28 

... -

(2,18) 

{cf. (1,37)), These results in the following restriction on matrices 

in ~2.3): 

n {It) = A. n<~l T . .l T K=0,1, ... ,n.~ (2,19) 

where n<lt~ 6 · M(K.) are matrices with elements 

n<.u = M (lt.) 
.c.~ ~-·~~ 

(2.20) 

one 

We assume that the following condition is fulfilled: at least 

of M(lt) with odd lt+h. is non-zero. '!'hen (2.4,b) and (2.19) 

give 

J.et A= -1. (2.21) 

Using {2.4,a) we reduce the equation (2.19) for even It .... n. to 

a.1i,..1t =- au·rlt =- i ( a.1t. ~It-«,~., 'fit)· (2.22) 

Equations ~2.17), (2.21) and the inequality T,.. r/a 0 give 

«.1;• 0 , I CL,.,l = 1 , Im. ( tA.11: ~It) = 0 for even It + n. . (2.23) 

( Our final result is as follows. Let, for at least one odd It+ 1'1. 1 

M lt):f:O.There is an antiunitary operator, J , such that (2.15) is 

fulfilled (the matrix A in (2,15) being equal to 

A=(! :J l-&1=1 (2.24) 

and !J.I. being equal to 1) if and only if 

~It • ±I ~It I·,. for all even lt+n. and somet,' (-3\:1(2,25) 

( t lt. being defined by (2.4.a)), 

~ 
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It is clear that the condition (2.25) is not fulfilled in generaL 

Let us consider two examples. We define 

putting in (2.3) ft. •2. and 

Bose fields 'f and f * 

M<ol. ,. ( ~ 
-L 

t ) M <•l . ( 1 o ) M tt.l ( 1 
o I • a o -1 • • E :). (2.26a) 

Analogously, Fermi fields may be defined if we put n. • 3 and choose 

Mt•>= .(1 o) M<t>. -(~ i) M(I)•O M(a)•(' f) 
E 0 -t I ' -L 0 • I E t , (2.26b) 

& in (2.26) being a sufficiently small positive number which guaran­

tees the fulfillment of (2.6). The fields so defined satisfy all the 

Whightrnan axioms but are ~ -noncovariant. 

2.2. An Example of a. PT -Covariant but CPT.....Noncovariant 

Infinite-Camp onent Field 

At last we consider an example which illustrates that the 

~-covariance condition in the form of the CPT-covariance (auto­

matically fulfilled in the Wightman theory of f"mite-component fields) 

is too restrictive in the infinite-component field theory. 

In the notations of section 2.1, we define Fermi fields , and f* 
lfirst introduced in/11/)by the following two-point functions: 

(olcrCz;l)~f{V;J) \o> = (II ,r~ k" ... ,1 l}r D; («-1), 

(ol,(:~t»f)·f{,;#)*lo)= (/f~r;~- £1f)·fD; (-.-1), 

<olcr(:a:;l)·'f(J)f) lo)• <~'f(z;~)*· 'f(,;f)*.fo)=o, 

(2.27) 

where t is a real number, 0 <ltl< II\·G..(2.27) is a special case 

of (2.3) for h•=1 .and 

M (o) = £ · ( ! -~ ) 1 M (1) = ( ~ ~ ) . 
The criterion {2.25) gives that, for any -&- of modulus 1, 

there is antiunitary operator l=:r{~) (with :JI.= f ) such that 

30 
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X 

!l 'f(:r.; #) :r-1. "f·'f(-:r.; ~) • :J ft(z;,) :J-t = t·1*(-z•/: 
For definiteness, we take ~-f. .In agreement with the S• 

1.5, the matrix A in (2.15) can be diagonallzed if we pas 

"hermitian" fields f1 (~;/): t ( 'f(:t•/)+f'(z;/J} , t~ 

=tr { 'f(x)/)-ff(x;/)) 

',.(~;1),-t= t.(-~il)*~ f·(-:r:;i)]l 

!1 t~. <:r.;/> :r'--t~.(-:r:;f>*[•-t~.c-~. i~ · 
But there is no antiunitary operator 9 satisfying thl 

(1.39): 

ll J .. , • ll {: ., .. , -
'7f(x;t)9 =l·f(-:t.;l)' ~fx;l)9 =~·f(-x;f) 

since the necessary condition of CPT-covariance, namely, 

(o1Cf(&;~)f:1(,;f)lo> = (olf(x;l)·f(t;#)*lo>, 
is not fulfilled (cf. (2.27)). 

The structure of the two-point functions l2.27) implie 

one-particle subspaces ~'f and 1J'f*' obtained by appl~ 
1 and f *' , respectively, to the vacuum are orthogonal 

one may imagine superselection rules which separate 'IJ'f 
Let us agree to call the vectors of 1/'f and _'JI,t "particle' 

"antiparticle" states, respectively. Then the operator :J 
realizes space-time reflection and leaves particle and anti1 

subspaces invariant. It is naturally to call ::J the PT -01= 

Thus, the fields 'f and _'/* are PT -covariant but not C~ 
The author would like to thank M.K. Polivanov, I.T. ~ 

and V.N. Sushko for valuable discussions. 

x/If we put _&=0 in (2.27) then tQere are both the o 
3 satisfying (2.28) and the operator-~ satisfying l2.30), i, 
resulting fields are both PT • and CPT- covariant. 
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that the condition (2.25) is not fulalled in general. 

two examples. We define Bose fields 'f and , * 

i. ) (t) ( 1 0 ) (t.) ( 1 f ) 
0 • M • ,. 0 -1 I M • E f • (2.26a) 

Fermi fields may be defined if we put 1\ • 3 and choose 

0 ) M(tl• ·( ~ i) M(u=O M(aJ•( 1 
-t • I -L 0 • • E ! ) , (2.26b) 

being a sufficiently small positive number which guaran­

of (2.6). The fields so defined satisfy au the 

IXioms but are ~ -noncovariant. 

we consider an example which illustrates that the 

condition in the form of the CPT-covariance (auto­

in the Wightman theory of fmite-component fields) 

in the infinite-component field theory. 

notations of section 2.1. we define Fermi fields f and f* 
in/11/)by the following two-point functions: 

\o> = (II irJL k" +£1 1)-[ D; (c-,), 

'lo>= (/(tr;~- E(f)·fD; (~-1), 
;') \o) = (of f(x; ~)*· 'f('; f) *'.lo) = o, 

(2.27) 

a real number, 0 <\tl< tl\·a..(2.27) is a special case 

:i and 

M(tl = ( ~ ~). 
(2.25) gives that, for any -&' of modulus 1, 

operator 3= l(~) (with 31 = f ) such that 
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,.: 

X 

!l 'f(z;#):r'= t·f(-:r.; f). 'f'(z»l) :r'c ~·1*(-z•l>· (2.28) 

For definiteness, we take ~-f. .ln agreement with the section 

1,5, the matrix A in (2,15) can be diagonallzed if we pass to 

"hermitian" fields ft (z;/) = t ( '(~•l}+'f,.(z;IJ} , fJ.(:c;/)= 

= tr ( 'f(z;l} -ff(x;/)) 

:J ~.(~;1)'-t= f,(-~;/J*~ ft(-x;j)]. (2,29) 

:1 r~.<:r.;f>:r'--t~.{-x;f}*[•-tJ,c-~•Til· 
But there is no antiunitary operator 9 satisfying the condition 

(1.39): * 

9 f(:t;{) e·'=l·f(-~;~)~ i f(x;l)*e·t =~. f(-x ;j) (12.30) 

since the necessary condition of CPT-covariance, namely, 

(ol 'f(:~t• ~)*-1(1; f) lo> = (olf(~• I)· 'f(1 ill lo> , 
is not fulfilled (cf. (2,27)), 

The structure of the two-point functions l2,27) implies that. 

one-particle* subspaces 'N'f and .'J./'f* obtained by applying fi~lds 
'f and ~ , respectively, to the vacuum are orthogonal, Hence, 

one may imagine superselection rules which ,separate 'IJ, from 'N'f*' 
Let us agree to call the vectors of 1J'f and _'JI,t "particle" and 

"antiparticle" states, respectively. Then the operator :J In (2.28) 

realizes space-~me reflection and leaves particle and antiparticl!'l 

subspaces invarianL It is naturally to call :J the PT -operator. 

Thus, the fields 'f and _'/• are PT -covariant but not CPT-covj:lriantx/, 

The author would like fo thank M,K. Polivanov, I.T. Todorov 

and V,N, Sushko for valuable discussions, 

X/lf we put _f.=O in (2.27) then Y;.lere are both the operator 
:J satisfying (2,28) and the operator .t:J satisfying l2.30), i.e. the 
resulting fields are both PT • and CPT- covariant . 

• 31 



! I 

References 

1. H. Ruegg, w. RUhl, T.s. Santhanam. Helv. Phys. Acta, 40, 9 (1967). 

2. G. Feldman, P.T.Matthews.Ann. Phys., 1Q, 19 (1966.); Phys. 

Rev., 151, 1176 \1966); Phys.Rev., ~ 1241 (1967). 

3, R, Haag, D. KAstler, J,Math,.Phys., .§, 848 (1964). 

4, A.L Oksak, I.T. Todorov. Commun. Math,.Phys., .!!:, 271 (1969). 

5. LM. Ge~'fand, M.I. Graev, N. Ya. Vilenkln. Generalized Functions, 

voL 5, ch.m. Integral Geometry and Representation Theory. New 

York, Academic. Press, 1966. 

6. R.F. Streater, A.S. Wightman. PCT, Spin and Statistics, and 

All That. New York, Benjamin, 1964, 

7. Cao Chi, Dao vong Dye, Nguyen van Hieu. Ann.Phys., _!g 

173 (1968). 

8, LT. Todorov, R,P, Zaikov. J.Math.Phys., 1:Q, 2014 l1969), 

9. H. Epstein. J.Math,.Phys., .!!, 750 (1967). 

10. D. Tz. Stoyanov, I.T.Todorov. J,Math,.Phys., .2, 2146 (1968). 

11. A.I. Oksak, I.T. Todorov. Commun.Math.Phys., .!!, 125 (1968). 

12. E.P. Wigner. Ann.Math., .!Q, i49 (1939). 

13. G.c. Wick, A.S. Wightman, E.P. Wigner. Phys.Rev., !!.§, 101 (1952). 

14, A.S. Wightman. Ann.Inst. H.Poincare, ser. A, ,!, 403 (1964). 

15, N.N. Bogoliubov, A.A. Logunov, I.T. Todorov. Foundations of the 

Axiomatic Approach to Quantum Field Theory. Moscow, Nauka,1969. 

16. v. Bargmann. Ann.Math., .2.2, 1 (1954). 

17. K.R. Parthasarathy. Commun.Math.Phy&.,· .!.§, 305 (1969). 

1S. E.P. Wlgner. In "Group Theoretical Concepts and Methods in Ele-
1 

mentar,y Particle Physics", ed. F. GUrsey, New York, Gordon and 

Breach, l. 964. 

19. I.M. Gel'fand, R.A. Minlos, Z, Ya. Shapiro. Representations of the 

Rotation and Lorentz Groop. and Their Applications. London Perga­

mon Press, 1963. 

20. I,M. Gel'fand, N.Ya. Vllenkin. Generalized Functions, vol. 4. 

Applications of Harmonic Analysis.NewYork,Academic Press, 

1964. 

.,. 

Received by Publishing Department 
on June, 5, 1970. 

32 

~.«,' .. I 


