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Recently, in studying high-energy particle scattering the idea 

has been extensively used that the hadrons in interactions behave 

as complex systems with many internal degrees of freedom. 

It is also assumed that the main regularities of the high energy 

two-particle elastic scattering are determined by the behaviour of es

sentially inelastic processes in the two-particle collision. 

As was shown in refs./1-3/the diffraction character of two-par

ticle elastic scattering is naturally explained on the basis of the 

quasipotential equation for the scattering amplitude in quantum field 

theory/4 ,5 / in the framework of the hypothesis on the smoothness of 

the local quasipotential as a function of the relative coordinate of 

two particles/6 /. , 

The corresponding quasipotential describing the high energy 

elastic scattering at small a!'"ld large angles _ turns out to be approxi

mately imaginary and has _the Gaussian form which corresponds, in 

a certai'.1 sense, to a nonsingular interaction of two extended objects 

rapidly decreasing with. increasing relative distance between_ partic -

les/7,8/. 

The interpretation of such behaviour of the two-particle elastic 

scattering quasipotentia} in terms of many-particle inelastic processes is 

a very important problem of the quasipotential approach. 
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In this connection we note papers/9-
11

/ where the Gaussian 

character of the elastic scattering quasipotential was found starting 

from the idea about the high-energy particle scattering as a random 

process in which the random quantities are the total momentum and 

the total number of particles in the intermediate states in the unitary 

conditionf 1 2• 13/. 

For a more detailed knowledge of the dynamics of many-particle 

processes it may turn out to be advisable to study various models 

of high-energy hadron interactions. 

In the past years a number of models has been suggested in 

which the hadrons considered as complex systems, in high-energy 

collision processes are excited and dissociated virtually into consti

tuents ( qu~rk-antiquark pairs, "partons11/14 ,15/, "fragments11 l16, 171and 

so on). Some success of these models in the description of the high -

energy hadron interactions indicate that the idea about the hadron as 

a complex system with many internal degrees of freedom is fruitful. 

We should emphasize one important property which is, in our 

opinion, common for all the above considered models: the occurance 

of a · high degree degeneration of hadron states in high energy colli

sions due to the virtual dissociation of hadrons into a large number 

of constituents. In the present paper we study a model oL high-energy 

hadron inter.action· which is based on the assumption about the cohe

rent nature of the excited states of colliding hadrons. In this model 

the degeneration of the states is efficiently described by a four-di

mensional relativistic oscillator :which plays the role of some collec

tive variable. 

Thus, in the process of collision the hadron states are model

led by the coherent wave functions of a four-dimensional oscillatorx/. 

The model is. essentially equivalent to the account of an effec

tive hadron structure which is due to the production of a cloud of 

. -;;,/ For the_ definition and . the properties
7 

of the coherent states in 
quantum optics see, for example, refs. 18,19 /. 
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real and virtual particles in high-energy interactions by redefinition of 

the particle C"Jordinate. 

We note that for the first time the idea about the hadron excita

tions of the oscillator type was apparently suggested in refa)20- 23/ 

and then developed in a number of other papers/ 24, 25/. 

We stress, however, that contrary to the oscillator models des -

cribing the mass spectrum of elementary panicles we use the notion 

of the coherent oscillator excitations for describing the hadron de

generated states_ in high energy strong interaction processes. 

In the next section of the paper we determine the wave functi

ons of the hadron coherent states and study their properties. In 

Sections 3 and 4 the models of the elastic and inelastic high energy 

hadron interactions ?-re considered. 

In Section 5 the coherent state, ve~tors are useq for the facto

rization of the scattering amplitudes. satisfying a certain subsidiary 

integral representation. 

The results obtained in this paper are discussed in the Con

clusion. 

2. Definition and Properties of the Hadron Coherent 

Wave Function 

As is known, the free particle with the momentum p is ciescri

bed by the wave function which is the plane wave 

1/f (x)=e 
p,U 

-Ip X 

• X (p) 
a .· • (2.1) 

where X a(p) is a spin function, which transforms under. Lorentz trans

formatf ons by the Wigner rotation matrices. 

The hadron state in processes of interactions at high energies 

is characteriz~q by the presence of some effective structure'. 

We postulate that this effectfve strucru,re ~an be taken ipto 

account by the follpwipg r~definitiop of the particle coordinate: 

X ➔ X +p• D • 
/l /l , ·µ (2.2) 
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Here p - is some parameter with dimension of length, 

D =a 
+ 

+a (2.3) 
. , µ µ . µ_ 

where the operators a·µ and. a~ obey the commutator relations 

of a fbur-dimen~i~mai relativistic oscillafor;x/ 

· , [ a· , , a + ] = - g µv ·. 
µ V 

(2.4) 

Thus 'we will describe the interacting hadron by the · state vector of 

the for~; 
1, 

-lp(x+pD) 

It/, (x)>=e ·X (p)IO>, 
p,a a 

where the ''.vac;:uum" state JO> is defined in .c: usual ~Y:. 

.rl 
a·· Io> o. 
µ 

(2.5) 

(2.6) 

The state vectors 

variant way 

(2,5) can be normalized by the relativistically in-

' 

ifdx'< tf, 
P ", a' 

<-> a . . . a 
(x) 1--\tf, (x)>=(2rr) ax p,a 

. 0 • •'(''' 

2fo(p'-p)o 
0 . a'a 

(2. 7) 

Notice, that the vectorxx[ , 

'I tf, > 
p 

~ I tf, 
p 

-ip(pD) 

<o> > = e \ O>. (2,8) 

x/ We LfSe the system of ~nit~; where' h,,;c = 1 ~nd the metric, 
where''·g' 00 ;,,·_g x~-g ~Y=;-'-g :z=l. 
xx/. 1n'. 'what· follows for simplicity· ·we wiil ignore the complications, 
which are connected with spifl!p of · particles, 
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describes the so-called coherent state of the four-dimensional. rela

tivistic oscillator and is the eigenstate of the operator aµ 

a It/, >=ipp ltfl > µ p µ p (2.9) 

Using eq, (2.9) it is easy to show that the expectation values of the 

operators 

" p 
µ 

+ a i/2p (aµ - µ 
(2.10) 

" Q =P (a+ +a ); 
µ µ µ 

which have the meaning of the momentum and the coordinate of the 

:four-dimensional oscillator, in the state, described by the vector (2,8), 
'are equal to p and zero, respectively. 

µ 
It should be noticed, that the vectors I tf, P > with different mo-

menta are non-orthogonal,e.g, 

ip(qD) H;~ 

<1/f., Ii/,. •>= <Ole I O>=e 
p p (2.11) 

where 2 2 2 
b = p t = q = ( p ' - p ). 

Consider now in more detail the question on the physical meaning of 

the state described by the vector of the type (2,8), 

It is easy to see that the vector (2,8) can be rewritten in the 

following form 

It/, 
p 

•> = 1 -Ip ( P a.+) -=-e 
..;n 

Io>; 
2 

1 m b/2 
--=e 
..;n 

(2.12) 

Thus, the coherent state of the four-dimensional oscillator described 

by the vector (2,8), can be considered as a supeFposition of the 

states with the arbitrary number of "quants", 

It should be stressed, however, that the expansion of the ope

rator exponential in eq, (2,12) gives the sequence of states with in

defenite metric, 

... 
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By analogy with electrodynamics we make now the separation 

of the oscillator . component on, the scalar, longitudinal and transverse 

ones. 

More precisely, in the frame, where 

p = (p O ' p z 'p .l ) 

we will call the operators 

a
0 

- scalar 

a - longitudinal 
z 

~ .L - transverse 

(2.13) 

(2.14) 

components of the oscillator, respectively. 'l'h_e state ·vector (2.12) 

allows one to separate the vatiables corresponding to the scalar, 

longitudinal and transverse oscillations: 
➔ ➔ + ➔ 2· 

-bpj/2 

11' 
p 

lp(Pl"l' 
1 >=-=-e 

vn.l 
l_= e 

Ii/IL>; ~nj 

Let us consider, that the vector 
+ + 

-ip(Po"-o -pz"i 
1 

I 1' >=-=- e 
L yQL 

1 
!O>;-=--=e 

yQL 

2 2 
b ( Po - p z )/2 

(2.15) 

(2.16) 

. describes a "basic" or "normal" state of the hadron moving along 

the z -axis with the momentum p z . 

The state which is described by the vector (2,15), is conside

red as an "excited" state of the hadron with the non-zero transverse 
➔ 

momentum P j • 

-The vector ( 2.15) can be expanded in the vectors of states 

with definite numbers of "quants" of the transverse excitation and 

·with the positive norms : 

11' 
p 

where 

-
1 00 (ipp-1. >° 

>=-I -
v~ n=O yn! 

if, •> I 

L,n (2.17) 

8 

j 

I ·, 

1 + n + 
Ii/I ·>=-(a ) Ii/I>; a 

L,n - j L .l 
yn! 

1 ( ➔ ➔ +) 
- p •a 
p -1. -1. 

-1. 

(2.18) -

and 

<if, ,11' >=o, 
L,n L, n n n (2.19) 

It is seen from the eq. (2.17), that the probability distribution 

for the states with definite numbers of the transverse "quants" is 

described by the Poisson formula: 

P(nl=j<if,L 11' 
,n P 

2 -bp 2 

> I = e l 

2 n 
(hp) 

n ! 
(2.20) 

One can see from formula (2.20) that the average number of "quants" 

· in the state (2.17) is proportional to the square of the transverse 

particle momentum: 

n=I n P(n)=bp
2 

n=O l (2.21) 

§3, A Model of Elastic Hadron Scattering at High Energies 

We will describe the elastic hadron ~cattering at high energies 

using an operator potential of the form: 

" 2 
V = i y 

(1) .r 
/l 

(2) . r . o (x-y) , 
/l 

where Y -is some dimensionless constant, 

r<l)=i(a+-a )(1) 
/l /l /l 

r< 2'=i(a+-a )(2
) 

/l /l /l 

(3.1) 

(3.2) 

and the operators corresponding to the oscillators of the type "1" 

and "2" commute with each other. 
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One can see, that the potential (3.1) is a bilinear combination 

of the "creation" and " annihilation" operators and describes correla

ted pair effects of excitation and absorbtion of the oscillator "quants" 

of the types "1" and "2". 
The Born scattering amplitude is determined by the following 

. x/ expression: 
4 

( 2 rr ) o ( p ' _q ' - p - q) T ( s , t ) = 

(1) (2) " 
(1) (2) 

(3.3) 

=Jdxdy<t/1 , ( X); tp , (y) I V I t/1 (x); tp (y) > 
p q p q 

where 
2- 2 

s=(p+q) ; t=(p'-p) 

From eq. (3. 3) it follows 

T(s,t)=iy 
2 

< tfr , Ir I t/1 >< t/1 , I I' I t/1 >. 
p /l p q /l q (3.4) 

Using the formula 

bt/2 2 

< t/1 , Ir I t/1 >=p(p'+p) e b=p 
p /l p /l 

(3.5) 

we get the following expre~sion for the scattering amplitude 

2 
T ( s, t ) = ib y ( s - u) e 

ht 

(3.6) 

Notice, that the amplitude (3.6) is crossing symmetric under substitu

tion s ➔ u 

T(s,d=T*(u,t ). (3.7) 

x? For the case of scattering of two identical particles the initial 
or finil state vector should be symmetrized in an appropriate way. 
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Assuming that the Born approximation for the scattering ampli

tude coincides with the two particle quasipotential, we find that th_e 

quasipotential, discribing the elastic two particle scattering at high 

energies is in our model a pure imaginary and of the Gaussian form 

as a function of the particle relative coordinate. 

For the total cross section of interaction at high energies 

eq. (3.6) gives 

a = 2b y 
tot 

2· 

(3.8) 

Using the relation between the parameters b and the effective inte

raction radius R /3 /: 
\? 

4b= R 
(3.9) 

we find that to the . geometrical limit of the total cross section a 
tot 

=2rr R 2 there corresponds the following value of interaction constant 

2 
y /477 =l. (3.10) 

Consider now an elastic scattering of two hadrons in the center 

of mass system. 

The high energy limit ccirreponds in this system to the limit 

of infinitely large particle momenta along one of the axis, for example, 

the z -axis. 

The scattering amplitude is determined in this case by the fol

lowing limit of the vertex matrix element: 

bt/2 
p e 

"· I nm --,<t/1 
p ➔ 00 2p O p 

z 

\r lt/J· >= I 
/l p 

0; 

µ = 0, z , 
(3 .11) 

µ=x,y. 

where ➔ 2 ➔ ➔ 2 
t=-~ =-(p '-p ). 

-L ' -L -L 

Thus in the limit of the infinite 'momentum ·a1ong the z -axis 

only the scalar and longitu~inal "quants" take part in the exchange 

during two particle scattering. 
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Notice, that such a cehaviour is anaiogous to the electromag-

netic excitation of nucleon in the frame system " p =oo " /
2 6/. 

z 

§4. Generalization to Inelastic Processes 

Here we consider possible generalization of the model proposed 

above to the case of inelastic processes. 

First of all, we consider the process of scattering when s9me 

additional number of the transverse ''quants" of the oscillator type 

is excited. 

The state of a hadron with the momentum p in the presence of the 

n additional "quants" of transverse excitation will be described by 

the vector ;x/ 

-lp(x+pD) 

\ tf, ( x); v >= e 
P n 

where 

V = I i ' i , ... ' i I; 
n 1 2 n 

+ + + 
a .... a .... a 

1 l 1 I 2 Il 

yn! 

= X ,y 
k 

I o > (4.1) 

The amplitudes of the corresponding 

the following vertex matrix elements: 

processes are determined by 

n 

. 1 
fim -- <tf, 

p ➔ oo 2po p' 
z 

; V. \r 
n /l" l 

pe 

I ¢,p >= 

O; 

(-ip)~ .;'t,. ••• ~
1

;/l=O,z 
.1-,- 11 12 n 
yn. 

/l = x, y 

(4.2) 

where ➔ 2 ➔ 2 
t = - ~ = - (p , - p ) 

l -l- l 

The differential cross sections of collisions with the excitation 

of one or both hadrons equal respectively: 

x7 Here we consider the frame system where the colliding hadrons 
have large momenta along z -a.xis. It can be shown, that in that 
system the· excitation of the non-transverse "quants" can be neglec
ted in the . limit of high energies. 
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\{ 

'\ 
I !ii 

J 
it 
I/ 
,I 

l I 

·i 
/ 

I 
J 
' i ,, 
} 

ee 2 
da* da -2b~l (b~J) n 

(--) = (--) e n = 1, 2, ..• , (4.3a) 
dt n d t t=O n ! 

** ee 2 

(~.::_) =(~) 
-2 b~ (b ~ 2 ) n+m 

(4.3b) e l -1- ;n,m=l,2, ... , 
dt n,m dt t=O n !m ! 

where . ee 
(~) 

dt t=O 

2 
a I 2 2 

= _.1.!21. =-(by ). 
16rr 77 

As is seen from eqs. (4.3) the probabilities of the processes 

with the excitation of a definite number of the transverse "quants" 

are described by the Poisson formula. 

The average number' of excited "quarks" on one hadron is 

proportional to the• square of the transverse momentum tra.nsfer: 
2 

(ii) =h~ =-ht. (44) 
one hadron -I. • 

For the average value of the total number of excitations we 

have obviously: 

2 

(jj") = 2 b ~ , = -2 ht • 
tot 4- (4.5) 

Notice, that the dependence of the differential cross sections 
2 

of the inelastic processes on the square of momentum transfers ~l • 

becomes considerably smoother after summing over the number of 

the "quants". 

In particular, taking a sum over the total number of all the 

"quants" excited in hadron collision, we find that the to~l differen

tial cross section does not depend at all on the variable t 

(~)' 
dt tot 

,= l 
n,m=O 

( da ** ) 
dt n,m 

( 
da e£ · 

= -) 
d t t=O 

= const. (4.6) 

Such a regularity has probably ruther general_ grounds/
27 

/ and 

holds in a number of models. In particular an _ analogous behaviour 

is observed for the so-called deep inelastic processes of lepton

hadron interactions at high energies and large momentum transfet~
6

•.
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The differential cross sections of these processes after sum-

ming over all the channels have a quite aimple asymptotic depen-

dence on kinematic invariants determined 

lysis and automodelity principle/ 28/. 

by the dimensional ana-

Notice, that up to now we deal with some excited states of 

the four-dimensional oscillator which represent in some s.ense col

lective excitations of the system of two colliding hadrons. 

There arises an interesting problem of interpretation of the 

model considered above in the framework of usual quantum field 

theory. 

One of the possible way of solving this problem consists in 

finding an appropriate representation of the oscillator components 

in terms of the real particle production and annihilation operators. 

In particular in the proceeding description of inelastic hadron 

collisions with the production of a number of real secondary particles, 

we will use the following representation of the transverse oscillator 

components. 

dk ➔ ➔ 
a = J - f ( k) k . a (k ) ; 

I k O 1 

➔ 

dk ➔ ➔ 
a+ =J-. fl'(k)k a+(k): 

I k I 
(i=x;,y) 

(4.7) 

0 

where a+ (k) and a ( k) are the production and annihilation operators 

of particles with the space momentum k , which obey the com

mutation relations x/ 
➔ + ➔. . ➔ ➔ 

[a(k),a(k') ]=k o(k'-k ). 
0 . (4.8) 

x7 For· the sake ·of:'simplicity we consider here only neutral 
spirµess Bose-:-particles. A generalization to the case of charged par-
ticles and particles with spin can be done in a simple way~ " 

14 
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The operators (4.7) give the representation of the commutation 

relations of the two--dimensional oscillator 

[ a a+ ]=o .. 
' • IJ J 

(i,j=x,y) 

under the f~llowing condition :x/ 

➔ ➔ 

. d k 2 o J - I f ( k ) I k i k i = ii 
k o 

(4.9) 

(4.10) 

Obviously, under requirement of the azimuthal symmetry of the 
➔ 

function f ( k ) in the center of mass system the condition (4.10) 

can be easily satisfied. 

Eqs. ( 4. 7) define the packets of particles with the invariant dis-
➔ 

tribution function of momenta I f ( k ) I 2 
; and in accordance with 

eq. (4.10) the average value of the squared transverse momentum 

of particles in the packet should be finite. 

The vector of the state of the hadron with the momentum p 

after collision together with a definite number of secondary particles 

produced in collision is defined as follows: 

-ip(x+pD) 
➔ ➔ 

➔ 

ltfr (x;); k ,k , ... ,k >=e 
p 1 2 n 

1 
n -ik x 

I 
!I e 

yJ 1=1 

+ ➔ 
a (k.) I O > , 

1 
(4.11) 

where the vector IO > corresponds to the vacuum of the real partic

les and to the "vacuum" of the scalar and longitudinal "quants" of 

oscillator. 

The amplitudes of related processes are determined by trie 

vertex matrix elements of the following type 

x7 Notice, that the function f ( k ) depends in a general case 
on the momenta of colliding hadrons. 

... 
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1 ➔ ➔ ➔ 

fim -<t/I , (OJ; k 
p ➔ oo 2p p 
z 0 

, k , .. , k Ir It/I > = 
2 n µ p 

2 

-bi'1l/2 (-ip)° 
e --

!'., y'n! 

µ= x,y, 

n 

I~ 1 ( i'1 l . k-1- ) I f * ( k➔I ) ; µ =U, z 
(4.12) 

where 
➔ 2 ➔ ➔ 2 

i'1 =(p'-p). 
-1- l .L. 

'l'he differential cross sections of inelastic processes with the 

production of a definite number of secondary particles by one or 

both colliding hadrons are equal, respectively: 

da* 
(-) 

dt n 

daef 
(--) 

dt t=O 

ef 

( da**) da 
- =(-) 
dt n,m dt t=O 

W (1'1 ); Il=l,2, ••• 
n (4.13a) 

w (1'1) w 
n m 

(- L'1 ) n, m = l, 2, •.. , (4.13b) 

where i'1 is the momentum transferred from the initial hadron to the 

system of the final hadron together with se_condary particles,i.e. 

n 

~=(p-'-p+I.k) 
i=l I 

m 
or = - ( q ' - q + I k ' ) . 

l=l 

'l'he quantity W (~) is defined by the expression 

W (1'1 ) = fim 
n 

1 
=- fe 

n ! 

p ➔ 00 

z 
n 

b (/'1 - I k 
1=1 

n 

1 "' ➔ ➔ 
--·fl<t/I ;k ,k , ... ,k 
4p2 p' I 2 

0 

I r It/I >12 1' nn dk 
n o p ' ___ 1 __ -

n. l=I k -
01 

2 
) ➔ 

i n dkl ➔ 2 n 2 
(4.14 ) • !I - If( k ) I • b ( k i'1 - I k. ) , 

i=I k . I i' i=I l 
01 

16 

n 

where the transferred momentum (~- I k . ) in the. considered limit 
i=I I 

of lacge particle momenta along z -a.xis is approximately -a pure 

transverse vector. The region of . integration in eq •. ( 4.14) is limited 

by the low of momentum conservation, •e.g.: 
n 

(p, + I 
i=l 

2 

k i ) < s + L'1 
2 

(4.15) 

One can see from eq. (4.14) that the distribution functions· of 

the secondary particle momenta are factorized. 

Notice, that such a behaviour is suggested in a number of 

. rt" d t" h" h " /l 2 ,35/ models of the multi pa 1cle pro uc 10n at 1g _. energies , • 

Eq. (4.14) allows one to find, in principle, the function f(k ), 

up to an arbitrary phase, using . experimental data on distributions 

of particle momenta in the processes of the multiparticle · production 

in high-energy hadron collisions. 

Consider now an approximation when the total transverse n:io

mentum of secondary particles can be neglected when comparing 
➔ 

. with the transver.se component _of momentum transfer !'1 l • In this 

approximaUon eq. (4.14) takes a very simple formx/ 

-b/'12 ➔ 
!.I. 1 - dk ➔ 2 ➔ ➔ 2 

W0 (1'1)=e •n!Lf~Jf(k)J b(k./'1-l.)]_
0

• ( 4 .16) 

Using the normalization condition (4.10), it is easy to see, that 

eq. ( 4.16) coincides with the Poisson formula, with the average num

ber of secondary particles produced by one· of the colliding had

rons is determined by the variation of its transverse mom~ntum ! l? / 

- 2 ➔ ➔ 2 
n=bi'1 ,,,b(p '-p ) 

-1- -1- -1-
. (4.17) 

Y} 'The region of integration in eq. (4.16) is limited effectively 
by the condition k < p • · 

0 = . 0 
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The distribution of the secondary particles 

is described by the formula: 

over the momenta 

- ➔ 2 ➔ 

~ = .!.. I r ( k ) I · ~ (k 
dk k 0 

➔ 2 -~ ) 
-I. 

Introducing the new variable kz 
X=-

(4.18) 

/14,15/ and assuming the 

. existence of the limit: 
Po 

we 

2 ➔ 2 

p (x , k .J. ) = Eim I f (k ) I 
p ➔"" 

0 
x = kz/ Po= fixed 

rewrite eq. ( 4.18) in the form: 

di'i"° I 2 ➔ ➔ 2 
--- = - p (x, k .J.) b ( k .J. • ~ .J. ) • 

dx d 2 k x 
-I. O<x< I 

(4.19) 

(4.20) 

As follows from eq. (4.20) the momentum distribution of secon-

dary particles in the azimuthal plane which is perpendicular to z -

axis, is determined by the cosinus of the angle between the trans

verse particle momentum and transverse component of the momentum 
➔ 

transfer ~ t 
d; 
def> 

2 
cos ¢ 

§ 5. Coherent State Method and the Factorization Problem 

of Dual Scattering Amplitude 

(4.21) 

Recently, in description of hadron interactions the scattering 

amplitudes are widely used which satisfy the so-called duality prin-

cipl~/29/_ According to this principle the scattering amplitude is 

determined in an alternative way either by a sum over all the Regge

poles in t -channel or. by a sum over all the resonances in s 

channel.A simple example of dual scattering amplitude with equidis

tant pole singularities in all the channels and the Regge asymptotic 

behaviour corresponding to linear trajectories in appropriate chc\nnels, 

is given by the Veneziano formula/3o/. 

18 

In papej31/ the generalized Veneziano type. representation was 

. dirived on the basis of the finite-energy sum rules for the scattering 

amplitudes satisfying the duality principle; 

An auxiliary integral parametric ,representation for a scattering 

amplitude was essentially used which in the t 1 - chai;inel takes the 

form: 
-1-a(t) 

F ( s , t ) = J dx x f (x , s ) 
0 

a ( t) = a (0) + a '• t. 
(5.1) 

Below we consider the problem of constructing a scattering 

amplitude satisfying• ·eq. (5."1) ,by means of· the. coherent state vectors 

of the type 

- Ip (pD) 

lifr .. >=e ,, IO> 
p 

a'= p 2 • (5.2) 

It is convenient to make a change of variable x=e -z in eq.(5.1) 

"" za(t) 

F ( s , t ) = f dz e • ¢ ( z , s ) • (5.3) 
0 

where 
-z 

ef>(z,s)=f(e ,s ). 

Introduce the operators 

"(1) 1· 2 2 (1) 
S · = - .La-+. -a ] 

2 µ µ (5.4) 
"(2) 1 + 2 2 (2) 

.S. = - La . -a ] . : . , 2 ! µ µ . 

. . ' 
With the following commutation properties: 

' . .·; -'"l ' 

["'c1, co] co_ ''c2> c2> c2> 
:; ,D =D ,[S ,D l=D 

.•• /-! _.µ . . µ µ . "" .. ,: ( . , 

(5'.5) 

It can be shown that 

e 

z•a't 
= <ifr(l) 

1,0 ;c2> 
!fr c2> I z + I !fr co; !fr c2> > (5.6) 

p q p q 
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Usin~ eq. (5,6) we get the representation of the amplitude (5,3) 

in terms of the coherent state vectors 

where 

F(s,t)=<ifr<:>;tf,<:>I GC-s)jtf,CI\ tf,(2)> 
p q p q 

2 
s=(p+q)' 

" oo za(O) 

G(s)=fdx e · 
0 

,, (1) " (2) 
s +s 

z ¢(z,s). 

(5.7) 

(5.8) 

A crossing symmetrical in t and u amplitude can be con

structed by the symmetrization of the initial or the final two pa1•-

licle state vector in eq. (5. 7). 

The crossing transformation s ➔ 1 corresponds lo the substitu-
lion 

tf, (1~ ➔ tf, (2) 

p -q 

(2) ( I) 

tf, ➔ tf, 
q -p 

so that 
(2) 

F (t, s) = < tjJ 

2 
t=(p-p'). ,· 

-q 

(5.9) 

; tf, <:> 
q 

h (!) (!) 
G(t)jtf, ;tf, ,·> 

, p . -P 

(5.10) 

The other transformations of crossing symmetry are defined 

in c:1n analogous way. 

The amplitud~s of th~ type (5.7) and (5.10) can be written as 

ma.lrix elements of some lqfa~ +ntera~Fqni by a,nalogy with eq. (3.3). 

In doing so we should change the variables 8 or t in the argument 
" of the operator G on the D'Alernberte operator O = -c1 2 • 

. /L 
Notice, that for the Ven~ziano amplitude the operator has the 

• i .\ - ' . , . 

fprm 

,. oo za(O) 

G (s) = f dz e z ., '. () ,., ,' 

"(!) "(2) 
s + s -1-a(,.) 

(1-e -z ) ' 

( 5.11) 
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The asy!,'llptotic limit of the expression (5.11) is as follows 

" 
G (s ) ➔ S 

l! ➔ 00 

a (O) 
; <O+i (2) 

Un s > r(-a(O)). (5.12) 

Thus we have shown that by means of the coherent state vec

tors it is possible to construct the Veneziano amplitude as well as 

the more general scattering amplitude satisfying the representation(5.1). 

As it is seen from eqs. (5,7) and (5.10) the dependence of scattering 

amplitudes constructed in this way on the variables s and t is fac

torized. 

It is possible that the method proposed here _can be useful in 

studying the general ·problem of factorization of manyparticle scattering 

amplitudes satisfying duality principle /32,33/. 

6, Conclusion 

Here we discuss some features of the model . proposed above. 

First of all, we should stress that the model makes use essentially, 

beside·s the· coherence hypothesis of hadron states, a special 

form or' the 'potentiai operator, describing both the elastic and inelas

tic processes in high-energy hadron collisions. This form of the 

potential is the only one which is bilinear in the "creation" and. 

"annihilation" oscillator operators .and gives non-vanishing contribution 

to the total cross section in the limit of high energies. 

Propably, this potential gives in the Born approximation a des

cription of the diffraction-like processes at not so large momentum 

transfers. 

In principle, we should take into account the rescattering cor

rections to the Born approximation which sho1;,tld give. in a particular 

case of elastic scattering the eikonal representation of the 

scattering amplitude/ l-3 ,35/_ Let us discuss now the form of the ex

cited hadron state vector (4.1). The relativistically. invariant form 

of this vector. is .· as follows 
-lp(x+pD) 

jtf,* (x); n >= e ...!._ & (p) a+ 
P yn! I\/L2••·/Ln /LI 
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+ a 
/L 2 

· a+ !O > 
••• /L n 

(5.1) 

~· 



-where the coefficient function & µ µ µ ( p) 
I 2"'" n 

obeys the condition 

1. the total symmetry in the il'}dices µ 
I 

, i= 1,2, .. , n 

2. the "transversality" condition 

p & ( p ) = O; i = 1 , 2 , ••• , n • 
µ µ •• µ ••µ 

I I f n 
(5.2) 

3. the normalization condition · 

n 

(-) &* 
µI µ2 •• µ n 

µ1µ2 •• µ n 

& = 1. (5,3) 

Under these conditions the state vector (5.1) has a positive 

norm and describes a family of excited hadrons with the spectrum 

of angular momenta j ~ n and with the squared mass m ; = p 
2 

, 

There exists an equation which the state vector of the type (5.1) 

obeys and from which it follows that the mass spectrum has an equi

distant formx/. We are going to study this problem elsewhere, 

In conclusion the authors express their deep gratitude to 

N,N, Bogolubov for helpful discussions and valuable remarks; to 

D.I. Blokhintsev, A.A, Logunov, M,A, Markov, B,M, Barbashov, D,V, Shir

kov, O.A. Khrustalev, L.D. Soloviev, R.M. Muradyan, A. V. Efremov, 

B.A. Arbuzov, L.A. Slepchenko for interesting discussions. 
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