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1., Introduction

One of the main problems of elementary particle theory is
the investigation of the behaviour of electromagnetic and weak in-
teractions at- high energies., The most general~ process of interac-

tion of a leptonic pair with a hadron system can be -represented

‘es follows :

" leptonic pair

hadrons

Fig. 1. Matrix element T,;; describing an arbitrary electro-

magnetic or weak process of interaction of a leptonic
pair with a system of hadrons .



It factorizes into the leptonic and hadronic parts

- L | S ‘ (1.1)
T“ = ¢ L M . .
The explicit form of the "coupling constant™ ¢ and of 'the leptonic
part L# is well known, As to the hadronic part the situation is
more complicated, Starting from the analogy with electrodynamics

where the local currents give a correct description of phenomena

it is postulated that there exist operators of local hadron currents

namely of electromagrietic .] "(x) and weak J, " (x) ones. These

oper'ators have a definite exper1menta1 meaning consisting in that

thelr matrxx elements are dxrectly connected with observables (cross

ectlons, polar1zatxon, etc) In the most elegant way these quanti-
zed currents arise in the Bogolubov’s formulatxon of f1e1d theory _

-as a response of the part1c1e system to an external nonquant1zed

e

perturbation: :
+ . S
1,0x) = (D-m'*’)t\ - 5s —‘E—‘-thoj | (1.2)

. ext .
1 3A . AH’

Thus, the factors enterlng the matr1x element can be represented
in the form : '
ayt ' <f] 30 i >
. —t———— u
em o Y@ =) H - g (1.3)
- ‘ . w .
" _G/\/; uyf(1-y )u .<f|.l# (0)1i >

In Kspite of the fact that the explicit form of the hadron part of the

matrix element remains unknown it is possible, nevertheless, to

A A i <

obtain definite information on the hadronic part using the require-
ments of relativistic covariance, P, C and T transformations and.the
selection rules resulting from internal, SU (2) or .SU (3) symmetri-
es, There remains the main theoretical difficulty, i.e. the absence

of the qua_ntitative description of the_.dynamics of strong interactions,
This leads to the appearance in’ the theory of unknown functions,
of the so-called structur'e functions of form factors. The well-known
example is the nucleon electromacnetfc form' factors Gg (q2 ) and
G\a(q ) depending on-the one- Lorentz-mvarlant variable, Generally
Sspeaking, the form factos may depend on several Lorentz-invari-
ant variables, The mam task is actually to study theoretically and
experimentally these form factors. These investigations may throw
light on some fundamental problems such as particle structure,
ex_istence of elementary constituents -of hadrons (quarks, partons,
etc, ).

]

The importance of studying deep inelastic .processes V\ras

[1-5/ [a]

stressed by several authors' . In works some general methods
were developed for studying deep inelastic strong interaction pro-

cesses and rigorous estimates for the amplitudes were obtained,

“These methods can give useful information also in studying the

behaviour of form factors of deep inelastic lepton-hadron processes.
We list certain experimentally realizable deep inelastic lep~
ton-hadron processes, Depending on the fact, which particles in

Fig. 1 are incoming and -which are outgoing, these processes can-

be divided into three types:

a) annihilation of a lepton pair,
b) scattering of a lepton on a hadron,

c) production of a lepton pair in hadron-hadron collision,

The corresponding matrix ‘elements are presented in Fig,2



(d) N (6) o NORE

Ih pro-
cesses a and ¢ ¢° 1s time-like q > 0 : m process.
b q? is Space-lxke q?< 0 ,

F‘lg.2 Matmx elements “of the processes a, b

- The electromagnehc and weak scatter‘mg processes cor‘respondmg
to the diagram 2b have been’ r'ecently inveshgated most extenswely.
It is just. the pr'ocess of deep- inelastic scattering .of electron on
proton v

Ty hadrons (1.4)

that has been investigated in SLAC experiments, From these expe-
riments- it has become evident that the electroproduction process

has a very interesting point-like picture, It turns out that the diffe- -

rential cross section da.z_ for large' 'q2 is large and is appro-

xtmately equal to the Mo& cross section’ for scattermg on a structu

r'eless point nucleon, This has served as a basis for suggesting

1-3,5 .
and checking a number of theoretical 1deas/ ! /. A similar point-

like picture has also been observed in the CERN experiments on

[7,8/

deep inelastic neutrino-nucleon scattering

v + N - #” + hadrons, (1.5)

The simplest explanation of these facts consists in that with
increasing, number of channels their total contribution to the form
factor.s depends weakly on qz . For a point nucleon in the case
of neutrino production, on the basis of the simplest diagram we
have

-38
o,... (E) al3 .10 sm?

teor.

where E is the neutrino energy in the lab, system, in Gev; The

CERN experiments give:

¢ (E) = (08 +02) 107 sn® =060 (E)

exp - teor

In principle,l there is a possibility of studying this process at the
neutrino energies up to 50 GeV by means of the accelerator of
the Institute of High Energy Physics (Serpukhov).

In the present review we shall investigate in detail the pro-
cess cor‘responding to diagram 2¢ , namely the deep inelastic

process of muon pair production in hadron-hadron collisions

, +

p +p’ -un +u "+ hadrons . (1.6)

Below, in § 2 we give a kinematic analysis of this process. To
obtain dynamic information three theoretical schemes will be consi-
dered which are based on scale invariance (§3), current commuta-

tors (§4) and vector dominance (§5). This consideration is based



on the results of the works/9—13/, which have recently been per-

formed at Dubna, The process (6) is being studied on the Brookha-

[14]

The results obtained in investigating process (1 6) are of great

ven accelerator and some preliminary data are given in ref.

interest by themselves and may be of great value in searching ‘for
/15_19/
an intermediate W ~meson produced in strong interactions
Note that the next stage in study1ng processes (1 4) and (1 5)
consists in singling out any one hadron in the final state, Such

processes

- . - ’

e + p =+ e +p + hadrons (1.7)

v+ p - p o+ 0P + hadrons (1.8)

have been studied theoretically in the papers by R,F, Kogerler and
. : 2 ;
one of the authors (R.M.)/ O/.

2, Kinematic . Analysis

Let us cohfsjder the process of deep inelastic‘ collision of

two hadrons a ‘and b which results in the p’roducffon of ‘a muon

palr'and of a certain hadron ‘system A
a +b'_-o/,z+ +p- 0+ AL - (2.1
In the lowest order in electromagnetic interaction the process pro-

ceeds through the emissiorr and decay of a virtual photon accord-

ing to Fig, 3.

a(p’)

/ﬂ,:(pA)

Fig, 3. Kinematics of the -lepton pair production,

where the notations of the particle four momenta are given in brac-

kets, The appropmate matrix element of the T -matrix i< defined by

the expression

j < A omt | Jy ©) | pip”in >°, (2.2)

where Y230 yFv(k’) is the muon ;Sair electromagnetic current,

J p (‘x'z) - is the operator of the hadron electromagnetic current,

a = f; = —1137 stands for the fine structure constant, The symbol"c"
means that it is necessary to take into.account only a connected
part of the matrix element of -the current, If coiliding, particles are
unpolarized and in the final state only the muon pair is detected
then the cross section of the process in question can be expressed

by means of the following second rank tensor:

’ 4 ’ ’e , ' c
P#u(p.P .q)=‘:.‘l (27) "8 (p+p -9 —p,)<p.p “‘”p(o“A°“">-<A°“l‘JV(0)[p,p’in>.

(2.3)



Due to the electromagnetic current conservation this tensor must

satisfy the gauge invariance. condition q“p‘w pqu = 0 and from

hermiticity p- =p * it follows that the real part of the tensor must
py vy
be symmetmcal and its imaginary . part anhsynunetr1cal under ‘replac-

|
Jm v,
|

It is convenient to decompose the tensor‘ leaccor‘dmg to the
rstr'uctures corresponding to defmlte virtual photon polarizatio

We determine the directions of the three-dimensional polarization

' vectors ¢ (™12 R _'(Tz’)and ¢ M) in the rest system of a wvirtual.

photon § = 0 ie, in the c.ms. of the muon palr' accor‘dmg to Fig.4.

Fig.4. The c.m.s, of the muon pair, The axis z 1s directed
along the momentum p and the momentum p lies in
the production plane .xz .° The normal to the pro-
duction plane is directed along the y axis, The axis
z is directed along the vector P and the vector B’
lies in the xz plane.

Then the coi‘respbnding fodr—difnensional polarization vectors
have the form:

D 1 : PP’

P ) (24a)

10

r{sg 11,23,41/

Do a :
€uaBy P P q (2.4b)

(L) 1 B

S (2.49)
where

P = -— —E—H_ p- -, 4 - ’

poT Py 2 e Puo=ry —Lq;q— a, - (25

It is not difficult to see that the polarization vectors are orthogo-

nal to the wvirtual photon momentum 1, and to one another, their

norm is -1:

B et _g e _ 5 3 (i,j =T

) =

i ) T, .L ) (2.6)

RE] 1 " 2

and the completehess conditions

1) (D :
2 € € = - _M_‘q k. L
t=r,, T _,L H v qyu + 2 (2.7)
1' 2 q
holds, .

Using these vectors we decompose the tensor into five inde-

pendent structures

(T (ry) (Ty) (T4) Ly (w
P = € € + € '
"y RT; p v RTg‘# €, *tP, e# €, o+
(B, (TyNL) (T, ye) (=) (TP@) (Tp (L) (2.8)
+p € € +€ ¢ +ip (e e -¢ € )
TL g v v ] TL  u v v P
11 ' N
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The structure functions or form factors pT‘ y Pty 4 PL , PrL
;;) , are real functions depending on four independent Lorentz-
invariant variables which may be présented,for example, by

s=(pl+p2)2, q’ v = pq A% (p - q ) 2 m’?s q2-20 % We can
also fix other invariant variables, e.g. mj =(p+p ‘- q)° being the
squared effective mass- of the hadron syst'ém,' or the energy transfer
5 =-...l_..p_(p’-4i)in the lab, system ;;0 . ‘

'\I;Ve note thaf in the system 7{ = 0 there is é\ simple relation

between the space components of the tensor B” and of the form

" factor

o 0 S EENE
P x P xa P, PrL ¥ 'PrL '
e ll={0 p, 0 |=f0 . Pr, 0 (2.9)
: ) .
P, o P e 1Ppp O PL

) €+
x/ In notations of ref.[21fPTl= F;, ’ pTz =F2’ y P = Fa y PyrL= F4 ’

(=)
Pr. = F; .These form factors have kinematical singularities, The

form factors Py , P, y Ps y Py y Py free of kinematical
singularities are determined below, in expansion (2.16).

12

g

Up to the normalization this is the density matrix of the virtual

. . . . o X
photon given in a linear ‘basis’ .

The angular distribution summed over the spins is equal, by
definition, to the ratio of the quinary differential cross section
dde (s.q2.A2, v, 0,
dq?dA® dv a0

to the triple one
a3 o (s,qi,A 2v)
dq2dA2 dv

5
dofs,q3 A% ,0,0)
o (s,q%,A%0)

W(92) = W(6. 6.5s.q° A% ) =

Passing from the linear basis to the helicity basis

+1) 1 (ry) (1) 0 (L)
g“ =7 -\72-(c“1tleu2) e# =c.‘ : (2.10)

. 21 :
following Oakes/ / we get the relation between the form factors
and normed matrix element of the density matrix in the helicity
basis: : o

~1-1 1
1 = T —me—
plt =p 75 (pT2+pL ) 7
oo 1 (2.11
P 7;- P L ( 1 )
1-1 -11 1
P =p T e — (pp -pp )
: 2p 2
19 - Olx = —p—10 =p 0—1° _ 1 (+) (=)
P P I P = v"2'p(p” +ip 7)),
where '
p =P +Pyy P, . =2Pp *P +p (2-12)

13



1
v (0,¢) = -———-————2—- [P'r (l—v sin 0 cos (IJ ) o+
417(1— —§-)p '

+pT2.(l- v sin 6 .sin’® ) +pp (1= vz'cosz'o ) - (2.13)

“) 2 _.
= p LY sin 20 cos® 1

.where p is given by eq. (2.12); v =

v q —=4m
J_'é_L=\[___£_ s

q

.

.the velocity of muons in their c.ms. Studying this angular distributi-
on it is possible to determme Pr, , Pr, , PL . P;L) rather
than P-n? « The form factor PTL) can be found bby measuring the
polarization of one of the muons along the normal to the produc-
tion plane (along the axis y in Big.2):

‘ (= '
<S> = m, E o - ‘ (2.14)

Integrating eq. (2.13) over d® or over dcosf we find the distri-

butions only over § or over @

2

wW(9) = 1 [(pT +P,, (1~ -—‘é sin280) +pL(1—-v200520)] (2.156.)
Zp(l— __\:‘_ ) 1 2
3
1 2
W(®) A ———— [pT (1—-3- v cos <D )+ P (1—3— v sm(I))"‘P
217p(1-' T) 1

+p (1 = — )1
L 3 (2.15b)

respectively.

14

=)

rp have kinematical singularities,

The form factors p; ... P
1

The form factors Py v Pyy Py, P, , Py , free of- kmematical

smgulamtles can be determined in the following way/

pmp (=g 4 kL

)+pPP.+pP'P' +
pv 1 pv q > 2 u v 3y v

(2.16)

+p (P P 4P P’ ) +ip (P P’ -P P’ ) ,
4 [T Y voou 5 g v v I

where P# , Pv have been determined above in (2.5). It is not
difficult to establish the relationship between these two sets of

form factors

3 2 ®p)’ . |
P, =p =Pp, - —1;2_ Py = 2P P7 p, (2.17a)
2 ~ s
(PPY ~pPp P’
pT, ~p, - = P, (2.17p)
pT2 =p, | . (2.17¢)
, PP ‘ :
(€3] il o = 2p-2 )2] %
pTL t lp”rf-a _ p? (PP (,PP .),] Pg. * (2'17d)
-9 2 2. % :
+ LP P (PP ) 17 (p +ip )

The triple differential cross section of the process (2.1) ,when
in the final state only one muon pair with definite q 2 ' A? and
8 ' is detected and the summation is performed over all possible

hadron states , reads

15 -



3 2 .2 2 .2 2
da‘( L "-A ’8) b hond
EARAk L NIFS R Sinkdil S SVAN Blahdl BN
dqg? dA%2.d3 - 8n* 3q2 ,q2,
1 _ (2.18)
) ) 2 L2
X P (Sn q L] A ’ 8 ) v

Ves=(m+m’ )2;/5—-(m '-m)z

2 .
e .1 ,

..T;— = m— N m , ) m . ml"-
rons a and b and the muon, respectively. By p (s , q2 , A%, 8)

where a. = are the masses of had-

we denote the following quantity

. BV » :
(S. 2,A2,8 = (- (14 q'q : , -
P q )= (=g’ + = )p’“f.p.p ,q) ,oTlﬂoT2 +p, - (2.19)

Notice that the tensor p#v(p,p ’,q Ydescribes the contents of the
hadron "black box" of. the Compton effect on two hadrons, presen-

ted in Fig.5.

Fig.5. Amplitude of the Compton effect -on two hadronsg in
the forward direction.,

The distribution over the .squared effective mass of the mu-

on pair is oktained from eq. (2.2) by integrating over d A? and -

16

d 8 inside the physical domain, Neglecting the muon mass we get
the following formula for di-muon mass spevctr'u.mx

2
do a m “

1 2,2 .
: = - - = [dA [d8p 's,q,A%D).(2,20
dq? 127 Vs ~(m+m? Vs =(m=m’)° q° ( )

A“min Omin

For the purpose of applying the wvector domiﬁancé hypothesis (see

below §5) it is convenient to represent the mass spectrum formula

in the form

. * N ) '
_de _ _a “1_2_ e’ (s, q® ), (2.21)
dq 87 . q B ' i
‘where
* % % * . "
a? (s,q ) =c? +o? '+ o : (2.22)
T, T,. L o

is the total cross section of production of a virtual v phoilon

with mass q ? in the process
‘a + b -y*% hadrons;, (2.23)

In conclusion of this paragraph we note that there is an in-
teresting kinematical analogy between the reaction considered here
and the reaction of inelastic neutrinoproduction. Indeed, if iﬁ Appen-
dix to the paper by Adlexj 2/ we replace the square of the lepton

by our q2 and the Adler"s‘ q2 by our -A? then we

2
mass “m

4

essentially determine the boundary of the physical domain of the -

x/ The determination of the boundaries of the physical domain is

considered in Appendix,

17



process (2). A detailed determination of this boundary is given in
Appendix to the present review, To obtain dynamical information on
the form factors below we shall consider three theoretical schemes
based on
‘ 1. scale invariance,

2, veétor dominance,

3, current commutators,

3. Scaié Im}ariancé’

. "As has already been menfioned, the SLAC and CERN experi-
ments indicate a point-like character of deep 'inelas'tic interactions of
leptons with hadrons, Such a behaviour could be understood on the
basis of the hypothesis of approximate scale invariance, Let us sup-
pose that in describing deep inelastic processes in which the energy
and momentum transfer are large, the dimensionél quantities éuch as
masses, "elementary lengths" and others are not essential, Therefore
the form factors can depend only upon the vafiable kinematiéal |
invariants, ‘ ’

- Out attention to the possibility of the existence of an scalel
invariant behaviour of the form factors in the problems under consi-
deration has been drawn by N.N. Bogolubov, He pointed out that
such a behaviour may be very similar to the so-called automodel
solutions” of ‘a number of probléms of classical hydrodynamics, -for
instance, of the pro'blem of a strong point-like explosion/ 23'24/. In
finding of automodel or scale. invariant solutions ‘of the problems of
hydrodynamic it is very useful to employ the methods of the theory
of similarity and dimensionality in combination with certain qualitative
considerations about the character df physical processes. It is’ known

that the electromagnetic and weak interactions are rather well des-

18

cribed by means of local electromagnetic and weak currents, while
the effect of strong interactions is described by introducing the form
factors, It may be expected that at ;low energies the necessity of
taking into account the particle masses ‘would distort the picture of
strong interactions while at high energies (and large' values of
other .invariant variables) when the masses of produced ‘particles -
can be neglected the situation ié, essentially simplified and, in a
certain sense, becomes "hydrodynamical,’ . Qualitatively this hypo-

thesis is supported with the fact that the main singularities of the

singular functions ‘of field theory on the light cone are independent

of masses (see, e.g. ref./25/).'i

In this paragraph we shall try to discuss the principle of

‘approximate scale invariance as applied to the processes of lepton-

hadron interactions at high energies and large momentum transfers
and shall draw a number of consequences which can be checked
experimentally, ‘
~ We shall assume that the asymptotic behaviour of the form
factors of processes involving leptons at high -energies and large
momentum transfers is due to the dimensionality considerations and
the requirement- of approximate invariance for scale transformations
¢ » Agq
p, > Ap, o
where q is the momenta transferred from leptons to hadrons, P,
are the momenta of hadrons involved in the reaction,
" This assumption essentially means that in the as.ymptotic limit
under consideration when R

q? ap, > =

19 -



the form factors of the processes involving leptons are defined by
the functions of dimensionless ratios «; = —4— and arevappro—
ximately independent of the particle masses ?arl;é! other dimensional
parameters such as interaction radius,etc, We stress that this prin-
ciple 1s unapplicable to the processes of bug‘ely strong interactions
since in this case the processes appear to depend noticeably on
constant dimensional quantities, |

Below a number of consequences will be deduced from the
scale invariance principle for the processes of annihilation of elec-
tron-positron pairs to hadrons, for the electrorr production process
and for the process of production of leptonic pairs in hadron-hadron
collisions, . ‘

We first consider. the simplest deep inelaétié process involving
leptons, i.e. annihilation of a leptonic pair to hadrons

+ -
e + e + hadrons,

In the one-~photon approximation this process proceeds according

E#
b the diagram: -

N
and the total cross section is of the form (for m, = 0 )
2 2
87 a 2
et T ——-——q2 — (¢ ) . (3.2)

All the information on the dynamics . of the process is contained
in the unknown spectral function (form factor) p (q ?) which, by

definition, is related to the tensor va( q°) by the relation

20

L

fqx

(q) =fdx e <00 J,(x)J, (0) 0> =

P uv

*

S (20)'8 (q=p )<0] J () [N><N | J (0) [0 > = (3.2)
N N u v

2 2)'.
(-g,, @ +q#qv)9(vq

x/

It is easily to calculate the dimensionality of the tensor

[prw<q2)1'=tm21. ; (3.3)

Hence, it is seen that, as should be expected, ¢ (¢®) is dimension-

less:

[ p(q2) ] =1. | (3.4)

Under scale transformations

q: > A gq (3. 5)

taking into account the automodelity principle it follows that

;[We use the system of units in which the action and the velocity
are dimensionless and the mass is chosen as ‘a dimensional quantit;
We recall that in this system the dimensionality of the current is

[Jp] =[m3] the n -particle ‘state vector for a relativistically inva-
riant normalization has the dimension: |

_ , -
Llp oPp2 +pPs «-- Pu> 1 =lm "]

21 T,



.
pw(xq) =A%p (q)
(3.6)

p- (A% q? = p(q?) = const .

Thus, for large: q? the total cross section must asymptotically

behave in a "point" manner analogously to the case of annihilation

of the electron-positron ‘pair to the muon pair
et + e” suto+ ou” . : : (3.7)

Such a behaviour coincides with the prediction of the4a1'gebra

/26»27/_ Using the inverse Fourier transform it is

of quark currents
possible to restore the space-time picture and to obtain’ that the

electromagnetic current commutator between the vacuum states is

<O 13,00, 301105 = 12 (g,[3-9, 2,08 () P(3) (55

where ¢ =p (q ) =const. [] is the d’Alambert operator and P
is the symbol of the principal value, Hence, in particular, it follows
that the equal time commutator between the time and space compo-
nents is of the form:

1 ic_.

<O TJ, (£.0), 1 (010> =lim A

fo0 T m

v, 5, ‘(‘3.’9)‘

i.e. it is equal to the Schwinger térm with 'quadratically»divé:rgent .

¢ -number coefficients/2 8/.

22

The electroproduction process in the one-photon approximatior

el

is described by the diagram g

4

p

and the cross section is expressed in a well-known manner (see, -

e.g./ 29/) in terms of the tensor

Wuu (prd) -3 (2"')4'<P11u ©1N) °<NIJ, (0 | p>°8 (p +q =py) =

=( _g# +MV ) Wl (p.‘q,q_2 ) o+ ' (3.10)
v 2 . .
q

) 2
+Cp, - BLq e, - —_Et;}q,, YW, (pg.q ) -

It is easy to make oneself sure that the tensor is dimensionless

' = ] (3.11)
{ W#V(p, q) 1 1 .
from where it fdllows that
(W, (q®,pg) ] =1
: : (3.12)

(W, (q2.,pq) ! =[n"?]
From the scale invariance it follows that under scale transformatior

p—;)\p

23 -



|
|
(
I

the form factors W, and W, must obey the following requirements:

W, (Aq%2%pq ) =W, (q®.pq)

\ A (3.19)
ATV, (Azqz,)\2pq,) ;Wg(qf pq)

‘These requirements can be satisfied by putting

2
Wi (q.pq) = Fu(=%), Wy(q2pq ) =-LF; (—“——2) . (3.15)
Pa > " pq

Such a universal ‘dependence of the form factor W, on one dimeﬁ—
sionless variable 92/ pq has, in fact, been observed in the experi —
ments on the Stanford accelerator/ 6/. In ref./ 22/ some theoretical
arguments in favour of this dependence are given, Note that at
' present ,many attempts are being made to understand qualitatively
such a point behaviour of the electroproduction form factors at
large momentum transfers by constructing appropriate models (see,

/30~ 32/)

e.g. refs, . Now we go over to the con51deratlon of the pro-

cess of muon pair production in strong interaction, The dimension of
the tensor P uv and, consequently, of the form fa_ctors Py are
4

-2

(p,  1=lp, 1= (m 1

av i =T ,T,,L, TP ,TLO(3.16)

Using the scale invariance requirement and taking (3.2) into account

we get

Puy (X p. Ap"2q) = szp;w(p.p’,q ) : :
o - (3.17)

2 2-2 2,2 2 -
Py (Vs XA 0% ) T (sq” .88 ).

24

PR,

Hence, it follows that the form faétors for large values of the in-
variants must be of the form

2 A%,5 ) =—}‘-2-F,(a",ﬁ,m ), (3.18)
. q A .

p, (s, q
wherea, 8, @ are dimensionless variables composed fran the ra~-
tios of the invariants s , q% , A , & .

The automodelity principle'can also be used in analysing the
beﬁaviouf' of the form factors of weak pt;écesses. Of great interest
is the experimental check of the consequences of the approximate
scale invariance prmc1p1e for the process of deep inelastic neutri-
no-nucleon scattering, We note that the automodel or self-like cha-

racter of the form factors of electromagnetic or weak processes

makes it possible in the -asymptotic domain, firstly, to decrease by

unity the numbetr of mdependent variables and, secondly, knowing
the form factors for one set of mvanants to predict their value for
another one prov{ded that their ratios remain fixed.

In our opinion, the greatest interest would be excited by the
experimental confirmation of the form factor behaviour predicted by
the scale invariance principle up to certain large values of the in-
variants, Some deflection from these predictions would- mean that a
certain d1mensxona1 factor, e.g. "elementary length“ or some other
which violates scale invariance at supersmall. distances is coming
in play.

In this paragraph we have considered the p0551b111ty of realiz
ing "maximum automodelity " i.e. automodelity with respect to all
the variables, It is quite possible that in reality ‘a "partial automo-
celity" can be realized i.e. when the automodelity takes place only
with respect to certain singled out variables rather than with res -

pect to all of them, Further, of course, it would be very interesting
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to understand the mechanism of violation of the scale invariance
principle and to develop a method of calculation.of"the corrections
to this approximations., Obviously, this process is closely connected
with the 1dea of spontaneous breakdown of the conformal symmetry
up to the symmetry of the Poincaré group/ /.

The conformal symmetry is one of possible physically mteres’o—
mg generalization of the Pomcaré symmetry We recall br1eﬂy the
main information on the conformal group which contains as one of
the transformatlons the scale transfor' mation of space—t1me. This 15-

49,50
parameter group includes ‘the following transformatlons/ 45,49, /

1. Space—-time translations

x# = xt 4 of ( 4 parameters) : (3.19)

2, Homogeneous Lorentz transformations
L AP C0(31) (6 parameters) . (3.20)

xH=AE XV
v

3. Special conformal transformations

a3 : S

.y _’ff_"'..é_...x ( 4 parameters), (3.21)
1 +2ﬂ x +ﬂ x : :

4, Scale transformatxons

xB=pxt ,p >0 ( 1 parameter), o (3.22)

Aecording to the vNoethe‘r’vs theorem, to these &anefprmtione
correspbnd loca} cur_renfs,_,jn particulér, the c_:l_,l'rrepts of specia{ ‘
confermal, transformations.  CH#Y and of scale: t’!_'ansformations ‘are
expressed in terms of the energy-momentum tensor 6#/(x ) as

follows:.

26

CHY = g¥% (xV Xa —Ba x2 ) : (3.23)

SE =9Hix . (3.24)
The generators of transformations are expressed in a usual way in
terms of space -integrals of the currents zeroth components

-»

CH = f (298¢ xoxa —0H° x?) dx (3.25)

-

S =[0%x _dxX . . (3.26)

It may be shown / 45‘"‘._}9’50/ that ina wide class of .Lagrange field
theories the current divergencies (3.23) and (3.24) are connected by
the relation:

g, c™-ax"a,s" ~x" o) (3.27)
The vani:shing_ of the current divergencies corresponds to the conser-
vation of "charges" (3.25) ahc_i (3.26), 1t is seen from (3.27) that in
this case from scale invariance it follows an invariance with respect
to the full conformal group, and thus, the violation of conformal sym-
metry occurs in a "minimal" way due to the violation of scale inva-
riance, In the case when Lagrangian does not depend on masses
and other dimensional constants Oﬁ = 0 which leads, as was
suggested above, to scale invariance., The problem of a possible
spontaneous violation of this symmetry is- bemg extensively discussed

in literature in connection with violation of chiral symmetry’ 46_49/
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4, Current Commutators and Asvymptotic Sum Rules

Let us consider the Fourier transform of the matrix element

of the electromagnetic current commutator between two-particle "in

states/g’ 11/:

_iqx 2, » ' ) 7. c=
(p.p’raq) =/ vdx e  <p,p’in .[J#(x),,].v(O)] | p,p in> oy

, ) o o |
=r,;¢u(pfp .q ) F i (p,p” -1

The particles are stipposed to be uripolarized. The symbol

"e" means that the weakly connected part of the matrix element is

taken,

Consider in more detail the quantity 'r’w
te vectors we obtain

. Using the con-
dition of completeness of the "out" sta

-tax , s , . c
r (pop g ) = J dxe P <pp ln;J#(x)‘xJ,,(O).] p,p’ in >

(4.2)

1c" under the sign of the sum means that only the
‘ —-current product are chosen,

where
connected matrix elements Qf the two

28

- EAO (217 ) %8 (p +p =19 -—pA)/fp,p ”in {J”(O)'leut>’<AoutIJV(O)lp,p'in>L,

We single out from this sum the completely connected part which

corresponds to the quantity p”vx/

Fy (p,p’rq) = p”V(P.p v q) +p”V(p.p .q ), (4.3)

where -pz#V denotes the contribution of 15 z -diagrams, This divi-

sion can.be represented graphycally as:

x/ It is known that if 'the state <A out| contains partlcle p orp’
then the current matrix element <A ouil J (0)| p,p’ in> will contain
disconnected - parts corresponding to a frée propagation-of these
particles. Graphically the division of the matrix element into connec-
ted and disconnected parts can be represented as follows:

_+ + fg\
\_/

{ = —_E
P p'

| e t—

p
p

The first term is a completely connected part and enters the ex-
pression for the physical cross section; the remaining

three are disconnected parts, they lead to the appearance of the
so-called semi-connected z -diagrams.,

i
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+ diagrams obtained by symmetrizing the initial and finai states,

From the law of momentum conservation and the spectrality

condition it follows that for ¢? > 0

‘ S . . 2 2
puu(p.P' ,‘q Yy = 6 (v) @ (\/? -Vq )‘—mN)p’w(p,p’,q )Y (4.4)
;W(p.p’.q } = (=) 0 (mn2-(Vs +Vq? )2)p 4 p.p"a) (4.5)

Thus, in the physical domain the contribution of _;#V (p.p’, q )

is exactly equal to zero, , .
However, in deriving the sum rules (see below) both the

physical and unphysical domains are used and then nonzero con-

tribution can be given by .z -diagrams from the second part of

the commutator p (p.p’, —q ). Below it will be shown that under

ordinary assumptions commonly used in the derivation of the sum
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. 22, 2 A2 2
[ 4 a = P q = m +q —A N w 3 .—ﬂ—

rules by means of the current algebra the contribution of these'
diagrams terids to zero at s » .« ,

We shall show that the problem of the behaviour of the form
factors of the process of muon pair production at high éo]liding
hadron energies and large virtual photon energies and masses
when |

$, 92 ,v -

and the following ratios

(4.6)
1 2v 2v

remaining fixed, can be reduced to the study of the equal time

commutation relations - between the space components of the opera-

tor of the hadron electromagnetic current and its time derivative,

The use of the equal time commutation relations is consi-
derably simplified in the c.m.s. of the muon pair, where 1 ={q, ,0 }
>

In this system the decomposition of the tensor pi{p.p " 90 ),

i;j) =x,y,z takes the form:

P’(P*.p*',qov) =p 85 8 4+p 8 8 +p & & +

i 11‘?x I x T2 iy 1y L tz =z (4'7)
) )
f"pTL(aixajz +8,, 8,,) +ipy (8, 8,,-8,,98,,)
It is obvious that R” v Ty and ;” can be decomposed in
a similar fashion into five structures: A
R, (P8 2qo) =Ry 8,8, '+ ... . - (4.8a)
1 , L
-» -,
r“(p.p qo) =rT18(x g toe e (4.8b)
Fo AP an) = B, B+ ... (4.8¢c)



in this case

R,(;Tp',qo)=ri(i;.-f)’.qo)—ri(ﬁ’.]'l’.qo)ﬁ

‘ (4.9)
. 5 oo, P >, .
,=¢(q0)pi(p.pv,lq0|)+€( qo)pl( WP s lqo»l),
where
T, ,T L TL(+)
E(q )=‘!’_1oq >0, i= 191 94 Ly
° °< ( (4.10)
=) .- (=), >, =) ,
R (PP 5 q Y=r_(pop S q)+r o (pup =4 ) =
(=)=, Sy (2P,
=p e )ep 7 (popi-la c’l)-
) +
‘It is seen that the quantities Ry, , R T, Ry , Rorow are odd
(€] s
and R L even functions of 1, .

‘Integrating (4.1) over dq, and qdq it is possible to ob-

tain a series of relations

L dq Ry (FpTiay) =8, (5.8 ) (1)
27 o
1 > ‘ > >, =C 3> » :
s Jada R (e va )=C (5 ), C (4.12),
etc,
Here
B, (p.p ") ==i [ dx<pp in[[J (X,0,], @) pp"in> (4.13)
C” (;,K ')-.-.-ifd;< p.p “in L l'(x-:O),J j-‘(O) 1l pop 'in> . (4.14)

From these relations we keep only those which are not trivial from
1

the parity considerations
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1 % =) > > N ] - -, »»_’_’ , : :
= Fda Ry (8P e )=B o (pip ) =Buxlpp )  (4.15q)
L‘w . R. 3> . . =C "-b-b;" _b '
R oququRTl (p-p 'qo) xx‘(P; ) ) ) (4.15]0)
Ldg a Rr, (PP 29 0)=Chy (B ") (4.150)
T .

Lidgg R (Fia)=C () (4.15q)
7 .

1° . &), 5, _ - -D;\ oy ’

:{) dq g R (P.p"sqy )=C  F.P)+C (P ). (4.15¢)

Nate that_ in the syster.n -;I = 0 chosen the imrariar_ft variables
from which the form factors depend upon are of the following form:

2 ,2. ’ >, R
S=m +m +2(p0p0—pp ), q2=qg..u=poq0‘
: : (4.16)

a=py/p,

Hence it follows that when integrating over dq, the variables 's
2_ 3, 3

and e are fixed and 9 =V /py, ie, in the plane (q ) the in-

tegration in (3.14) is performed along the parabola,

- -
Similar sum rules for arbitrary fixed moments P . and P

contain contributions from the spectral functions Ps of the cor-
responding 2 -diagrams. As is seen, from condition (5) in the li-
mit 8 + o the contributions of 2z -diagrams are defined by the
intermediate states of hadrons A with infinitely heavy effective
masses m, . According to the commonly accepted ideology of the
current algebra method we shall assume that the z —diagram con-
tributions vanish at s+ .« , This supposition is found to be valid
in the case when it is pessible to change the order. of the tran- °

sition to the limit 8 > and the integration in eqgs. (4,15). In fact,
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for the sum rule, e.g, (15a) the contribution of the z -diagrams is Now we make in the sum rules a transition to the limit s -,

determined by Voo, q2—>°° - under the condition that « , ® and 8B are

1% ¢ 0o dmz : fixed, In this 11m1t as has already been mentloned the z- —diagrams
-) > > , 1 N -, .

,-T;-g'pTL (psp »—lgo)dqo=~ — 5% (p,po- |9 ol ) - (4.17) contributions drop out and the form factors have the following auto-

N
: model behaviour

2

Passing to the limit 8> under the sign of the integral for fixed ® (=)
i P, (s,qz,a, )(D-'——F (a B.w ) 1.-T T L TL TL .
q

2
m, and taking into account (4.5) we find that the 2z -diagram (4.22)

contribution in the sum rules wvanishes in- this limit,

In the c.m,s. of the leptonic pair the transition to the limit Next, going over in (4.15) to the integration.over d@ we get finally

s - oo is performed under ‘the condition the following sum rules connecting the limiting automodel values of

poaw, p’ o the form factors with the current matrix elements
0 ’ 0 . :

@ .
. 1 ° =) S ,
We shall assume that = e , ] ‘ B -——fdm F (a ﬁ.-w.)'—‘sz(a-B)-Bzx(a,ﬁ) (4.23a)‘
a = p' / P 0 is ﬁxed; ) B=—Pz_ : iS ﬁxed; i 1 (00 ) . .
P (4.18) Tl dee Fp (a.8,0)=C (s, B) (4.23b)
w=qy 2py is fixed, L W ‘ )
| ——fdw mF (a,B © )= Cy (2,8 _ (4.23¢c)
. Y o *
The fixing of B in the invariant from implies that 5 _,1 wo :
: % = : 4,23d
| | ”fdmeL(a,B,m) sz(a,ﬂ)' ( )
s_20=-8) o fixed, . . A  (4.19) ? L @o | -
v ® | - —[do o Fi(a.B.0)=C (a,B) +C,_(aB), (4.23€)
Now we suppose that there exist the limits 1
1 Wwhere:
, !
, 5, ' 1 Po+Pg
Bu(aﬂ) lem POB”(p,p ) (4.20) » v, L2 ). '
py 0 T 0 2Py 2 . (4.24)
a.B is fixed - : .
[ (@:B) = tim C (pop "), - - ‘ (4.21) The right parts of these equalities depend upon the choice of an
po.po-m : : ' appropriate model for the current and therefore -may ‘serve as a

criterion for the choice of some or other model,

where the left-hand side tensors are dimensionless quantities,
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In the model of quarks interacting by the exchange of a
vector meson ( "gluon" model) and in the vector field model the
commutators are of the form: . i

2
C _ 2i8(x)cukl//+_(0)akQ ¥ (0)
[J (x,0),], (0 1= | quarks | (4.25)
0 :
© | fields] )
. (4.26)
>+ -
-5 (x)¢ (0){i(aiaj+ a,al_—2a35”)—

- 2 2
-2 g(a B ;+a,B, -2a B3 )+4M3 ,1Qy(0)

) i(x.O).Jj(O»)]= | quarke] , (4'27)
5GIC J° ©3° ©@+c
: | fields]| , (4,28)
where g
2/3 (4] 0
Q = ?-+3-Q 9 =to -1/3 0 ) (4.29)
0 (il =1/3

Taking into account (4,25) and (4,26) from the sum rules fora polari-
zation form factor we get
) const for quark model

o B : (4.30)
of.fiw F o (a,B,0)= : ‘ .30)

0 algebra of fields
It may also be shown from the sum rule that the quark model

predicts a larger value of the transverse form factors FT1 and

F T, compared with the longitudinal ones F, .
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Consequently, the sum rules obtained here can be used for

the choice of some or other model. In the case of ordinary elec-

33/

(see also/ 22'34/). For the process of electroproduction with one

troproduction similar sum rules have been obtained in ref,

singled out hadron in the final states analogous sum rules have

[20/ '

been considered in ref, .

5, Vector Dominance and Di-Muon Mass Spectn,im

According to the vector dominance hypothesis (see e.g,
reviews/ 35’36/) the process of di-muon production proceeds through
the emission of a virtual vector meson which turns into a wvirtual

photon then decaying to a muon pair as is shown in Fig,6,

Fig,6, llustration tothe vector dominance model
It may be ‘expect‘ed that the use of the vector dominance

hypothesis will lead to a correct description of the process under

. . s . 2 . . .
consideration since here ¢ is time-like,
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We determine the density matrix of a wvirtual vector mesan

V (V=p% @ or o) produced in the reaction

a+tb» V + hadrons ) ‘ (5.1)

according to

p.v(P Piq)=

-E (2n7) 5(p +p’=q=p,)<p,p m]J (0) ]Aoul>< A out IJ (O)Ip,p m>(5.2)
where J (x) (E] -m v)V ( ) is the density of the Vs—mesorvl'

current

Making use of the "“current-field" 1dent1ty

m2 2 . 2 2
J (=mE Xy (ﬂ=_(_iip9u)+ 0 (x) + o (x))
BTV Iy e 2y fu ','2ﬁ) “u 2y " x (5.3)

we get the following connection between the density matrices of the

virtual photon and wvector mesons

2
m 2 .
¢

Puy(Bp "a)= 2 ( V)(p P )+ (5.4)

2yv ( mv2 -q
+ interference terms, o, )
The relation ( 5.4) alows to express form factors fr, , Pr,,

()
P, P o giving a complete description of the process of di-

?
muon production in terms of the corresponding V -meson form fac-

p.¢
tors™ ',

=/ Recall that the. contribution to the cross section is given only by
the form factors pr, , Prys P ; the form factor p(+) can be de-
termined from the angular distribution of the muon pair and pTL)

by measuring the polarization of one of the muons (see §2).
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With the aim to employ the hypothesis of vector dominance

it is convenient to represent the formula for the mass spectrum in

12/

the form : .
: 2 2 2 -2 . L
do a 1 q-=4m q -4m Y :
=g gl WV———H 0 (s.a’ ) (59
dq° 27 ¢ 3q q

where
vt 2 ¥ r* r* -
7oleatee, el (5.6)

is the total production cross section for a virtual y* photon with

mass q2 in the process

a -+ b ~» Yy * + hadrons. (5'7)

. According to the vector dominance hypothesis it is connected with

the total cross section for production of real vector mesons in pro-

cess (5.1) as follows:

2 2
* m. 247 ’
o (s, q 21 = .i‘.,{( . P ) _Z oP {s)+( 2 V— 0%+ . (59
mp q /P mm -q }'m
: m .
#+ (- ¢ ) __5_34” ? (s)] + interference terms,
m

2= Yo

Inserting this approximate value for ¢ into (5.5) and neg-
lecting the muon mass (m#= 0) we get, assuming the contribution
of the interference terms to be small, the following expression for

the muon pair mass spectrum:

d 2 LA
AL Sy . LS LAV A Y (5.9)
dq? 127 m %q 2 14
v=p 0,9 v v
39



It is known that the:p -meson is weakly produced in hadron-had-

ron collisions. Keeping therefore only the contribution of p° and-

[} i =
mesons and assuming m,=m E yp2 : ya)2= 1:9, y2/47 =05
we bring (5.9) to the form (m =/ q2 ).
. U ‘
do 2.10~6 Lo’ (o) ' (5.10)
= : 1 Sm 5,10
- o =lo (s)+ a ( ] =X .
Moy My (m o 0,6) 9 GeV .
or for lar
&€ M pp «
. —6
1o ,2-10‘ P 2
5l <s)+§-a ()] =0 (5.11)
e M =

‘We apply egs. (5.10) or (5.11) to the analysis of the process

of production of a muon pair in hadron-hadron collisions.

a) Proton-Proton Collisions

‘o P v
The productlon of the p meson in the reaction p +p.-p +PA+P0

was not observed in all the interval up to Prap = 28,5 GeV_
a ’
C
-In this same interval the & meson production cross sections

in the reaction p+p-»p+ p+ o are equal to /37/

) GeV
by 5. BT A\ A 28,5 Se¥_
e e . c
o 140+ 20 pb 60 ub 50 +.10 pb

This fact is 'in agreement with the ana1y51s based on the double

38
Regge-pole modeI/ /. The analysis of the s1x—prong reaction
ppoppmtnta Tn "
shows that about 24% of the events proceed through the production

of P meson which corresponds to the cross section of 90 ub /39'

The cross section for the eight-prong process pp » ppr 'r 7% 7 7 7is 20ub.
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The contribution of  in (5,10) may be neglected due

Assuming that here also about 1/4 of the events proceeds through

the p0 -production the corr’espondmg cross section is estimated

‘to be about 5.4b . Thus, it may be assumed that the total cross

section for.p ° Piap = 28,5 GeV/c

is about 100

production in pp collisions for

a‘f"*_”*‘“ = 100pb . (5.12)

to the
coefficient 1/9-, If we assume. that 0 =0 -p_= 100 b then for the
mass. spectrum of a di-muon produced . in pp collisions with ¢, . =

- 28,5 GeV/c we findlly obtain from (5.10) or (5.11) the following

expression
-34 ‘ 34
do °° ,2.+10 2 3 2
o %2 e 22010 eyt (5.13)
de .m## (m :;u -0,6.) 2 GeV myit ) GeV

The corresponding curve is given in Fig.7.

b) ‘ Pion-Proton_Collisions

+
Let us consider the case of at p collisions (a=7 ,b=p)
Basing on the analysis performed in ref/ of it may be concluded
that the P -meson production cross section in the process
*4+p »p° + hadrons is larger or about equal to 1840 gb  for
p,, = 85 GeV/c

”"‘p -’p0+ .. . . )
o > 1840 ub (5.14)

41



and the © meson production cross section in the process
E 7P 4 @ + hadrons is
= +
- T p 2@ + .. . “
i o > 200 ub (5.15 )
o E { (san
o : From here and from eqgs. (5.10) or (5.11 we get the followin
g
- approximate estimate (from below) for the mass spectrum of a di-
) muon produced in the rr+p collisions with thé pion lab, momentum
10-33 3 8.5 GeV/c
- +
3 , TP -33 . 2
" i do . AN s’ 37,1070 sm (5.16)
Elg sdm” 2 _p 2 GeV m?S v *
b P4 m.“ . ” mﬂlfm#“ ,61)2 it Ge v
£ 4
glu -
5
- 6. Estimation of the Lower Limit for the Mass Spectrum
[ To obtain the asymptotic estimate for the di-muon mass Spec—
10'35 | trum we consider the hadron part of the matrix element of the -
% muon pair production process when A ;’] "2 e , Then up to the
- terms 0 ( i ) the matrix element is
_ Io”l o
’0'37 - ' ’ _v@.m. , e p’ - . c.m. ) 0‘ 1
. 3 <Aout|J (®]p,p "sin> » —E<Aout]]  (0)pp’in> +0{——). (6.2)
- ’ B - E’ ’ o >,
- [5]2ee 1o7]
m.ga ; ! ? ! 1 1 1 r i This means that the di-muon production process is mainly. defined
f ¢ 8 4 § 6 Gev by the J'o(- 0 component of the electromagnetic current i.e. has
m —— ;
. . L. pd o .
Fig.,7. Predictions of the vector dominance model for the the "Coulombic® character.
mass spectrum of a di-muon produced in proton-proton Next using the Bjorken limit, i.e. the expansion of the ‘T -

(for pi. = 28,5 GeV, + L
1ab eV/c) and 4 +-proton (for Plav = product into a series of the equal time commutators and keeping

(=5i§ GeV/c) collisions according formulas (5.13) and
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only the first term of this asymptotic series we obtain the following
approximate connection with the matrix element of hadron-hadron

scattering off the energy shell

O.m.
[+]

) L. lax c.m. a c
<Aout]J o @]p,p in> ==ifdxe <Aout| T (x) 30 p> =

-

<Aou |05 0), 1@ p> =

-1

q 60 v 2

; (6.2)

1

=\/q2

{a)
where J (x) is the hadron current carrying the four-momentum A .

’ 4 (8), N
<Aout|J (0 ]p> + the contribution of quasi-local terms,

Using eqgs. (6.1) and (6.2) we can obtain the following appro-
ximaté expression for form factor -p‘ defining the di-muon produc-~

tion process:

4m V8%n®
P(S,qgv Azpa)“, Av2 ag (8,A2)-
‘ab

q a

(6.3)

[T 2 . b.
The quantity g“(a A® ) entering here is the analytic continuation

of the total cross section of interaction of hadrons a and b
. throughout the unphysical domain where the square of the had-
ron mass is negative and equal to A2, é being the unphysical

" hadron energy in the lab, system,

44

P P
Fig. 8. The amplitude of scattering of a hadron with four-
momentum A and unphysical mass-sdquare A 2 by
hadron b. with mass p2=m2 . In the lab, system
(3=0) the unphysical hadron energy is §=1.pa.
m

In this approximation we find for the ‘triple differential cross

section the following expression (neglecting m’ and m )
1% 2 2
- m \/32"'A2 o (SAQ) _ (6.4)
dq*dA2%ds 37 s?qt =b
or for the mass spectrum '
) A2 2.8
v : = , . ‘ ,
do a? m2 0 . AT Tae - - _ 2
= — — d0° 46 ve2-A? o, (8,8 ). (6.5
dq 3" s q q2—-5 A2 :
T 2m

If from the axiomatic- field theory or from the analytic § -
matrix theor3J42’43/ we obtain a restriction on ¢ (8,A 2) out
the mass shell then eq. (6.5) will give a restriction on the mass
spectrum, It is known that for simpler case of the electromagnetic

form factor F (i) from the field theory and the analytic"s —-matrix



theory it follows an exponential restriction for the lower boundary

of decrease of the form factor, By analogy it may be expected that

2 ph '—u\/—Az.

0,08 A )> o e ' (6.6)

where ¢ b is the total cross section of interaction of real par-
al

ticles and ‘a is a certain constant, Then from eq. (6.5) it follows

the low estimate for the mass spectrum provided that s>> q2 > L

2
a
dU . o .
ppr > 204 ° _fb—; . (6.7).
q%a

Another method of estimation of the mass spectrum had been
considered in a recent paper/44/.

The works reviewed in this report have been discussed re-
peatedly at seminars at the JINR Laboratory of Theoretical Phy-
sics (Dubna), at the Institute of High Energy Physics (Serpukﬁov)
and the Institute of Theoretical Physics (Kiev). The authors express
their sincei'e thanks to the members of these seminars for;

helpful comments,

APPENDIX

Determination of the Boundaries of the Physical Domain

in the Process of Di-Muon Productibn

The law of four-momentum conservation is of the form:

P +P =q+p,.. _ (A1)
Introduce the wvector - A'=p’-qthen
p+A =p . (A.2)
N .
46

From where

A2= 2 m-2 ~2mé,

where ' T
8-=—-pA=(@—qo).
m . .
The cage m =m corresponds to the case of elastic scatter-
N -
ing. Then A2 and & are connected unambiguously, i.e. they are

not independent variables:

A2
5=~ .
2m
This is minimal 8_=8mm , since q4 in this case maximal, Let us

consider the case when a virtual photon flies in the backward

direction in the lab, system, It is clear that for fixed invariants it

will get a minimum energy (q'o) min_and then

A3
amux=€_(q0 )m!n' ()
We find (q4) oya from the equality
: - : _ -
A? =m ’ 21q?-2¢(q, ) =2 veim® 2 (g ) ?m,n -q° . (A.4)
We ‘put .m =0 then solving this equation we find
3 _ A2 € ol .
(q)=qA+ 1 (A.5)
0 min 4¢ q2=A? 4
~ 2
. 2 2_A 2. A ,
q .
) =e~(q ) =¢ (1= . ) =€ *+ ) (A.6)
max ) 0  min q2 A2 4 € € %
where ) A2
eX* =
Aﬂ_q2
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Thus, in the physical region

A? 2
- S ) <_ e* 4+ A._
2m 4e* . v (A7)
Now we shall find the physical domain A‘2 for fixed s and
q? It is determined from the condition o
5 =8
- min max . (A.S)

from where we find

2= 2 2(+)
<A < S ’ :
= < | (A9

9 -2 2 . .
AR 9 ¢+ am —-2me + €y/4m ‘€2+q4-—4q2g_m—-4q'2m

2¢€ +m

We note that there is an interesting analogy between the
reaction under consideration and the inelastic neutrinoproduction
reaction, Namely, 'if in the Appendix to the Adler's paper/ 2/ we
replace the square of the lepton mass by ourq and the Adler's

2 2
q by our -A° then we essentially reduce both problems to
each other,
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