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1;_ Introduction 

One of the main problems of elementary particle theory is 

the investigation of the behaviour of electromagnetic and weak in­

teractions at high energies. The most general process of interac­

tion of a leptonic pair with a hadron system can be ·represented 

'~s follows: 

leptonic pair 

Tfl 
hadrons 

Fig. 1. Matrix element Tr I describing an arbitrary electro­
magnetic or weak process of interaction of a leptonic 
pair with a system of hadrqns • 
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It factorizes into the leptonic and hadronic parts 

T ri C Lµ. II /l (1.1) 

The explicit form of the "coupling constant"· c ~nd of the leptonic 

part L/l is· well known. As to the hadroryic part the situation is 

more complicated. Starting from the analogy with electrodynamics 

where the local currents give a cor~ect description of phenomena 

it is postulated that there exist operators of local hadron currents 

namely of electromagnetic J~m ( x) and weak J; ( x ) ones. These 

operators have a definite experimental meaning consisting in that 

thei_r matrix elements are directly connected with observables (cross 

sect_ions, · polarization, etc.). In the most elegant way these quanti-
. - - . 

zed currents arise in the Bogolubov's formula_tion of field theory 

as a response of the. particle. system t; an external nonquantized 

perturbation: 

j ( X) 
µ. 

"' ( 0 -. m 2
) A = _!__ 

I'-, i 

+ s 8 S 
BA ext 

/l 

\ ext_ o 
A -/l 

(1.2) 

Thus, the factors entering the matrix element. can be represented 

in the form 

1
411a ' l- µ. -2- Uy U 

e.m q L _ 
we= G/V2 - ·;;-y/1{1-y )u 

H 
=l<fl J;-m·co,: i > (1.3) 

J w (o) Ii >· . < fl µ. 

In spite of the fact that the explicit form of the hadron part of the 

matrix element remains unknown it is possible, nevertheless, to 

4 

l 

obtain definite information on the hadronic part using the require­

ments of relativistic covariance, P , C and T transformations and the 

selection rules resulting from internal SU ( 2) or . SU ( 3 ) symmetri-
" 

es. There remains the main theoretical difficulty, i.e. the absence 

of the quantitative description of the_ dytiamics of strong interactions. 

This leads to the appearance in· the theory of unknown functions, 

of the so-called structure functions of form factors •.. The well-known 

example is the nucleon electromagnetic form: factors G E ( q 2• ) and 

GM ( q 
2 

) depending orn the one Lorentz-invariant ;variable. Generally 

speaking, the form factos may depend on several Lorentz-invari-

ant variables. The main task is actually to study theoretically and 

experimentally these form factors. These investigations may throw 

light on some fundamental problems such as particle structure, 

existence of elementary constituents of hadrons (quarks, partons, 

etc.). 

The importance of studying deep inelastic . processes was 

stressed by several authors/
1

-
5

/. In works/
4

/ some general methods 

were developed for studying deep inelastic strong interaction pro­

cesses and rigorous estimates for the · amplitudes were obtained. 

These methods can give useful information also in studying the 

behaviour of form factors of deep inelastic lepton-hadron processes. 

We list certain experil'l').entally realizable deep inelastic lep­

ton-hadron processes. Depending on the fact, which particles in 

Fig. 1 are incoming and which are outgoing, these processes can 

.be divided into three types: 

a) annihilation. of a I epton pair, 

b) scattering of a lepton on a hadron, 

c) production of a lepton pair in .hadron-hadron collision. 

The corresponding matrix elements are presented in Fig.2 
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(a) (8) (c) 

Fig. 2. Matrix elements of th~ processes a , h , c • In pro-
ces ses a arid c q2 is time-like q 2 > 0 ; in process 
b q 2 is space-like q2 < 0 

The electromagnetic and weak scattering processes corresponding 
) 

to the diagram 21> have been ·recently investigated most extensively. 

It· is. just the process , of deep inelastic . scattering of electron on 

proton, 

e + p ... e + hadrons (1.4) 

that has been investigated in SLAC experiments. From these expe­

riments it has become evident that the electroproduction process 

has a very interesting point-like picture. 

t. 1 . ti d a f . 1 ren 1a · cross sec on ~- or arge 

ximately equal to the Motl cross section 

It tur~s out that the diffe-

q 2 is large and is appro­

for scattering on a structu-

reless point nucleon. This has served as a basis for suggesting 

and checking a number of theoretical ideas/
1

-
3

,
5

/. A similar point-

6 

like picture has also been observed in the CERN experiments 

deep inelastic neutrino-nucleon scattering/7 ,s/ 

V/L + N ➔ µ·•-· + hadrons. (1.5) 

on 

The simplest explanation of these facts consists in that with 

incre~sing. number · of channels their total contribution to the form 

factoi::s depend~ weakly on q 
2 

• For a p.oint nucleon in the case 

of neutrino production, on the basis of the simplest diagram we 

have 

r, teor. (E ) 
-38 

.. 1.3 . 10 2 
sm 

where E is the neutrino energy in the lab. system, in GeV. The 

CERN experiments give: 

(1 
exp 

( ( ) 
-38 2 

E ) "' 0.8 :! 0.2 10 sm "' 0.6 Gteor ( E ) 

In principle, there is fl, possibility of studying this process at the 

neutrino energies up to 50 GeV by means of the accelerator of 

the Institute of High Energy Physics (Serpukhov). 

In the present review we shall investigate in detail the pro-

cess corresponding to diagram 2 c namely the deep inelastic 

process of muon pair production in hadron-hadron collisions 

p , + + p ➔ µ + µ + hadrons (1.6) 

Below, in § 2 we give a kinematic analysis of this process. To 

obtain dynamic information three theoretical schemes will be consi­

dered which are based on scale invariance (§3), current commuta­

tors (§4) and vector dominance (§5). This consideration is based 

7 .. 



on the results of the works/ 9-l3 /, which have recently been per­

formed at Dubna. The process ( 6) is being studied on the Brookha­

ven accelerator and some preliminary data are given in ref/
14

/. 

The results obtairn=id in investigating process (1.6) are of great 

interest by themselves and may be of great value in searching for 

an intermediate W -~eson produced in strong interactions/lS-l
9

/. 

Note that the next stage in studying processes (1.4) and (1.5) 

consists in singling out any one hadron in the final state. Such 

processes 

e + p 

V + p µ 

➔ e + p 

➔ µ + p 

+ hadrons 

+ hadrons 

(1.7) 

{1.8) 

have been studied theoretiGally in the papers by R.F. Kogerler and 

one of the authors (R.M/
20

/. 

2. Kinematic Analysis 

Let us ,::ons_ider the process of deep inelastic collision of 

t\::'? hadrons a 'and b which results in the production of a muon 

~ir and of a certain hadron system A 

a + b ➔ µ+ + µ. + A (2.1) 

In the lowest order in electromagnetic interaction the process pro­

ceeds through the emissiort and decay of a virtual photon accord­

ing to Fig. 3. 

8 

1 

.,.If• (H') 

O(p') 
> ·(N) 

B(P) 
R (PA) 

Fig. 3. Kinematics of the -lepton pair production. 

where the notations of the particle four momenta are given in brae-
' 

kets. The appropriate matrix element of the T -matrix is defined by 

the expression 

T 
fl 

417a . µ -= --2- J 
q 

< A out l J µ (0) j p, p ' in > 
0 

(2.2) 

where j µ = ii"( k) y µ V ( k , ) is the muon pair electromagnetic current, 

J ( x ) - is the operator of the hadron electromagnetic current, µ . 

a = ~ "' _!_ stands for the fine structure constant. The symbol "c" 
4 77 137 

means that it is necessary to take into. account only a connected 

part of the matrix element of the current. If colliding particles are 

unpolarized and in the final state only the muon pair _ is detected 

then the cross section of the process in question can be expressed 

by means of the following second rank tensor: 

p µ v( p, p ', q J = ~ (2 77) 
4 

B ( p+ p '-q ~ p A) <p, p 'in I J µ<o) I A out•>.<A out I J v(O)I p,p 'in>~ 

(2.3) 

.. 
9 



Due to the electromagnetic current conservation this tensor must 

satisfy the gauge invariance condition q µ p µ v := p µ v q v = 0 and from 

hermiticity . p · = p * · it follows that the real part of the tensor must 

be symmetri~~l a:id its imaginary. part antisymmetrical under · replac-

ing µ !"➔ V 

It is convenient to decompose the tensor P µv according to the . 

structures corresponding to definite virtual photon polarizatio~•11•:.t,4 l/ 

We determine the directions of the three-dimensional polarization 
➔ (T) ->(T) ➔ (L) • • vectors E 1 . , t 2 and t 1n the rest system of a vtrtual 

photon q = 0 i.e. in the c.m.s. of the muon pair according to Fig.4. 

Fig.4. 

! 
1f 

II !J ~w 

'l'he c.m.s. of the muon pair. 'l'he axis z is directed 
along the momentum p and the momentum p ' lies in 
the production plane x z • ' 'l'he normal to the pro­
duction plane is directed along the y axis. 'l'he axis 

z is directed along the vector p and the vector p ' 
lies in the x z plane. 

'l'hen the corresponding four-dimensional polarization vectors 

have the form: 

( Tl ) 1 
(µ = (P' _ PP' 

(Pp ')2 ) /L -;;-

p 

y -( p· .2 -

/L 
t2.4a) 

P" 

10 

I 

(T2 ) 

( "'· 
µ 

(L) 
( . 

µ 

where 

p/L "' p µ, 

1 
-rr~~==:;;::::::;;::=:= ( a V q2 (pp •)2 - q 2 m 2 m , 2 µ a /3 y p 

1 

..;-:-r,-
·p 

µ 

-LI._ q' 
q2 µ 

P' 
µ 

, 
,.,, p /L 

p'/3 1' q (2.4b) 

(2.4c) 

-LL q 
q2 µ 

(2.5) 

It is not difficult to see that the polarization vectors are orthogo­

nal to the virtual photon momentum q /L and to one another, their 

norm is -1: 

q/L ((1) =0' 
/L . 

( I ) E ( j ) /L = -8 
E ·1 j µ i, j =- T 1 , T 

2 
, L ) (2.6) 

and the completeness conditions 

~ ( 

l=T
1

,T
2

,L µ 

holds. 

(I) (I) 
( 

V - q/L JI + ~L q2 (2.7) 

Using these vectors we decompose the tensor into five inde­

pendent structures 

(Tl) (TI) (T2 ) (T2) (L) (L) 
p = p E ( + p ( ( +p ( ( + ·µv ·T

1 
µ V ·T2 µ V '~ µ V 

(+) ( (T1 )(L) (T1 )(L) . <-:>( CT,)(L) CT,> (L)) 
(2.8) 

+p E E +E E +Ip E ( -E ( 
. TL µ V V ,-t. TL /L V V /l 
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(+) 

The structure functipns or form factors fT1 , 'PT 2 •, PL , PTL 

· p <-:> · x/ are real functions depending on four independent Lorentz-
- TL . 

invariant variables which may be presented, for example, by 

( )
2 2 A 2 ( , )2 ,2 2 2· , W 

s=- p + p I q I V "" p q I •U = p ~ q :::! m + q - .v • e 
1 · 2 . 

also fix other in~riant variables, e.g. m ! =( p + p ' - q) 
2 

being the _ 

can 

squared effective mass of th2 hadron system, or the energy transfer 

8 = ..!,_ p ( p '-q)in the lab. system p = 0 • 
m - . . 
We note that in the system~- = 0 there is a simple relation 

between the space components of the tensor P I l and of the form 

factor 

( "')(' 0 

(+) ,. ) 

·xx · x z ·T1 PTL / ipTL 

11.P 11= 0 p O = 0 p (2.9) 
yy T2 

p 0- p <+2, j (4 0 
PL ·z x · z z PTL · p TL 

x/ . /21/ <+> In notations of ref. PT = Fa , PT = F2 , PL = Fa , P TL= F 4 
(4 l 2 

p TL = F 
5 

• These form .factors have kinematical singularities. The 
form factors P

1 
, P2 ·, P 3 , P4 , P 5 free of kinematical 

singularities are determined below, in expans~on (2.16). 

12 

Up to the normalization this is the density matrix of the virtual 

photon given in a linear 'basisx/. 

The angular distribution· summed over the spins is equal, by 

definition, to the ratio of the quinary differential cross section 

5 ( 2 2 ~ S • q , !!,. , V , 0 , "<P) 
2 2 

d q dt!i. d V d Q 

to the triple one 

d3 a (s,q 2 ,t!i. 2 ,v) 

dq 2 dt!i. 2 dv 

W( 9.<Ii) = W ( 0 , ¢ 
2 2 

s,q ,6 V ) = 

5 2 2 d a ( s, q , A , v , 0 , ·qi 

3 2 2 d a (s,q ,6, v) 

X, 

Passing from the linear basis to the helicity basis 

(+ l) 

! µ. + 
1 

,.j2 
( 

(T1 ) , ( T 2 )) 
l + I l 

µ. -- µ 

(0) .(L) 
( = ( 

µ. ,'L 
(2.10) 

following Oakes/
21/ we get the relation between the form factors 

and normed matrix element of the density matrix in the helicity 
basis: 

-1-1 1 
p 11 =p = - ( p +p 

2 p T 2 L 

00 1 p "' PL p 
(2.11) 

1-1 -1 l· 1 
(p T p = p = - -PL 

2p 2 

p 1-0 = p 01,i. -10 0-1 • .. -p =p 
1 
- (p<+> _r,2- TL +ip(-).) 

Y• p TL • 

where 

p =·Pxx +pyy +pz z =pT +pT +pL 
I 2 

(2.12) 

.. 
13 



-where 

1 
w c e, ¢ > = 

2 
4ir0- ~)p 

3 . 

2 2 2 
[ PT ( 1- v sin 0 cos qi ) 

I 

2.2 2 2· 2· 
+ p ( 1- v &Ill 0 sin <IJ ) + p L · ( 1- v cos 0 ) -

T2 

- pc+) v 2 sin 20 cos <IJ TL . 

+ 

➔ 

is given by eq. (2.12); v = .UJ-
r.2 2 

= /..:!. -4mµ p 
• q2 

(2.13) 

is 

the velocity of muons in their c.m.s. Studying this angular distributi­
< + > 

on it is possible to determine fJT
1 

, fJ T 2 , 'fJ L , P TL rather 
(-) . (-) ' 

than P TL • The form factor P TL can be found by measuring the 

polarization of one of the muons along the normal to the produc­

tion plane (along the axis y in Fig.2): 

< s •> 
y 

"' m E /l . 
(.-) 

!pTL (2.14) 

Integrating eq. (2.13) over d qi or over d cos 0 we find the distri­

butions only over 0 or over ·qi 

W(0) =-~l __ 
2 

2p (1- ..:!.­
a 

2 

[(p +p .)(1-.:!.. sin 2 fJ) +p O-v 2cos 2 0 )] (2.15a) 
Tl T2 2 L 

W('qi) 

+ p L 

1 
----- [ p ( 1- .; V 

2 
COS 

2
'¢ ) (1 2 2 2 

2irp(l-:-i-) Tl <> +PT2 -]-vsinqi)+p 

0- ~)] 
3 (2.15b) 

respectively. 

14 
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The form factors p • 
Tl 

<-> h ki t· 1 . ul ·t· PTL ave nema 1ca sing ari 1es. 

The (arm factors P 1 , P 2 , P 3 , P 4 , P· 5 , free of. kinematical 

singularities can be determined in the following wa)9( 

P,_,.v = pi (- g + ....:.J.Lqv µv ;-
+p PP +P P'P' + 

2µv aµ v q " 

+ p ( P P ' + P P ' ) + i p ( P P. ' - P 
·4 /l V V /,I 5 µ V V 

p, 
/l 

(2.16f 

where P/L , Pv have been determined above in (2.5). It is not 

difficult to establish the relationship between these two sets of 

form factors 

{JL = Pi 

2 2 (PP ') 
-Pp - --· p - 2P P' p

4 2 2 3 
p 

2 2 2 
(PP') -P P' 

p =p 
T

1 
I p:.I Pa 

p = p 
T

2 
I 

p<+> + ip<-> = ,PP'. f p2p,2 -(PP')2] ½ p + 
TL - TL pi . 3 

2 2 2 .½ 
+ [ P P' -(PP') ] (p + ip ) • 

4 -. 5 

(2.17a) 

(2.17b) 

(2.17c) 

(2.17d) 

The triple differential cross section of the process (2.1) ,when 

in the final state only one muon pair with definite q 2 
, I). 

2 and 

8 is detected and the summation is performed over all possible 

hadron. states , reads 

15 .. 



I· 
3 2 2 

. d- u.( s,_q , I'!. ,8 2 

~-Cl 
dq 2 d/'!. 2 d<> 8 7T ~ 

2 
q. -4 2 mµ 

3q2 
. ) ..; 

,X 1 
ys-(m+m')2_·, (' ip(s,q2,t:,,.2 8) vs- m -m) ' · • 

2 2 

q~m_p-X 
'. 2 
·q 

(2.18) 

2 

where a. "'·· 
4
e

77 
"' j:7 , m , m ' 1 . m µ are the masses of ha<:i-

rons a and b and the muon, respectively. By p ( s , q 2 
, /'!,. 2

, B ) 

we denote the following quantity 

. µ V 

p (s,q 2,6. 2,B )=(-gµv+~)pµJp,p',q)..,p +p. +p • {2.19) 
q2 ' Tl T2 L 

Notice that the tensor p ( p, p ', q ) describes the contents of the 
µv 

hadron "black box" of, the Compton effect on two hadrons, presen-

ted in Fig.5. 

'f 'f 

p' ,---P' 

p 
Fig.5. Amplitude of the Compton eff~ct ·on two hadrons in 

the forward direction. 

The distribution over the .squared _effective mass of the mu­

on pair is obtained from eq, (2.2) by integrating over d t:,,. 2 and · 

16 

d B inside the physical domain. Neglecting the muon mass we get 

the following formula for di-muon mass spectrumx/ 

/'!. 2
max Bmax 

du 
---2~ -

d q 

a 
-· --2-

1277 

m • 1 . 
_-:=,=(===:===== - (di'!. [dB t 

2 
t:,,.

2 
") vs- m+m-') \/ s -(m-m ') q2 p ,s,q • ,u ,{2.20) 

2 
/'!,. min Bmln 

i For the purpose of apply~ng the vector dominance hypothesis {see 

.below §5) it is convenient to r-epresent the mass spectrum formula 

in the form 

where 

du ___ ,,, 

dq 2 

a 

3 7T 

* Uy (s,q 

1 
q 2 

"'a y* 
T 
2 

y* 
a 

2 . 
(s, q ) 

+ u y * 
T 

I 

+ 
y* 

u 
L 

is the total cross section of production of a virtual Y * 
with mass q 

2 in the process 

a + b ➔ y *+ hadrons. 

(2.21) 

(2.22) 

photon 

(2.23) 

In conclusion of this paragraph we note that there is an in­

teresting kinematical analogy between the reaction considered here 

and the reaction of inelastic neutrinoproduction. Indeed, if in Appen­

dix to the paper by Adle)
2

/ we replace the square of the lepton 
2 2 , 2 2 

mass -111 e by our q and the Adler s q by our - t:,,. than we 

essentially determine the boundary of the physical domain . of the 

x/ The determination of the boundaries of. the physical domain is 
considered in Appendix. 
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process (1). A detailed determination of this boundary is given in 

Appendix to the present review. To obtain dynamical information on 

the form factors below we shall consider three theoretical schemes 

based on 

1. scale invariance, 

2. vector dominance, 

3. current commutators. 

3. Scale Invariance 

As has alr~dy been mentioned, the SLAC and CERN ex.peri­

ments indicate a point-like character of deep inelastic interactions of 

leptons with hadrons. Such a behaviour could be understood on the 

basis of the hypothesis of approximate scale invariance. Let us sup­

pose that in describing deep inelastic processes in which the energy 

and momentum transfer are large, the dimensiorlc!,l quantities such as 

masses, "elementary lengths" and others are not essential. Therefore 

the form factors can depend only upon the variable 

invariants. 

kinematical 

· Out attention to the possibility of the existence of an scale 

invariant behaviour of the form factors in the problems under consi­

deration has been drawn by N.N. Bogolubov. He pointed out that 

such a behaviour may be very similar to the so-called automodel 

solutions of a number of problems of classical hydrodynamics, for 

instance, of the problem of a strong point-like explosion/
23

• 
24

/. In 

finding of automodel or scale. invariant solutions · of the problems of 

hydrodynamic it is very useful to employ the methods of the theory 

of similarity and dimensionality in combination 'With certain qualitative 

considerations about the character of physical processes. It is known 

that the electromagnetic and weak interactions are rather well des-

18 

_; 

cribed by means of local electromagnetic and weak currents, while 

the effect of strong interactions is described by introducing the form 

factors. It may be expected that at · low energies the necessity of 
• 

taking into account the particle masses ·would distort the picture of 

strong interactions while at high energies (and large values of 

other invariant variables) when the masses of produced particles 

can be neglected the situation is essentially simplified and, in a 

certain sense, becomes "hydrodynamical"~: Qualitatively this hypo­

thesis is supported with the fact that the main singularities of the 

singular functions of field theory on the light cone are independent 

f , ( f/25/). o masses see, e.g; re • • 

In this paragraph we shall try to discuss the principle of 

· approximate scale invariance as applied to the processes of lepton­

hadron interactions at high energies and large momentum transfers 

and shall draw a number of consequences which can be checked 

experimentally. 

We shall assume that the asymptotic behaviour of the form 

factors of processes · involving leptons at high · energies and large 

momentum transfers is due to the dimensionality considerations and 

the requirement, of approximate invariance for scale transformations 

q ➔ ,\ q 

P
1 

➔ ,\ P1 

where q is the momenta transferred from leptons to hadrons, P 1 

are the momenta of hadrons involved in the reaction. 

This assumption essentially means that in the asymptotic limit 

under consideration when 

q 2 ➔ 00 q P, ➔ 00 

19 .. 



the form factors of the processes involving leptons are defined by 

the functions of dimensionless ratios 'o 1 = .<l 2 and are appro-
q p I 

ximately independent of the particle masses and other dimensional 

param~ters such as interaction radius 1 etc. We stress that this prin­

ciple is unapplicable to _the processes of purely strong interactions 

since in this case the processes appear to depend notic~ably on 

constant dimensional q·uantities. 

Below a number of consequences will be deduced from the 

scale invariance principle for the processes of annihilation of elec­

tron-positron pairs to hadrons, for the electron production process 

and for the process of production of leptonic pairs in hadron-hadron 

collisions. 

We first cons,ider the simplest deep inelastic process involving 

leptons, i.e. annihilation of a leptonic pair to hadrons 

e + + e ➔ hadrons. 

In the one-photon approximation this process proceeds according + ~ 

fo the diagram: e 

e-
and the total cross section is of the 

u 
tot. 

8 
2 2 

1T a 

q2 

2 
p ( q 

pti 

(3,1) 

All the information on the dynamics of the process is contained 

in the unknown spectral function (form factor) p ( q 2
) which, by 

definition, is related to the tensor p ( q2 ) by the 
µv relation 

20 

i, 
l 

·l 
l 

'1 

\, 

Pµv(q) = f dx 
I q.x 

e ..:01 Jµ<x> J11 (0> Io> 

4 
1 .(2rr) 8 (q-p )<0I J (0).IN ><NI J (0) j0 > = 
N N µ JI 

=(-g q2+q q )p(q2) 
µ11 µ J/ . 

It is easily to calculate the dimensionality of the tensorx/ 

[ p iL v< q 2) ] [ m 2 ] • 

(3.2) 

(3,3) 

Hence, it is seen that, as should be expected, p ( q 
2 

) is dimension­

less: 

[p(q2)],=1. (3,4) 

Under scale transformations 

q ➔ ,\ q (3,5) 

ta.king into account the' automodelity principle it follows that 

x7 We use the system of units in which the action and the velocity 
are dimensionless and the mass is chosen. as 'a dimensional quantit: 
We recall that in this system the dimensionality of the current is 
[ J µ l =- [ m 3 l the n -particle state vector for a relativistically inva-· 
riant normalization has the dimension: 

,;.; ' . 

[ I Pt , P 2 , Pa P n > ] = [ m -n 
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p (,\q) =,\2p 
µv 

( q) 

p. ( ,\ 2 q 2) = p ( q 2} = CO[ISl • 

(3.6) 

Thus, for large q
2 the total cross section must asymptotically 

behave in a "point" manner analogously to the case of annihilation 

of the electron-positron pair to the muon pair 

e+ + e- ➔ µ+ + µ. (3.7) 

Such a behaviour coincides vvith the prediction of the algebra 

of quark currents/
26

' 
27 

/. Using the inverse Fourier trp.nsform it is 

possible to restore the space-time picture and to obtain' that the 

electromagnetic current commutator between the vacuum states is 

• ➔ 1 
< 0 I [J µ ( x) , J 11 (0) ] I O > = ~c (g µv0 - aµ av ) 8 ( x ) P ( t ) (3.8) 

where c = p ( q ) =const. O is the d'Alamberl operator and P 

is the symbol of the principal value. Hence, in particular,· it follows 

that the equal frme commutator between the time anq space compo­

nents is of . the form: 

<Ol[J c:,o), .J (O)]IO•> =lim --¾· ~-v s{t)' 
0 I . t ➔ 0 ·r Tr I 

(3~9) 

i.e. it is equal to the Schvvinger term vvith ·quadratically divergent 

c -number coefficients/
28

/. 
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The electroproduction process in the one-photon approximatior 

is described by the diagram 

}~ 
p 

and the cross section is expressed in a well-known manner (see, 

e.g/29/) in terms of the tensor 
• . 4 C 0 

wµv (p,q) =~ (211) <pJJµ(O)lN) <NIJv(O)lp> B(p +q-pN) 

=(-g +-~11)Wl(p,q,q2) + 
µv q2 

(3.10) 

+(p _l'.Lq \(p 
/.l q2 /J- V 

___L_(l q ) w (p q,q2) 
:! V 2 . 

q 

It is easy to make oneself sure that the tensor is dimensionless 

[W (p,q) l = 1 
µv 

(3.11) 

from where it follows that 

cw.(q 2 ,pq)l = 1 . 
[ w2 ( q2 , p q ) ~ = [ m- 2 ] 

(3.12) 

From the scale invariance it follows that under scale transformation 

q ➔ ,\ q 

p ➔ ,\ p 

23 
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I 
the form factors WI and W2 must obey the following requirements: 

WI 0.2q2.,\2PC\) .. WI (q2 ,pq} 

(3.14) 
2 22 2) (2} 

.\ w2 < .\ q , "' P q . =- w 2 q , P q 

These requirements can be satisfied by putting 

2 

W;, ( q 2, p q } Fi( _j_} • 
pq 

2 1 
2 

W2 ( q, pq } .. -
2

F2 ( _q_) . (3.15) 
q pq 

Such a universal dependence of the form factor W 2 on one dimen­

sionless variable q 2 
/ pq has, in fact, been observed in the expert -

ments on the Stanford accelerato)6 /. In ref./
22

/ some theoretical 

arguments in favour of this dependence are given. Note that at 

present ,many attempts are being made to understand qualitatively 

such a point behaviour of the electroproduction form factors at 

large momentum transfers by constructing appropriate models (see, 
h~3~) · . 

e.g. refs. • Now we· go over to the consideration of the pro-

cess of muon pair production in strong interaction. The dimension of 

the tensor p µv and, consequently, of the form factors P1 are 

[ p ] =· [ p 
/LV I 

-2 
] = [ m ] . = T, , T 2 , L , TLC+> , TLC4{3.16) 

Using· the scale invariance requirement and to.king (3.2) into account 

we get 

p.,, V ( ,\ i' • ,\ p , ' ,\ It } = ,\ -2 .p ( p • p , ' q ) 
r p.v (3.17) 

,. 2 2 2 2 2 2 -2 2 2 
;, 1 ,i\s ,.i\q ,,\ 11 ,,\ 8} .. ,\ p

1 
(s,q ,11 ,8}. 
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I 

I 

I 
I . ,, 

I. 

Hence, it follows that the form factors for large values of the in­

variants must be of the form 

P1 (s, q2 ,112,8 
1 = -- F 1 (a, f3 , w } , 
q2 • 

(3.18) 

v.mere a , f3 , w are dimensionless variables composed fran the ra-

tios of the invariants s q 
2 

' 11 ' 8 
The automodelity principle can also be used in analysing the 

behaviour of the form- factors of weak processes. Of great interest 

is the· experimental check of the consequences of the approximate 

scale invariance principle for the process of deep inelastic neutri­

no-nucleon scatteri:1g. We note that the automodel or self-like cha­

racter of the form factors of electromagnetic or weak processes 

makes it possible in the •asymptotic domain, firstly, to decrease by 

unity the number of independent variables and, secondly, knowing 

the form factors for one set of invariants to predict their value for 

another one provided that their ratios remain fixed. 

In our opinion, the greatest interest would be excited by the 

experimental confirmation of the form factor behaviour predicted by 

the scale invariance principle up to certain large values of the in­

variants. Some deflection from these predictions would. mean that a 

certain dimensional factor, e.g. "elementary length" or some other 

which violates scale invariance at supersniall. distances is coming 

in play. 

In this paragraph we -have considered t1:e possibility of realiz 

ing "maximum automodelity " i.e. automodelity with respect to all 

the variables. It is quite possible that in reality a "partial automo­

delity" can be realized i.e. v.men the automodelity takes place only 

with respect to certain singled out variables rather than with res -

pect to all of them. Further, of course, it would be very interesting 

25 
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to understand the mechanism of violation of the scale invariance 

principle and to develop a method of calculation of· the corrections 

to . this approximations. Obviously, this process is closely connected 

with the idea of spontaneous breakdown of the conformal symmetry 

up to the symmetry of the Poincare grou/5 l/. 

The conformal symmetry is one of possible physically interest-

ing generalization of the Poincare symmetry. We r·ecall briefly the 

' main information on the conformal group which contains as one of 

the transformations the scale transfer mation of space-time. This 15-

parameter group includes the follo~ving transformations/45,49,5o/: 

1. Space-time translations 

x'/1- = X'µ + aµ ( 4 parameters) 

2. Homogeneous Lorentz transformations 

X '/L=J\/1- XV , J\/L ~ 0 (3,1 
V , V 

( 6 parameters) • 

3. Special conformal transformations 

x'/1- = x/1- +/3/L X 
2 

2 2 
1 + 2/3 X +/3 X 

4. Scale transformations 

x'f1-=pxf1-,p>O 

( 4 parameters). 

( 1 parameter). 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

According to the Noether's theorem, to these transformations 

correspond local currents, ,in particular, the curre_nts of special 

conformal transformations C /1- v and of scale. transformations are 

expressed in terms of the energy-momentum tensor 0 µv ( x ) as 

follows:. 

26 

ii 

l 
1 

I ,,1 

I 
I

I 

. 

I 

~ 
1, 
r
r ,, 
11 
I 

j 
/,, 

) 

11 
II i 

1\, 
,i 1' 
: ! 
I I 

• I 
: I 

cµv = 011-a (2xv Xa 

5µ = 0 µa X 
a 

V 
-ga 

2 
X (3.23) 

(3.24) 

The generators of transformations are expressed in a usual way in 

terms of space · integrals of the currents zeroth components 

cµ =f (201.1a XOXa -0/1- 0 x 2 )d; (3.25) 

s ➔ 

dx =· I ooa X a: (3.26) 

It may be shown /45A 9,
5o/ that in a wide class of Lagrange field 

theories the current divergencies (3.23) and (3.24) are connected by 

the relation: 

/J-V V /L aµ C = 2x aµ S 
II µ 

= X 0 µ (3.27) 

The vanishing of the current divergencies corresponds to the conser­

vation of "charges" (3.25) and (3.26). It is seen from (3.27) that in 

this case from scale invariance it follows an invariance with respect 

to the full conformal group, and thus, the violation of conformal sym­

metry occurs in a "minimal" vvay due to the violation' of scale inva­

riance. In the case when Lagrangian does not depend on masses 

and other dimensional constants 0 ~ = 0 which leads, as vvas 

suggested above, to scale invariance. The problem of a possible 

spontaneous violation of this symmetry is being extensively discussed 
. 1·t t . . t· ·th . l t· f • hi 1 · .,46- 49/ 1n 1 era ure 1n connec 10n wi vio a 10n o c ra symmetry' • 
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4. Current Commutators and Asymptotic Sum Rule_s 

Let us consider the F'ourier transform of the matrix element 

of the electromagnetic current commutator between two-particle "in" 

/ 9 11/ 
states ' : 

~p C 

R/L
11 

(p,p ', q) =f dx e <p,p' ,in ;Uµ(x).J 11 (0)] I p,p 'in> = 
. (4.1) 

= r f , ·i-w · p, P • q ) - r ~11µ ( p • p , - q ) . 

The particles are supposed to be unpolarized, The symbol 

"c" means that the weakly connected part of the matrix element is 

taken. 

Consider in more detail the quantity r µ 11 • Using the con-

dition of completeness of the "out" state vectors ·we obtain 

r µ
11 

( p, p, ' q ) = f dx e -I qx < p, p ' in j J µ (x) .J 11 (0) I p, p ' in > 
0 

(4.2) 
C 4 · ' ~ (211) [j (p'+p-q-pA}.-<;p,p'inlJµ(0)jAout><AoutlJ 11(0)lp,p'in>., 

where "c" under the sign. of the sum means that only the 

connected matrix elements of the two-current product are chosen. 

28 

We single out from this sum the completely connected part which 

corresponds to the quantity Pµ 11x/ 

"' 
r (p,p',q) =p {p,p',q) +p (p,p',q)' 

µ11 µ11 µ11 
(4.3) 

"' where p µ 
11 

c;ienotes the contribution of 15 z -diagrams. This divi-

sion can be represented graph)'.'cally as: 

x7 n is known' that if "the state < A out I contains .partic'le p or p 
then the current matrix element < ,\ oul I J (0) I p, p ' in> will contain 
disco_nnected parJ;s corresponding to a frle propagation• of these 
particles. Gra:phically the divi-sion of the matrix element into connec_; 
ted and disconnected parts can be represented as follows: 

p 
p•====-

The first term is a completely connected part and enters the ex-
pression for the physical cross section; the remaining 
three are disconnected parts, they lead to the appearance of the 

so-called semi-connected z -diagrams. ' · 
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Pµv(p,p' ,q )= 

pµv(p,p, ,q ) == + + 

+ + -t-

+ diagrams obtained by symmetrizing the initial and final states. 

From the law of. momentum conservation and the spectrality 

condition it follows that for q 2 > 0 

p ( p, p , 'q 
µv 

0 (v) 0 <rs -yq 
2 2 

) -mN)pµ)p,p',q )(4.4) 

;µvcp,p',q}-= 0(-v) 0 (mJ-(v's- i-y'q2 )2)pµv(p,p',q){4.5) 

,. 
Thus, in the physical domain the contribution of .'.I µv ( p, p ' , q ) 

is exactly equal to zero. 

However, in deriving the sum rules (see below) both the 

physical and unphysical domains are used and then nonzero con­

tribution can be given by , z -diagrams from the second part of 

the commutator p ( p, p ', - q ). Below it will be shown that under 

ordir;ary assumptions commonly used in the derivation of the sum 

30 

rules by mea~ of the current algebra the contribution of these·• 

diagrams tends to zero at s ➔ .oo 

We shall show that the problem of the behaviour of the form 

factors of the process of muon pair production at high colliding 

hadron energies and large virtual photon energies and masses 

when 

·2 
S, q , V ➔ oo 

and the following ratios 

• a ., LI.. = 
p q 

m '..:t.!J. 2 _ i2 
2v 

Cu 

2 
"' __g_ 

lv 
(4,6) 

remaining fixed, can be reduced to the study of the equal time 

commutation relations between the space components of the opera­

tor of the hadron electromagnetic current and its time derivative. 

The use of the equal time commutation relations is consi­

derably simplified in the c.m.s, of the muon pair, where q = I qo , 0 
➔ ➔ 

In this system the decomposition of the tensor p I iC fl, p ', q o ) , 

i; j = x, y, z takes the form: 

p (p,p➔',q) =p 0 8 +p 0 0 +p 0 0 + 
I j 0 T t Ix j X T2 ly l y L I z j z 

(4,7) 
(+) ( 

+ PTL O, x 0i z + s, z 0 j X) 
(-) 

+ ipTL cs, x O i z - 0 ix O I z) 

"" It is obvious that R I J , ! 1 l and P 1i 

a similar fashion into five structures: 

RI i' ( p, p,' q O ) = RT O IX O j X + 
I 

r (p,p'.q) =r o BJ + 
I j O Tl Ix x 

P1J ·(p,p' 'qo) = PT 0,x 0 ix + 
I 
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can be decomposed in 

... 

(4.8a) 

(4.86) 

(4.8c) 



in this case 

( 
➔ ➔ , ) (➔ ➔ , ) ( ➔ ➔ , ) R, p,p,qo =r, p,p ,qo -r, p,p,qo = 

= d q > P < P, i ', I q I > + d- q >l < i, i', - I 11 I >. 
0 I · · 0 0 I 0 

where 
( +) 

£ ( q O ) = ± 1 , q O >< 0, i = T 1 , T 2 , L , TL 

(-) ➔ ➔ (-) ➔ ➔ (-) ➔ ➔ 
RTL(p,p',q )=rTL(p,p',qol+rTL(p,p',-qo )= 

c-, ➔➔, ""·c-> ➔➔, 
=P (p,p,qo)+pTL (p,p ,-]qGl). 

TL 

It is seen that the quantities R T 1 , R T 
2 

, R L 

and ' ' R c-, 
TL 

even functions of q 
0 

(+) 

RTL 

(4.9) 

(4.10) 

are odd 

Integrating· (4.1) over dq and 
0 

·q odq o it is possible to ob-

tain a series of relations 

etc. 

Here 

00 

_21· J dqoR,i (p,p➔:qo)=iBu(;,p') 
TT -eo 

00 

_J__ f q dq R (p➔,p~ q )=C (p➔,p '), 
2 TT _,,., 0 0 lj O 1j 

➔➔ ➔. ➔ C 

Bil ( p, p ') = -i J dx .< p,p 'in I [ J 
1
( x, 0), J l (0) l I p,p ', in> 

• C 

c,j (p,p ')=-if d:< p,p 'in /,[J ,{x~O),J r(0) ]I p,p 'in> 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

From these relations we keep only those which are not trivial from 

the parity considerations 
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l oo < ,> ➔ ➔ , . ➔ ➔ , ➔ ➔ , 
-(dq R (p,p ,q )=.0,.;,;.(p,p )-Bzx.(p,p) 

17 0 0 TL O · (4.15a) 

L j d ~ q R ( p .➔p . : q . ) = C (p~ p ' ) , 
11 o O O TI O xx (4.15b) 

00 • 

1 ➔ ➔, ➔➔ ') -/dq q RT2 (p,p, q o )=Cyy (p,p 
'l1 0 (J . (4.15c) 

00 

l.. J d q oq oR L ( P~ P ~ If o) = C zz ( P• P ') 
1T , 

(4.15d) 

1 oof d. Re+>( ➔ .:., ) C ( ➔ ➔,) C ( ➔➔,) 
-

0 
qoqo TLp,p ,qo = xz p,p + zx p,p :· 

t1 
(4.15e) 

Nate that.in the system q = Q chosen. the iriyar~a11t variables 

from which the form factors depend upon are of the following form: 

2 , 2 2 ( , ➔ ➔ ') 2 . 2 
s .= m + m + P o P o - P P , q = q o • "' = P o q o • 

a = P 'o /po 
(4.16) 

Hence it follows that when integrating over d q 0 the variables 's 

and a are fixed and q 
2 
""v 

2
/ P;, i.e. in tl;le plane ( q 

2 
, v) the in-

tegration in (3.14) is performed along the parabola. 
➔ ➔ 

Similar sum rules for arbitrary fixed moments P and P 
"' contain contributions from the spectral functions P of the cor-

responding z - diagrams. As is seen, from condition (5) in the Ii-

mit s ➔ oo the contributions of 

intermediate states of hadrons A 

z -di~grams are defined by the 

with infinitely heavy effective 

masses m A • According to the commonly accepted ideology of the 

current algebra method we shall assume that the z -diagram con­

tributions vanish at s ➔ 00 • 'I'his supposition is found to be valid 

in the case when it is possible to change the order .. of the tran­

sition to the limit 8 ➔ 00 and the integration in eqs. (4.15). In fact, 
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for the sum rule, e.g. (15a) the contribution of the z -diagrams is 

determined by 
2 

I oo <-> ➔ ➔ I oo dmN (-> ➔➔ 
-TT fp (p,p ',-lqol)dqo= - -J-

2
E P (p,p~- l.q ol) 

O T.L TT s N 1L (4.17) 

Passing to the limit 5 ➔ 00 under the sign of the integral for fixed 
2 

mA and taking into account (4.5) we find that the z -diagram 

contribution in the sum rules vanishes in this limit. 

In the c.m.s. of the leptonic pair the transition to the limit 

S ➔ 00 is performed under ·the condition 

p ➔ oo, p' ➔ oo. 
0 0 

We shall assume that 

a = P 'o/ Po is fixed; /3.=£ 
Pz 

is fixed; 

(4.18) 

w=qof2po is fixed. 

The fixing of /3 in the invariant from implies that 

~= a(l-/3) is fixed. (4.19) 
V QJ 

Now we suppose that there exist the limits 

B u ( a, /3 ) = eim p O B l j ( P• p ') , . 
. PO ,P ➔ oo 

(4.20) 

a, {3 ls fixed 

C (a,/3)=eimC (p,p'), 
1 J P ,P , ➔eo lj 

, (4.21) 
0 0 

a, /3. ls .fixed 

where the· left-hand side tensors are dimensionless quantities·. 
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Now we make in the sum rules a transition to the limit s ➔"" 

V ➔ oo 
t 

2 q ➔ 00 under the condition that a Cu and /3 are 

fixed. In this limit, as has already been mentioned the z -diagrams . .. 
contributions drop out and the form factors have the following auto-

model behaviour 

Cu 2 ' (+) (-) 
p ( s , q 2 , a, v ) eu = """"i""' F

1
. (a, f3., eu 

1 q , i=T· 1 ~ T 2 , L, TL , TL (4.22) 

Next, going over in (4.15) to the integration .over d eu we get finally 

the following sum rules connecting the limiting automodel values of 

the form factors with the current matrix . elements 

I euo <.-> ' T/ d Cu FTL (a ,{J ,eu) = B xz ( a, /3 )- Bzx( a, /3) (4.23a) 

1 Wo 

-Jdw·w F (o.,/3,eu )=C xx(a,f:3) 
ff O Tl . 

(4.23b) 

} .Wo . . 
-Jdw euF· (a,{3,eu )= C (11.,/3) 

TT O T 2 YY 
(4.23c) 

I euo 
- f d eu eu F (a, /3 , eu ) = C ( a , /3) 
TT O L zz 

(4.23d) 

l w o <+> 
-fdw euFTL(a,/3,eu)=C (a,/3) +C (a,/3), 
TT Q XZ zx 

(4.23e) 

where· 

Po + P 0,.. .!_ (1 + a ) . 
euo = 2 Po . 2 (4.24) 

The right parts of these equalities depend upon -the choice of an 

appropriate model for the current and therefore may -serve as a 

criterion for the choice of some or other model. 
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In the model of quarks interacting by the exchange of a 

vector meson ( "gluon" model) and in the vector field model the 

commutators are of the form: 
+ 2 

➔ ~2i 8 (x.) £ Ilk i/J (0) O' k Q i/J (0) 
[J 1(x,0) ,J1 (0)] ""~ I quarks! 

• ·➔ 

(J 1< x, 0), J (0) ] .. 
j 

where 

2 

0 I fields I 
➔ + ➔ 

-8(x)i/J (0){i(a 1a 
1 

+ a
1
a1 -2ila 8

11 
)-

➔ ➔ 2 

-2 ~(a 1B 1+a
1
B 1 -2aB8

11
)+4M81llQ¢(0) 

1 quarks I 

8 (;) C J " (0) J b (0) + C 
ab I j 

I fields I , 

Q !+ i Q 
(

2/3 

' Q "" : 

0 

-1/3 

6 _:J 

(4.25) 

(4.26) 

(4.27) 

(4~28) 

(4.29) 

Taking into account (4.25) and (4.26) from the sum rules fora polari­

zation form factor we get 

Ct) 0 
const for quark model 

(-) 

l J d OJ F· ( a , {3 , OJ ) = (4.30) 
O TL 

0 algebra of fields 

It may also be shown from the sum rule that the quark model 

predicts a larger value of the transverse form factors FT 
1 

and 

F T 
2 

compared with the longitudinal ones F L 
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Consequently, the sum rules .obtained here can be used for 

the choice of some or other model. In the case of ordinary elec­

troproduction similar sum rules have been obtained in ret.f 3 3 / 

{see also/
22

•
34

/). For the process of electroproduction with one 

singled out hadron in the final states analogous sum rules have 

been considered in ref/
20

/. 

5. Vector Dominance and Di-Muqn Mass S.eectrum 

According to the vector dominance hypothesis {see e.g. 

revi.ews/
35

,
36

/) the process of di-muon production proceeds through 

the emission of a virtual vector meson which turns into a virtual 

photon then decaying to a muon pair as is shown in Fig.6 • 

.,.. 
_J • .,.-

8 

a 

Fig.6. Illustration to the vector dominance model 

It may .be expected that the use of the vector dominance 

hypothesis will lead to a correct description of the process under 

'd ti . h 2 cons1 era on since ere q is time-like. 
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We determine the density matrix of a virtual vector meson 

V ( V = p O
, w or tI> ) produced in the reaction 

a + b ➔ V + hadrons (5.1) 

according to 

W /LV(p, p ',q) = 

4 , , · {V) .c {V) . ,. c (5.2) 
=I(211) B(p+p-q-pA)<p,p injJ (0) !Aout>< Aout IJ.(0)jp,pm>, 

A /L V 

{V) 2 2 
where J (x) = ( D - m v) V · ( x) 

/L /L 
is the density of the V - meson 

current. 

Making use of the "current-field" identity . 
2 , 2 2 

mv mp o mw 
J (x)=-.}:-V .(x)=-(-p .(x}-1---.w,,(x)+ 

fl V 2y /L 2y /L ' 2y r-
V p W 

2 
mtl> 
-ct> (x)) 
2y . /L 

~ 

(5.3) 

we get the following connection between the density matrices of the 

virtual photon and vector mesons 
2 

m V 2 

p/LV(p,p ', q) = I ( -) 
V 2yV 

+ interference terms. 

I 
2 

mv 

. { V) 
-W ( - q 2) 2 µ V p • p , , q) + (5.4) 

The relation ( 5.4) allows to express form factors PT 1 , P T
2

, 

P ~±> giving a complete description of the process of di-PL 

muon production in terms of the corresponding V -meson form fac­

torsx/. 

x7 Recall that the .. contribution to the cross section is given only by 
the form factors p T 1 , p T 2 , p ; the form fader p ii' can be de-
termined from the angular disthbution of the muon pair and p i"i: 
by measuring th_e polarization of one of the muons (see § 2). 

' 
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With the aim to employ the hypothesis of vector dominance 

it is convenient to represent the formula for the mass spectrum in 

the form/
121= 

where 

d a a I 
_.:... ... --(1-
d 

2 211 2 · q q 

q~-4m2 q·2-4m2 y* 
~ ) V 

2 
/L a (:s , q 2 

) , 

3q q 

* y y* y* 
a (s,q·2 )= a +a 

* + a: y 
TI T 2 L 

(5.5) 

(5.6) 

is the total production_ cross section for a virtual y * photon with 

mass q 2 in the process 

a + b ➔ -y"' + hadrons. (5. 7) 

According to the vector dominance hypothesis it is connected with 

the total cross section for production of real vector mesons in pro­

cess (5.1) as follows: 

Y* 2 a· {s, q ) = 
2 2 

a mp 2411 p, mw 2411 w 
-{ ( -,--,-,,. ) - a \s) +( · ) - a (s) + 

1 m~-q2 1 2 2_2y2 
. p p mW .q W 

(5.8) 

mJ 2 ,i . ~ 
+( 2 2)~a 

mct,-q rip 
(s )] + interference terms. 

y* 
Inserting this approximate value· for a into (5.5) and neg-

lecting the muon mass Cm/L = 0) we get, assuming the contribu_tion 

of-the interference terms to be small, the following expression for 

the muon pair mass spi::ictrum: 

da a
2 

m
2 

2 411 v 
___..=-~ ( Y ) ·- a (s ). 
dq2 1211 o ma.q2 y2 

V=p·;w,cti V V 

(5.9) 
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It is known that the · <lJ -mes on is weakly produced in hadro_n-had­

ron collisions. Keeping therefore only the contribution of p O arid· 

(iJ mesons and assuming mp "'m c,, , y; : y c,,
2= 1: 9 , y 2 

/ 4 rr = 0,5 

we bring (5. 9) to the form ( m = y q2) 
µµ 

du 2.10-6 P I (iJ 2 --= . [c, .(s)+-u (s)]~ 
d m m ( m 2 

- 0,6) 2 9 GeV µµ µµ µµ 
(5.10) 

or for large m µµ 

-lu 2-10-6 
[ P ( ) I c,, ( ) ] .s11? --= m. 5 . u s +-.u s. -'-. - .. (5.11) 

dm 9 GeV .µµ µµ 

We apply eqs. (5.10) or (5.11) to the analysis of the process 

of production of a muon pair in hadron-hadron collisions. 

a) Proton-Proton Collisions 

0 0 
The production of the p meson in the reaction P +p 4 P +p·+ p 

was not observed in all the interval up to ·p
1
._b = 28,5 GeV 

C 

Jn this same interval the (iJ meson production cross sections 

in the reaction p+p ➔ p+ p+ Cl) are equal to /3 7 / 
GeV 

phb 5-- 10 ..§:.Y.. 28,5 _§z.L 
c C C 

Cl) 

u 140-t.20 µ b 60 µb 50 t.10 µ b 

This fact is in agreement with the analysis based on the double 

Regge-pole mode/
38

/. The analysis of the six_:prong reaction 

pp ➔ pp 1T +1T +1T -TT -

shows that about 24o/o of the events proceed through the production 

of P
O 

meson which corresponds to the cross section of 90 µb /39/. 
+ ++---. The cross section for the eight-prong process pp ➔ pprr rr " rr rr rr -is 20µb. 
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Assuming that here also about 1/4 of the events proceeds through 

the po -production the correspondi:lg cross section is estimated 

to be about 5.µb • Thus, it may be assumed that the total cross 

section for .p O production in pp collisions for Pto.b = 28.5 GeV/c 

is about 100 

u 
!'P ➔ p +. •• 

= 100µ b (5.12) 

The contribution of c,, in (?.10) may be neglected due to the 

coefficient 1/9 • If we assume that u c,, = u P "'100µ b then for the 

mass spectrum of a di-muon produced. in pp collisions with p1._b = 

= 28.5 GeV/c we finally obtain from (5.10) or (5.11) the following 

expression 

du 
PP 22 .10-34 2 2,2 .• 10-34 . ' 

-~ •. SZ, --··= 
dmµµ m · (m 2 - 0,6.) 2 GeV m ii 

µµ µµ .J.Lll 

The corresponding curve is given in Fig.7. 

b) Pion-Proton Collisions 

.JjJJJJ,2 

GeV 
(5.13) 

. + 
Let us consider the case of rr + p collisions (a =rr , b= p) 

Basing on the analysis performed in ref/
4 o/ it may be concluded 

that the P -meson production cross section in the process 

rr + + p ➔ p O + hadrons is larger or about equal to 1840 µ b for 

p = 8,5 GeV/c 
lo.b 

0 

rr +p ➔ P \·· 1840 µb 
u -

(5.14) 
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10·38 
D I 2 3 ' $ 

,rr•p 

s 
'";,,)IGev-

Fig. 7. Predictions of the vector dominance model for the 
mass spectrum of a di-muon produced in proton-proton 
(for p 1,.b = 28.5 GeV/c) and TT+ -proton (for p 1,.b = 
= 8.5 GeV/c) collisions according formulas (5.13) and 
(5.16). . 
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' 

and the w meson production cr.oss section in the process 

+ 
TTp->w + hadrons is 

a 
+ ->w + ... 200µb TT p ·>_ (5.15 ) 

From here and from eqs. (5.10) or (5.11) we get the following 

approiiimate estimate (f;,-om below) for the mass spectrum of a di­

muon produced in the "+ p collisions with the pion lab. momentum 

8 0 5 GeV/c 
.+ 

,da TT P 

,dm· 
i/JP 

. 3,7 .10-33 2 
sm· 

m µJm ;µ-0,6H 2 . Gev"" 

3,7 • 10-33 2 sm 

m·c µµ GeV 
(5.16) 

6. Estimation of the Lower Limit for the Mass Spectrum 

To obtain the asymptotic estimate for the di-muon mass spec­

trum we consider the hadron part of the matrix element of the 

muon pair production process when I p' I ... oo • Then up to the 

terms O (..!_) the matrix element is 
li'I . 

< Aoutl J o.(O)I p,p 
µ 

, C 
, in~ ... 

lt1 ... 00 

, C,tn. 0 1 
!Ji..<Aoutl J (0)jp,p 'in> +0(-). 

, o , ... , I 
E ·P 

(6.1) 

T11is means that the di-muon production process is mainly. defined 

by the JO(. 0) compon~nt of the electromagnetic current i.e. has 

the "Coulombic" character. 

Next using the Bjorken limit, i.e. the expansion of the · T -

product into a series of the equal time commutators and -keeping 
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only the first term of this asymptotic series we obtain the following 

approximate connection with the matrix element of hadron-hadron 

scattering off the energy shell 

o lqx o.m. (a) o 
< A out I J O (0) I p, p 'in >, = - i J d x e < A imt I T (J O ( x) J t0) I p ·> 

o.m. 

➔➔ 

1 ➔. -lqx e.m. (;,_) 0 

-r-➔ --=f dx e ( A out I [ J , ( 0), J (O)l 1 p >. = 
q ➔ 00 ..; q2 o (6.2) 

1 . (a)(· ) j c = -=- < A out I J O p > 
yq2 

+ the contribution of quasi-local terms, 

(a) 

where J (x) is . the hadron current carrying the four-momentum /':,. , 

Using eqs. (6.1) and (6,2) we can obtain the following appro-

ximate expression for form factor • p 

tion process: 

defining the di-muon produc-

p (s,q 2 , /':,.2, 8 )"' 4m ,j8
2

-/':,.2 
2 a 

q ·ab 
( 8' /':,. 2 ). 

(6.3) 

The quantity a ( 8 /':,. 2 
) entering here is the analytic continuation 

ab 

of the total cross section of interaction of hadrons a and b 

throughout the unphysical domain where the square of the had-

ron mass is negative and equal to !'l.
2

, 8 being the unphysical 

hadron energy in the lab. system. 
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p p 

Fig. 8, The amplitude of scattering of a hadron with four-
momentum /':,. and unphysical mass-square /':,. 2 by 
hadron b yVith mass p 2 =m 2 .- In the lab. system 
(p =0) the unphysical hadron energy is 8 = L pl':,.. 

m 

In this approximation we find for the triple. differential cross 

section the following expression (neglecting m' and m ) µ 

d au 

dq 2 d~ 2 d8 

2 2 
_a _ _ m_V 8 2_/),,2 

3rr 8 2q4 

a 
ab 

( 8 /':,.2 ) (6.4) 

or for the mass spectrum 

d 

A2 . 2 
C7 2 

2 
I;; '-' /':,. _ q2 

- a m o ~-+~--
2 =-- r o-q ,-

d q 3 2 --2-4 J d t:,. 2 f 4. "' 
rr s q q2_,, d8 

2 2 ~ 2 

y8 -/':,. O'ab(8, ). (6,5) 

/':,. 2 

2m 

If from the axiomatic . field theory or from the analytic S -

matrix theor/42•43/ we o~tain a restriction on aab (8 ,!':,. 
2

) out 

the mass. shell then eq. (6.5) will give a restriction on the mass 

spectrum. It is known that for simpler case of the electromagnetic 

form factor F ( t ) from the field theory and the analytic S -matri~ 
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theory it follovvs an exponential restriction for the lower boundary 

of decrease of the form factor. By analogy it may be expected that 

q ab ( 8 ' l'J. 2 ) ,> q ph 
- ab 

·-av-F 
e (6.6) 

where u is the total cross section of interaction of real par-
. ab 

tides and · a is a certain constant. Then from eq. ( 6.5) it follows 

the low estimate for the mass spectrum provided that s» q 
2 >> ~ 

du 2 u a 
-,> 20a ab • (6 7) d 2 - • . 

q qs a 6 

Another method of estimation of the mass spectrum had been 

considered in a recent pape/
44
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The works reviewed in this report have been discussed re­

peatedly at seminars at the JINR Laboratory of Theoretical Phy­

sics (Dubna), at the Institute of High Energy Physics (Serpukhov) 

and the Institute of Theoretical Physics (Kiev). The authors express 

their sincere thanks to the members of these 

helpful comments. 

APPENDIX 

seminars for 

Determination of the Boundaries of the Physical Domain 

i·n the Process of Di-Muon Production 

The law of four-momentum conservation is of the form: 

p + p = q + PN· 

Introduce the vector 

p + l'J. = p . 
N 

(A.1) 

i'1 ·= p'-qtheri 

(A.2) 
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.1 

From where 

where 

l'J. 2 "' m 2 _ 
N 

2 
m· -2m 8, 

I 8- .. -pl'J.=(c;.-qo). 
m 

The c~se m N ;!! m corresponds to the case of elastic scatter-

ing. Then l'J. and 8 are connected unambiguously, i.e. they are 

not independent variables: 
' l'J. 2 

B .. - --. 
2m 

This is minimal 8 ,,.3 min since q 
O 

in this case maximal. Let us 

consider the case when a virtual ph,oton flies in the back'II\Zard 

direction in the lab. system. It is clear that for fixed invariants it 

will get a minimum energy ( q ) and then 
0 min· 

8 = t - ( q O ) min • max 

We find ·(q o) min from the equality 

/'J,2em ,2+q2-2,t(q) -2,.Jt2-m'2,J(q )2 -q2. 
0 min O min 

We ·put m 'El O then solving this equation we find 

2 2 

( qo) = q -l'J. 
min 4 ( + 

,2 ( q 

q 2_fJ. 2 
2 

8 
. q2 q2-l'J. 2 . fJ. 

t - (q ) = £ (1 ... - - ) = l *+ - ' 
0 min q 2_1'12 4 ( l * max 

where 
,.*· .... ( l'J. 2 

A 2 2 
L1 - q 

.. 
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(A.3) 

(A.4) 

(A.5) 

(A.6) 



Thus, in the physical region 

~ 2 2 

--<8<£* +..L.. 
2m - - 4t* (A.7) 

Now we 2 shall find the physical domain ~ for fixed s and 
q 

2 .It is determinea from the condition 

8 
min 

=8 
max (A.8) 

from where we find 

2(-) 2 

~ < ·~ < ~ 
2(+) 

(A.9) 

where 

~ 2 C±> 
2 

q E + 2 2 2 •2 4 2 2 
q m .,. 2 m £ + £ y 4 m ·t: + q -4 q t: m -4 q m 

2.£ +m 

We note that there is· an interesting analogy between the 

reaction under consideration and the inelastic neutrinoproduction 

reaction. Namely, if in the Appendix to the Adler's pa~ej 2/ we 

replace the 

q
2 

by our 

each other. 

square of the lepton mass by our q 2 and the Adler's 

-!l then we essentially reduce both problems to 
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