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Summary 

A generalization of the well-known Tolman problem to the 
case of an electrically charged dust-like matter of the central-sym­
metrical system is considered. 

In Sec. I the first integrals of the appropriate system of 
Einstein-Maxwell equations are found. 

In Sec. 2 the problem is formulated in such a special form 
that when the total charge of the system tends to zero the closed 
Friedmann world metrics arises. This system is considered at the. 
initial moment, namely, at the moment of maximum expansion. For 
a small charge the external and internal solutions are sewed ' 
together. 

For any arbitrary small electric charge the metrics is found 
to be unclosed. The metrics of a near . Friedmann part of the 
world turns through a narrow throat (for a small charge) into the 
Nordstrgm-Raissner metrics with parameters y--;- m O = e O • 

The expression for the electric potential. in the throat 
2 

¢ h = . ~ is independent of the electric chaE,ge. ·With increa-
y K • e y K 

sing charge the radius of the throat r h = ~ 2 grows. The 
state of the throat in classical description is essentially unstable 
from the point of view of quantum physics. The production of 
pairs of various kinds in large electric fields of the throat makes 
the latter polarized up to an effective charge Z < 137, indepen­
dently of the initial arbitrary large charge of a material system. 
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1. Generalization of the Tolman Solution to the Case 

of Electrically Charged Dust-Like Matter 

The solution of the Einstein equations for the case of 

a central-symmetric gravitation field in the , comovirig coordinates 

system for dust-like matter (pressure p = Q ) was found by R.Tol-

man/1/. 

For a number of problems it is interesting to generalize 

the Tolman solution to the case of an electrically charged dust­

like matter. 

As is known, the closed Friedmann world is described by 

particular solutions of the Tolman problem. 

It is also known that for charged matter the world metrics 

cannot be closed even in the case if the matter density exceeds 

the critical one. 

The question arises as to how the closed Friedmann world 

metrics is deformed under the . action of, e.g. weak perturbation 

induced by an electric charge. The answer to this question must 

be obtained by solving ·the system of the Einstein-Maxwell equa­

tions 

k k 1 k 
GI =Ri-201 R= 

8 7T K 

c4 

k k 
(T1+E1), (1) 
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I k 

F1k 
- _I_ a -v-=i axk (y-g Flk)=-~. 

a C J 

F h aF ft 
axk =0. 

aF.k 
'- + ~ f 

ax ax I 
+ 

(2) 

(3) 

The energy tensor in the right-hand side of eq. (1) is chosen 

in the form 

A 0 0 0 f+--
8 17 

k k 
T. + E. = 

1 1 

0 A 0 0 
81T 

0 0 A 0 --

(4) 

817 

A 
0 0 0 --

8 17 

where 

2 F 01 A= _e_ = - F 
r 4 01 

(5) 

arises as a result of solving the Maxwell equations under the 

condition that the system is spherically symmetric. Here 

k k 0 
T.=8 0 8 " 

1 I 
(6) 

- l 
is the matter tensor in the comoving corrdinate system ( x =q). 
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The detailed form of eq. ( 1) is 

2 -
811K I I 1 ..),. /L , , , ) -V ( • • 1 • • 3 • 2) -µ K - ( ) ---(T +E )=-c (-+µ v -e µ--µv+--µ -e =--A=-A, I 

c 4 1 1 2 2 - 2 4 c4 

817 K ( T 2 E2) 1 -,\ ( 2 ,, , 2 2 ,, ,2 ,, , ',\, - , , ) ----.- + = -e v +v + µ +µ -µ"' -v +µ v + 
C 2 2 4 

"' 
(II) 

1 -V • • •• •• •• •2 •• •2 K 
+- e (,\v +µv-Aµ-2A-A -2µ -µ )=--,-A = A 

4 C 

• 2 

817 K 0 0 -A ,, 3 , 2 /L ',\ , 1 -v ( . . /L ) 
-- ( T + E ) = - e ( /L + - /L - -- ) + - e ,\µ + - + (III) 

c4 o o 4 2 2 2 

-µ 
+ e 

817 K 

4 
C 

"+~A="+A 
c4 

811K (T 1 Et) 1 -A( 2 ·, ·, ,\. , ,·) 0 
--- O + = -- C /L + /L/L - /L - V /L = • 

C 4 0 2 

Here the metrics is chosen as 

d 2 V ( - 0) 2 ,\ ( d l) 2 /L 2 s = e dx -e x -e du 

da
2 

=(dx
2

)
2 

+(sinx
2

)
2 

(dx
3

)
2

• 

The point denotes the differentiation with respect to 

is the differentiation with respect to q • 

Using conservation laws it is easy to ge/
1

/ 

;, "' ,\ . 
(=-{(-+µ>, 

2 

, 
2_:_A= 1 

-v ( . 
e 2 

5 

(IV) 

(7) 

0 
x , the dash 

(v) 

(VI) 



In our case the co moving sys tern ·is not synchronous: v I= 

(V) integrating over x 
O 

, we get the relation 

A 
C(q) -2 

---e 
r 2 

"' ( = 2 __ K __ 

c4 

where 
2 µ 

r = e 

Eq. (VI) yields 

2 e e' 
v'= e 

j.._ 

2 

r C ( q ) 

. Eq. (IV) can be rewritten in the form 

, . 
2 On r')° -A - ~- = 0 

r' 

Integrating eq. (10) over x
0 

we get 

2 V, r O "' 
ln(r') =A+J--dx +In(l+f), 

r , 

where f = f ( q ) , 1 + f > 0 . 

Denoting by ¢ the expression 
A 
2 

,. 2cc' J vrdo __ _ 
¢=J-,- X = C(q) 

r 

e r d x 
,--2-

r r 

eq. (11) can now be rewritten in the form 

, 2 
A r -¢ 

e = ---- e . 
l + f 

6 

0 

The expression for ¢ can be obtained in the following 
0. From . 

way: Using (13) eq. (12) can be rewritten in the form of the in-

tegral equation for ¢ ¢ 
-- . 

2 e e' e 2 i- o 
(8) ¢ = ~J 

2 
d x (14) 

C{q)yl+f r 

· I 
l 

(9) 
I 

I 

(10) 

(11) 

(12) 

(13) 

Hence for ¢ we get the differential equation 

"" ¢ . -""T r 
¢=o(q)e ~· 

r 

where 

Y 2 e .e' 
o(q)= 7------;;;-i' 

C(q)yl+f 

from it' 

¢ "' 
- 0 

2e 2 =-- +2r/, (q). 
r 

Inserting (17) into (13) 'we get 

A 
e 

, 2 
r 

✓~ , 2 
( l+fr/,- ee ) 

or denoting C ( q) r 

j~ 
1 + f rj, ~ 

r-­
v' 1 + f 

. 2 e e' 

o(q) = ~r' C(q) 

we get finally 

e A = 
, 2 

r 

1 + f 

1 
o - 2 

1--) 
2r 

7 
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Eq. (1) can be rewritten as 

....,,\ ( , 2 , , ) -V ( • • • 2 • • ) K e 
2 

e r + r rv -e 2 r r + r - r r v - I= - -- ---4 2 
C r 

It is easy to check that 
2 

-.\ 2 • o 
e (r' +r'rv')=(l+f)(l- ___ ) 

4 r 2 

e-v c2·r· r+ r. 2 
- ; r ~) 

1 --11.2 
_ -. (e r r) 

r 

Integrating (22) over x 
O 

we obtain 

-v 
e 

2 

; 2 = f + 2 m ( ~) __ l_ ( _K_ e 2 _ o ( 1 + f)) , 
r r2 c4 4 

where m ( q ) is the integration constant over 

be rewritten as 

XO 

. ....,,\ (2 ,, ,2 , ,\') -.\(,\.. ) I (A"' "") 2 -e r r+r -rr +e rr+r + = +Er 

Maki_ng oneself sure that 

....,,\( 2 (....,,\,2) 
e 2r"r+r'-r'r.\');· err' 

r' 

-v . . 2 
e (,\ r r + r ) = ----

(e-v;2r)' 

r 

(22) 

(23) 

• Eq. III should 

(24) 

inserting into the obtained expressions (21) and ( 23) and denoting 

by 

m ,( q) -
C 2 

K 

[m(q)+ 0 ( ~-:~!..>1 
2 

. 8 

(25) 

we get the relation 

, 
m I 

1 --
(q)=-C(q)yl+f .• 

2 
C 

(26) · 

Eq. (11) gives no new relations, it is a consequence of 

·the equations used by us. 

The first integrals of eqs. {I) and {III) contain three 

unknown functions 

f(q),m(q) and e(q). (27) 

These functions · concretize the problem - they mu~t be given 

by initial conditions. 

As the space-like hypersurface L which must specify initi• 

al conditions we choose the surface x 
O = 0 • The relation 

A(O,q) r ' 
2

( 0, q ) 1 
e = - - (28) 

l+f(q) (1 -
0 ( q) )2 

2r(O,q) 

is compatible with the condition (IV). Eq. (III) on the surface L 

can be written in the form 

. ,\ 2 

( -11•2)'(....,,\ , 2 )' , 2 KC( )-2, K e err-err +r= --4 qe r+----
c C 

4 r 2 
r' (29) 

We choose as the q canonical coordinate the distance from the 

centre at the initial time moment ( e .\co, q~ 1) , then the relation 

(28) becomes the definition 

yl+f = r'(O,q) + ee 
C(q)r((l.,q) 

(30) 
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Further we specialize our problem mainly for .,the case in 

which ther.e arises a closed Friedrriann world when the electric 

charge of the system in question tends to zero. 

2. Friedmann World Deformed by the Presence 

of Electric Charge 

a) Internal solution 

In what follows we will try to specify the unknown func­

tions f(q) , m(q) and e(q) so t0at at e(q) ➔ 0 the closed Fried­

mann world metrics will be obtained. Sinoe, in the closed world 

the total electric charge is zero then it is. clear a priori that the 

metrics of tne world under consideration even for small electric 

charge must be incompletely closed and the Friedmann metrics 

deformed by the charge must have outside matter a Nor<;istrom­

Raissner "Aussenwelt". Our problem is to find, at least, particular 

examples for which it is possible to describe in a continious man­

ner all the space of such a world~ 

Thus, we expect that the internal solution close to the 

Friedmann solution for the closed world must pass through the 

throat to the well-known external Nordstrom-Raissner solution. 

Therefore for the internal solution we try to formulate the 

initial conditions (to the x 
O =O - moment of maximum expansion of 

the system) are the closest to the Friedmann ones. 

Namely, let 
0 0 

1 for x = 0 all the space belong to the R . /2/ -domain , 

2° initial velocities of all the particle be zero, 

3° the energy density at the initial moment be independent 

of q 

10 

o Eo T 0 + o=Eo const. 

Below we will show that the'problem with such conditions in the 

case of .electrically charged dust has a solution, i.e. there exists 

such a function C ( q) or M ( q) which is compatible with the given 

conditions. 

With the given initial conditions eq. (29) is rewritten in the 

form 

'2)' K r2 
(r r = 8 ~ --4- E o 1 - - C 

r' 

Denote 

81TK 

--7£ 0 
C 

- 3 -~--
0 

Integrat!ng eq. (31) we get 

or 

1 -
r 2 -

4 a2 
0 

r == 2 Ii sin 
0 

r, 2 

q 

2a
0 

and expression (29) can now be rewritten as follows 

2 ~ C(q) 
C 

+--K- e2 
C 4 ----2 

r 
== 3 sin 2 ___ q_ 

2a 
0 

Next we specify the distribution of the charge. 

ll 

(31) 

(32) 

(33) 

(34) 

(35) 



Let all pat;-t.icles of du.st of the system have the same ratio 

of the charge to the mass, equal to f3 • 
We denote 

-
1

2 f 
C 0 

q 

C(q)dq =M(q), (36) 

then the new condition is written as 

e(q)=f3M(q). (37) 

Now the equality (35) takes on the form of the equatl.on for 

finding M ( q ) 

- -2 
2M'(q )+{3 

where 

K 
M =--M, 

c2 

2 
M (q ) 

4 a 2 sin 2 _q_ 
o 2ao 

{3- = ~{3 
,,;-; 

= 3 sin 2 _q __ 
2 q 0 

(38) 

By means of substitution it can be checked that eq. (38) is 

satisfied by the following expression 

- 4a 
M = --::-~ sin X ( b ctg b X • sin X - cos X ) , 

/3 2 

where 

X=-q __ , h=v1--2i 2 

2a 4 
0 -

It is easy to check that for f3 ➔ 0 M transforms into 

- ( ) 3 sin 2x M q =-a (x---....;..), 
0 ·2 0 2 

12 

(39) 

(40) 

i.e. into the expression for the "internal mass" /
3

/ in the non­

charged Friedmann world x/. 

Further using ( 9) it is possible to get 

ev(O,q}=( sinbx )4 

b sin X 
(41) 

With these remarks we finish to consider the internal solu­

tion at the initial time moment namely at the moment of maximum 

expansion of the system. 

In the next paragraphs the solution in vacuum (in the regions 

where t= 0 ) and the problem of sewing of the internal and ex­

ternal solutions are analys_ed. 

b) External Nordstrom-Reissner solution 

As is known the geometry of the space outside the spheri­

cally symmetric mass m O with electric charge c O is described 

by the Nordstrom-Reissner metrics 

ds 2 =<l>(r)dt 2
'-

dr 2 

<I> ( r) 
- r 2 du

2 
, (42) 

where 

<l>(r)=l-
2 K m

0 

c 2 r 
+ 

2 
K e O 

C 4 r 2 

In the· problem considered one should distinguish among three 

cases 

(43) 

x7 The total mass taking into account the gravitational mass de­

fect in the closed worl~ is zero /l{ 

13 



~ 

1 0. ..jK m 
O 

> e
0

, 
. 

2 o_ ..;--;; m = e 
' 0 0 

(44) 
3 0. ..;-;- m o< e o • 

In the first case the metrics is characterized by two pseudo-sin­

. gularitie~ of the Schwarzschild type 

<I> (r ) - <I> (r ) = 0 
1 2 

For r 
2 

< r < r
1 the coordinate r has a time-like character. 

Using the Kruskal 

space-time for this 

x O = 0 for the time 

to r 1 • 

type coordinate it is possible to describe the 

case /
4

/_ A test particle placed in r. = r 
I 

for 
11Km 0 .. 

T = ---3-- reaches r = r 2 , stops and returns 
C 

At the initial moment (moment of time symmetry) the space 

geometry has the form of a "wormhole" (the Einstein- Rosen brid-

ges). Its throat pulses with a period 2 T and never is closed 

(contrary to the Schwarzschild case). The complete closing of the 

throat is prevented by field electric lines going through it x/ to 

the Euclidean infinity. 

The second case (2°) differs from the first one by that the 

T -domain is absent. At the point 

e o ..;-; 
rh 

Km 0 = __ c_2_ 
C 2 

x7 For e
0 
➔ o 

be inteq,rrted 
world /..:J, 5 • In 
pretation. 

2Km 
<I> ( r) = 1 - 2 ° the Schwarzschild solution may 

C r 
as tI,e/ external solution on for a semi-closed 
ref. / 5 

the Kruskal metric has its physical inter-

14 

• 

<I> has a zero of the · second order 

r 2 
<l>(r) = (1- _h) • r (45) 

As it follows from further analysis in this case the geometry 

at the moment of time symmetry may be of two kinds: 

a 
0 

"wormhole" l 

and 

f3 ° - geometry with monotonous change 

of r in particular, realized in the Papapetrou model (static model 

of charged dust with e _ 1). 
f3 = v,<M -

When a semi-closed charged world is implied the external 

solution satisfying the Euclidean condition at infinity is of the type 

ao 

O - 0 0 · 
Case 3 (e O >../Km J turns into case 2 ({3 ) (with decreasin 

e ). Here singularities are absent all the space being of the R 
0 

type. In this .case semi-closed worlds (with the Euclidean condi-

tion at infinity) are not realized. The limit ff= 1 yields the every­

where static system (Papapetrou model). 

We are interested in the problem of sewing the external 

Nordstrom-Raissner solution with the internal solution describing 

a near closed· world, i.e. the world the metrics of which, as e 
O 
➔ 0 

would transform to the metrics of the closed Friedmann world. 

For e =I O our problem is to continue as much as possib-o . . 

le the internal Friedmann solution (to decrease the sizes of the 

throat) to a degree allowed by the presence of the electric field. 

From this point of view it is advisable to consider the deforma-

15 



lion of the Friedmann metrics by a weak electric charge 

f3 « I • 

From all. the cases considered, only case 2 °(a °> satisfies 

our conditions. All the remaining cases do not lead to the closed 

world when e O ➔ 0 . 

c) Sewing of the internal and external. s olu­

tions 

In order that it will be convenient to sew the boundary 

conditions we trc:i.nsform (7) to a· form close to (42), namely, to 

ds 2 =/3 dt 2 -a dr 2 -r 2 da 2
, (46) 

where as x 1 (or q -coordinate) we have chosen a coordinate the 
. d 2 square of which is the coefficient of a • 

dr-rdx 0 

The transformation dx 
1 = ------, dx 0 = d x 0 transforms 

r 

the first two terms of (7) as follows 

v( d o,. 2 ,\(- d 1) 2 I [ v ,\( r J2] ½ d o ,\ r [ v ,\ ( r )2 1-½ d 12 e x J -e x = e -e - x +e - e -e - J r -, , , 
. r r r 

(47) 
( 

,2-,\ •2 -v)-ld 2 
- r e -r e r • 

The expression in the brackets can be transformed by means 

of the integrating multiplier µ \ t, r) to the form 

[ev-e,\(_!_) ]½ 
r' 

0 A r" f V ,\ ( r ) 2] -½ 1 
dx +e -,2'-e -e -, dr=,., dt, 

r r µ(t,r) 

that contains in the right-hand side the total differential. 
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I, 
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For further ~onsideration of importance is the expression 

for 

a 
1 

r , 2 e -,\_ r 2 e - V 
(48) 

From the conditions of sewing the internal a_nd external 

solutions on the surface · I 

In - out I ~ ' a - a "' 
r In= r out I I, 

we get • 
2 

(r'2e-A-r2·e-v )I =1-
2Km

0 
Ke

0 

q = q 
0 

2 
C r O 

Applying (21\ (22) and (25) we find 

ml(qo)=mo• e(qo)=eo. 

+ 4 2 
C r O 

(49) 

(so) 

(51) 

We have not received as yet answer to the main question, 

namely for what q O we are forced to sew the internal and· external 

solutions if we want to continue the Friedmann world up to its 

maximum possible closeness with minimum size of the throat at 

the moment of time symmetry. In case 3 ° · the sewing of a sentl­

closed world with a space Euclidean at infinity is impossible. 

Consequently, on the boundary ,,r; m 
1 

( q 
O 

) :: e ( q 
O

) and · the de­

sired q 
O 

is found from the equation 

,/Km (q )=e(q ). · 
1 0 0 (52) 
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The condition (52) can be written in the f~rmx/ 

r 2 2 
r'2=(1--h-) (53) 

o r 
0 

where 
r = ,,;-; e o_ = K m O - and 

h 2 2 ' C C 
r o and r~ are the values 

of r 

for a 

and ~, on the boundary of the matter. The condition (53) 

semi-closed world ( r' < 0 ) in the case of a Euclidean 

space at· infinity leads to the relation r < r that corresponds 
h 0 

to the presence of "wormhole" i.e. to the case 2° ( a 
O 

) • 

Thus, for the semi-closed world with Euclidean metrics at 

infinity condition (52) can be rewritten as 

r 
(J 

r 
h 

r 
0 

- 1 . (54) 

Let us investigate in more detail the model of a weakly charged 

world iJ « 1 ( or rr j « 1 ). 

In this case 

M = ..!._
2 

a 
O 

( X -. sin X • cos X ) + 0 ( (3 
2 

) 
0 0 0 

r = -3
2 

i a ( X - sin X • cos X ) + 0 ( f3 3 
) 

h O O O 0 

(55) 

r = 2 a sin X , 
0 0 . 0 

r' = cos X , 
0 0 

-;;/Eq. (31) is rewritten in this case in the form [( l·-r'
2

) r) '= 
2 

K e
0 

, 2Km 
from where 

_ ___ Ke~ 
r' 2 =1---....... ~+ 

c 2 r c 4 r
2 

Owing 
= -7 ~-r 

to the continuity of r and r' on 
in this domain of r (52) holds. 

the matter-vacuum boundary 

18 

where 

O<xo<rr, X = 
0 2 a

0 Tf 
The condition (54) for 2 < X o < " 

qo 

and small /3 is written 
in the form 

3 3 - X 1 + (1 + -- f3 ) cos X = - (3 ___ o 
· 4 ° 4 sin X 

(56) 
0 

For /3 = 0 XO = rr i.e. X O reaches its maximum, that is the world 

becomes a completely closed Friedmann _world. 

For a small charge /3 « 1 the desired boundary of the 

internal (Friedmann) solution must be anywhere near rr ·, i.e. 

X O = " - 8 where 8 is small. 

Indeed, as follows from the graph (Fig. 1), eq. (56) has 

the only solution X 
O 

• 

For f « I X O is close to rr , for /3 ➔ 1 X O tends to ; ·. 

VVhen the world charge ( e O ) increases, its external 

(Schwarzshild) mass and correspondingly the throat radius 

rh 
v~ ell. 

2 
C 

(57) 

increase too. It is essential to stress that with increasing 

the electric field potential in the throat 

<ph= ~-
r h 

(58) 

does not change and remains constant 

C 2 

eo 

cph 
v7 (59) 
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The quantity ¢ h plays the role of a maximum potential; it is 

composed of world constants and, what is of interest, contains 

no electric charge. 

I. Throat 

The condition .,;-;: m O = e 
O 

ensures the throat to be static. 

An external observer always sees a charged as much as possib­

le continued semi-closed world in the form of a harden spherex/. 

The dynamics of a part of near closed uniformaly charged 

world remains non-stationary in this case too. 

After the moment of ma:ximum expansion the charge cloud 

described by the internal solution contracts. But the collapse 

of the. system is stopped by electric forces at extremely small 

radius defined by the sizes of the throat, i.e. by the total electric 

charge of the system. 

It should be stressed that in the throat there is no matter. 

The fact · that the material cloud is non-static does not influence 

the statical character of the throat. In the throat the field lines 

are contracted in a maximum possible manner ( ,¢ 
h 

c2 
---). 

VK 
From the throat the field lines diverge both outside, to the side 

of the Euclidean infinity and inside the near Friedmann world. 

x7We recall: in the case y K m 
O 

> e 
O 

the throat oscilla-
tes between r 

1 
· and r 

2 
• At e 

O 
➔ yT m O r 1 ➔ r 2 • In the case 

~ m O = e O ~t e 0➔ 0 the external (Schwarzschild) mass vanishes. 
The world becomes completely closed, i.e. in the case y',<-m = e 

0 
all the mass is of electric origin. Under these conditions any 
initial value of the internal mass of non-electromagnetic origin 
is compleiely cancelled by the gravitatio~al mass defect. 

20 

Thus, the throat imitates the electric field (charges) source 

though no material source of charges have been localized in the 

throat. 
~ 

A more detailed consideration shows that the field in the 

external space and the field between the matter and the throat 

have opposite signs. 

F e (in the external space, 
(60) =--, tr r 2 

domain o) 

F = __ e - • (between matter and throat, 
tr r2 domain I (Fig. II) 

Indeed, the connection between F O and F tr is given by the 
X q 

transformation 

F 
tr 

D(t,r) F o • 
X q 

D(x 0
, q) 

(61) 

Further it can be shownx/ that 

D ( t ' r ) is the 

. D ( t, r) . , . 
sign 

O 
= sign r i.e. 

D'(x , q) 
the sign of 

D(x 0 , q) 
same as for r ' so we have ( 60). 

at 2 ar 2 
g =<--) g +<--) g 

xoxo, axo \t. axo rr 

but 

( at )2 (ar )2 
gqq= _a_q_ gtt+ _a_q_ g rr 

g o o> 0' g < 0 ' 
X X . q q 

g > 0 g <0. 
tt rr 

Consequently, 
at )2 a 2 ar 2 at 2 <-a--o g tt > ( ~ ) (- g rr ) ' ( -a- ) (- grr ) > ( -a - ) g tt ' 

. x . at a.x a a . q . q 
from where I -a O ..d.J:. I > I 7 -at I and consequently the sign of 

X a q ax q , 

D( t,r) a t a r a r at . . . . 
--,0- "' --0 -- - --::-u- -- is defined by the first term, since 
D(x ,q) ax aq ax aq 
always --'LL.0 > 0 - the time always increases ("arrow of time"). 

ax 
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In the very throat the test electric charge must be at 

rest. 

In domains I and O it is easy to realize the static frame 

of reference using charged weightless particles . of dust. 

Thus system coincides with the Nordstrom-Raissner one. As 

is known the entire description of the Nordstrom-Reissner metrics 

(i.e. including the domain between its two pseudosingularities) is 

given by the Kruskal type coordinates (non-static frame of refe­

rence). In our case the domain ( r2, r 1) reduces to one solution 

r = r = r namely to the throat. 
1 2 h ' 

The static frame of reference· does . not cover only this 

part near the throat. 

Polarized Throats 

(necessity of quantum description of the throat) 

...;--;- e O) . . 
Basing on eq. (57) (r h = ----;;v-- we are led to the conclusion 

that the throat radius increases proportionally ·to the total electric 

charge. This is the description of the throat from the point of 

view of the classical theory. But from the point of view of quantum 

physics such a state of the throat cannot be stable. Indeed, 

if at some initial moment there arises a throat with the above 

properties then in its superintense electric field if occurs inevi­

tably a rapid process of production of any kind electrically char­

ged pairs, proton-antiproton pairs, any kind meson pairs and fi­

nally, electron-positron pairs. Opposite charges will tend to decre-

. ase the throat effective charge while the charges of another com­

ponent of pairs will flow together to the Euclidean infinity. 

In this process the throat charge gradually decreases toget­

her with the throat radius and the internal metrics of the system 
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becomes more and more close. We consider this effect in more 

detail not so much to give an exhausting quantitative description 

as to attract attention to this very, interesting, in our opinion 

situation namely the necessity of application of quantum theory 

ii:t a ultra-macro-world just for the description of such processes 

which seems to play essential role only in micr~world. The 

qialitative estimates being, as yet, far from the desired ones, are 

in themselves of some interest. 

The production of electrically charged pairs in a strong . 

homogeneous electric field has been considered by NikishoJ
6

/. . 
If there is a homogeneous electrostatic field of inten-

sity E filling up the space of a cube of dimensions L then the 

probability of formation of a pair in it ( say, electron pair) with · 
➔ 

a given momentum (p) and spin (r ) for all the time is given 

by the expression 

W 
c2( 2 2 

... ,,,exp( p+p + 2 2 
pr, -17 1 2 moc 

e E h c 
) ' 

(63) 

(E=(0,0,E)), 

where m 
O 
is the particle mass, 

➔ 

p is the particle momentum of 

a produced pair after switching off the field. 

In .such a problem p must be assigned to the discrete 

spectrum, i.e. 
(I} 

Lp =21rhn 
D 

( i = 1,2,3 ) • 

Eq. ( 63) can be rewritten in the form 

2 4 

w n 
1
n

2 
"a;= exp ( 

"_mL)exp(".'"' 1rc
2 

( 21rh/ 0 2)exp(- 1rc\ 21rht 0 2)_(64) 
e Eh c - · e Eh c' L 1 eE h c L 2 
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Here the state of the produced particle is characterized by the 

numbers ( n 
1 

, n 
2 

, n 
3 

, . r ) • 

Summing W n 
1 

n 
2 

n 
3 

r over all the quantum numbers and then 

replacing the sum over n 
1 

, n
2 

by the integral we get 

2 

W=4N exp(-
ITmOC 

e E; h c 

where 

-- 211hc 
eo=V eEIThc L 

N = n • P max= 
max 

4 

L 2 2 )eEhc(--} cl> (g }, 
211hc 0 

N, 

21ThN 

L 

go 2 
2 e_g d g cI>(t 0 >= - f 

V" 0 

c (m 0 + 
ecf, 

max } ~-

(65) 

(66) 

For a large maximum momentum P max' t O » I and cl> ( g O } .. 1. 

Following { 65), { 66) the probability of production of a pair in the 

unit of volume 

c 
4 P max e E h exp ( -W = ---8 

(211 h) 

2 4 
1Tm 0 c} cI>2(g }. 

0 eE h c 
(67) 

Next, we apply illegally eq. (67) to an inhomogeneous static field 
Ze ( Ze ) E=-,- ¢=--. 
r r 

In calculating the total number of pairs NP over the whole space 

in (67) we assume p max to be dependent on r 

Z e 2 

P max= 
er 

(68) 

where Z e is the total charge of the material system. 
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For the total number of pairs produced in a given field for 

the all time we obtain 

1 Z 2 'h "" 2 ' 
8 611 e 1 11.m

0
c 2 

N ::fwd x= 8 2 f-exp(-
2 

r )dr= 
P v · (211 h) c a

0 
r Z e h c 

2 4 
1611 Z e h 

(21Th)
8

c
2 

00 

I 
AO 

_g2 
e dg, 
e 

where 

/ 
2 4 

Ao 
IT m O C =v---ze2hc 

a·= 
0 

..J""i' Z e 

2 
C 

ao 

is the minimum radius. 

· Since 

•oo _g 2 
oo 

e 1 
f--dt=-f 

Ao e 2 A2 

-x 2 
_e_ dx=--1-E (-A

0
), 

X 2 I 

0 

then 

NP 
1 2 2 

=---(Za) E (-A ). 
172 I 0 

For small A
2 . 1 e 2 45 

0 i.e. for Z « - ( _ } :"' IO 
TT a· m 0 yK 

2 2 
E 

1 
( - A 

O 
) "' c + In A 

0 

c - is the Euler constant, and consequently, 
1 2 e 2 

N P "' ~ ( Z a·) [ In ( -- ) = c - In ( IT Z a } ] .. 
TT m 0 y7 . 

.. -1._ ( Z a } 2 In ( e } 2 

"2 mo ..,/7 
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(69) 

(70) 

(72) 

(72) 

(73) 



· 'l'he condition Z - N P = max = Z r gives the value of the charge 

Z r which remains noncancelled the pair production effect 

a2 e 2 
Z r = max I Z [ 1 - Z -- In ( -- ) ] l = 

2 -· 
TT mo V K 

e 
In ( I ---, 

a 
Z r ,. 137 • 

2 
TT 

2 e_) 
4a In (-_'le 

mo v " 
(74) 

In other words, the pair production effect in such a strong 

electric field decreases the effective charge of the throat down 

to the finite value 

the initial charge 

Z r .., 137, independently of the magnitude of 
x/ z . 

'l'he independence of the final charge of an arbitrarily value 

of the bare charge follows also from the well-known Landau 

formula/9/ connecting the value of the bare charge e 1 localized in 

a small domain 'With the value of . the physically . effective charge 

down to which the vacuum polarization effect decrea~es the initial 

charge 

2 
e 

For large 

I + 

e t 

2 
e t 

2 A 2 
__!_!_ In ( ---) 

3 TT m 
0 

or more exactly, 

e 2 ,. 311 

In ( _lL) 2 
mo 

for 
2 

e t 

3 TT 

A 2 
In ( --) 

mo 

(75) 

» I ' 

(76) 

x/'l'his result is rather natural since for Z > 137, as is known, 
begins the process of the real production of pairs/7,B/. 
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It is interesting to note ~at in rough estimates of eq.; (73) 

the same characteristic logarithm as in the Landau formula arises· 

and the argument· of the logarithm in eq. (73) gives the following 

value the introduced Landau expression 

A= 
e 

.. I0
28

ev. (77) 
vT 

'l'his • is just the value of A which is discussed in ~e paper 

by Landau in connection with the possible role of the gravitation 

in elementary particle theory. 'l'he image of the object under ·ctis-. 

cussion is very complicated even from the point of view of the 

Schwarzschild observer. 'l'he matt(j!r is that at the initial moment 

of the existence of such a . system with large electric charge its 

e~ternal sizes proportional to the charge may be very large 

1 Z e VK . . . 
r h = 1 

2 • 'l'he pair production decreases the initial charge Z 1 
C 

. x/ 
down to Zr .. 137 and, consequently 

rn1 e F 
10

-ao 
r < ---- ,. cm. 

r C 2 

But in this region 

.th ct·· h ( WI ra 11 - m 
me 

begin to fill up. If 

Z ( Zr .. 137 ) the shells {round the field source) 

being the particle masses of produced pairs) 

we take into account that hadron particles 

{e.g. protons) have their own sizes then round the system in 

question there arises an original- atmosphere which increases its 

external sizes by about 20 orders of magnitude. Accidently or not 

accidently, the object characteristic in its external properties 

x7 r ~ < 10-
30 

cm, since in the previous estimates the 
possibility of production if any kind pairs has not been taken into 
account. 
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of micro-world physics arises from a cosmologic object and its 

internal content remains the same. 

In ref/lO/ the author introduces for the objects with 

above properties a special term "friedmons". 
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Fig. 1 0 Graphical finding of the boundary of the extremely continued 
solution for {3 « I. 
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External space. 

Fig. 2. The section of the space-time for the charged world 
( r = canst, 0 = T ). J - internal space, O -external 
space, I, II - sections of the world (£/0) for different r • 
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