$$
\begin{array}{r}
\text { ОБъЕДИНЕННЫЙ } \\
\text { ИНСТИТУТ } \\
\text { ЯДЕРНЫХ } \\
\text { ИССЛЕДОВАНИЙ }
\end{array}
$$

Дубна

[^0]
F. Csikor

CONSISTENCY OF BROKEN CHIRAL SYMMETRY AND VENEZIANO MODELS

Submitted to Physics Letters.

Recently, there has been some interest in the question of implications of the Veneziano model $/ 1 /$ to chiral symmetry breaking. On the basis of the Veneziano model Fayyazuddin and Riazuddin ${ }^{/ 2 /}$ assert that current divergences belong to the $(3, \overline{3})+(3,3)$ representation of $\mathrm{SU}(3) \times \mathrm{SU}(3)^{/ 3 /}$. On the other hand, Cronin and King $\mid 4 /$ show that Veneziano's model is incompatible with models for symmetry breaking $/ 3 /$ where the symmetry breaking Hamiltonian belongs to a single $(3, \overline{3})+(\overline{3}, 3)$ representation of $\mathbf{S U}(3) \times \mathbf{S U}(3)$. The statement of ref. $/ 4 /$ is that the σ terms

$$
\left.\int \mathrm{d}^{3} \times A_{0}^{\pi^{-}}(\vec{x}, 0), \partial^{\mu} A_{\mu}^{\kappa^{+}}(0)\right] \text { and } \int \mathrm{d}^{3} \mathrm{x}\left[\mathrm{~A}_{0}^{\mathrm{K}^{+}}(\overrightarrow{\mathrm{x}}, 0) \partial^{\mu} \Lambda_{\mu}^{\pi^{-}}(0)\right]
$$

taken between π^{+}and K^{+}are different functions of the momentum transfer, while according to ref. $/ 3 /$ they are proportional. However, neither ${ }^{/ 2 /}$ nor $/ 4 /$ use a correct off-shell amplitude.

The purpose of this note is to show that using a correct off-mass-shell continuation $/ 5,6 /$, the Veneziano amplitude is not inconsistent with the chiral symmetry breaking model $/ 3 /$. As an example we treat $\pi K \quad$ scattering (where the contradiction of ref. $/ 4 /$ is revealed), however, $\pi \pi$ and KK scattering can be treated similarly. $\pi \pi$ scattering has already been considered in refs. ${ }^{\text {/5, }}$!

The off-mass-shell amplitude is defined by
$\left.T\binom{j, \ell, j, n}{q, p, q^{\prime}, k}=\int d^{4} \times e^{-i p x}<P^{j} q^{\prime}\left|T\left(\partial^{\lambda} A_{\lambda}^{\ell}|x| \partial^{\mu} A_{\mu}^{n}(0)\right)\right| P_{q}^{i}\right\rangle$,
where $\left|\mathbf{P}^{j} \mathbf{q}^{\prime}\right\rangle,\left|\mathbf{P}^{1} \mathbf{q}\right\rangle$ are pseudoscalar meson states, $\mathrm{i}, \ell, \mathrm{j}, \mathrm{n}$ are indices of the mesons; q, p are incoming, q^{\prime}, k outgoing momenta. The σ terms are related to the off-shell amplitude by

$$
\begin{aligned}
T\binom{i, P, j, n}{q, p, q^{\prime}, 0} & =-\int d^{3} x^{j}\left\langle P^{j} q^{\prime}\right|\left[A_{0}^{n}(\vec{x}, 0), \partial^{\mu} \Lambda_{\mu}^{\ell}(0)\right] \mid P_{q}^{i}>= \\
& =-2 i \sigma_{j q^{\prime}, i q}^{n \ell}
\end{aligned}
$$

and

$$
\begin{align*}
T\binom{i, \ell, j, n}{q, 0, q^{\prime}, k} & =-\int d^{3} x\left\langle\mathbf{P}^{j} q^{\prime}\right|\left[A_{0}^{\ell}(\vec{x}, 0), \partial^{\mu} A_{\mu}^{n}(0)\right]\left|P_{q}^{i}\right\rangle= \\
& =-2 i \sigma_{j q^{\prime}, i q}^{\ell} \tag{3}
\end{align*}
$$

Following ref. ${ }^{/ 6 /}$ we assume for the off-mass-shell continuation of the Veneziano amplitude:

$$
\begin{equation*}
T\binom{i, \ell, j, n}{q, p, q^{\prime}, k}=\frac{i 2 f_{\mathcal{P}} f_{n} 2(2 \pi)^{3} m_{\ell}^{2} m_{n}^{2}}{\left(k^{2}-m_{n}^{2}\right)\left(p^{2}-m_{\ell}^{2}\right) \Phi\left(p^{2}, k^{2}\right)} B(s, l), \tag{4}
\end{equation*}
$$

where $B(s, t)$ is the relevant on-shell Veneziano amplitude. The factor $\left[\left(k^{2}-m_{n}^{2}\right)\left(p^{2}-m_{\ell}^{2}\right) \Phi\left(p^{2}, k^{2}\right)\right]^{-1}$ provides for the mass singularities of the amplitude $T \quad x /$. We also have $\cdot \Phi\left(m_{\mathfrak{l}}^{2}, m_{n}^{2}\right)=1$. From factorization along the leading trajectory it can be shown that $\Phi\left(\mathrm{p}^{2}, \mathrm{k}^{2}\right)$ factorizes.

Specialize now eq. (4) to $K \pi$ scattering. In this case the external mass singularities are poles at the $1^{-}(0)$ daughters of the $\pi-A_{1}$ trajectory as well as at the $\frac{1}{2}\left(0^{-}\right)$daughters of the K trajectory. For these trajectories we accept $/ 4 /$

$$
\begin{aligned}
& a_{\pi}(\mathrm{s})=a_{\rho}(\mathrm{s})-\frac{1}{2}, \\
& a_{K}(\mathrm{~s})=a_{K^{*}}(\mathrm{~s})-\frac{1}{2},
\end{aligned}
$$

where $a_{\rho}(\mathrm{s}) \quad, a_{K^{*}}(\mathrm{~s}) \quad$ are the ρ and K^{*} trajectories $/ 1,8 /$ respectively, with a universal slope b.

Thus we get for the relevant amplitudes

$$
\begin{align*}
& \times \Gamma\left(\frac{1}{2}-a_{\rho}\left(k^{2}\right)\right) \beta_{0} \frac{\Gamma\left(1-a_{K^{*}}(\mathrm{~s})\right) \Gamma\left(1-a_{\rho}(\mathrm{u})\right)}{\Gamma\left(1-a_{K^{*}}(\mathrm{~s})-a_{\rho}(\mathrm{u})\right)}, \tag{5}
\end{align*}
$$

[^1]$$
T\binom{\pi^{+} K^{+} K^{+} \pi^{+}}{q, p, q ; k}=\frac{i 2 f_{K} f_{\pi} m_{K}^{2} m_{\pi}^{2} 2(2 \pi)^{3}}{\Gamma\left(p^{2}\right) \Gamma\left(k^{2}\right)} b^{2} \Gamma\left(\frac{1}{2}-a_{K^{*}}\left(p^{2}\right)\right) \times
$$
\[

$$
\begin{equation*}
\times \Gamma\left(\frac{1}{2}-a_{\rho}\left(\mathrm{k}^{2}\right)\right) \beta_{0} \frac{\Gamma\left(1-a_{\mathrm{K}^{*}}(\mathrm{t})\right) \Gamma\left(1-a_{\rho}(\mathrm{u})\right)^{\dot{\prime}}}{\Gamma\left(1-a_{\mathrm{K}^{*}}(\mathrm{t})-a_{\rho}(\mathrm{u})\right)}, \tag{6}
\end{equation*}
$$

\]

where $\left(k^{2}-m_{\pi}^{2}\right)\left(p^{2}-m_{K}^{2}\right) \Phi\left(k^{2}, p^{2}\right)$ has been replaced by

$$
\mathrm{b}^{-2} \mathrm{f}\left(\mathrm{p}^{2}\right) \overline{\mathrm{f}}\left(\mathrm{k}^{2}\right)\left[\Gamma\left(\frac{1}{2}-a_{\mathrm{K}^{*}}\left(\mathrm{p}^{2}\right)\right) \Gamma\left(\frac{1}{2}-a_{\rho}\left(\mathrm{k}^{2}\right)\right)\right]^{-1}
$$

$f\left(p_{i}{ }^{2}\right), \bar{f}\left(k^{2}\right)$ are (probably smooth) functions, with the normalization $\mathrm{f}\left(\mathrm{m}_{\mathrm{K}}\right)^{2}=1 \quad, \overline{\mathrm{f}}\left(\mathrm{m}_{\pi}^{2}\right)=1$.

$$
\left.\begin{array}{l}
\text { For the amplitude of eq. (5) the } \sigma \text { term is } \\
\int \mathrm{d}^{3} \times\left[\mathrm{A}_{0}^{{ }^{+}}(\mathrm{x}, 0), \partial^{\mu} \mathrm{A}_{\mu}^{\mathrm{K}}\right. \\
\text { (0) }
\end{array}\right]=0 .
$$

Using eqs. (2), (3) it is easy to see that this is compatible with eq. (5) (as observed in ref. $/ 4 /$, being $1-a_{K^{*}}\left(\mathrm{~m}_{J}^{2}\right)-a{ }_{\rho}\left(\mathrm{m}_{\mathrm{K}}^{2}\right)=0$.

For the amplitude of eq. (6) the σ terms are connected by $/ 3 /$ $\int d^{3} x\left[A_{0}^{\kappa^{+}}(\vec{x}, 0), \partial^{\mu} A_{\mu}^{\pi^{-}}(0)\right]=\frac{\sqrt{2}+\mathbf{e}}{\sqrt{2-\frac{c}{2}}} \int d^{3} \times\left[A_{0}^{\pi^{-}}(\vec{x}, 0), \partial^{\mu} A_{\mu}^{\kappa^{+}}(0)\right]$,
where $c \approx-1,25$, as estimated in ref. $/ 3 /$. Using eqs.(2), (3) we get . from eq. (6)

If we choose $\mathbf{f}\left(\mathbf{k}^{2}\right)=\mathbf{d} \bar{f}\left(\mathbf{k}^{2}\right)$ the \mathbf{l} dependence of eq. (8) and (9) is the same, so the contradiction of ref. ${ }^{/ 4 /}$ is removed. In addition, from eqs. (7), (8), (9) we get a value $c \approx-1,17$ if which is reasonable.

In conclusion we may say that the correctly continued off-shell Veneziano amplitude is not incompatible with the chiral symmetry breaking model of Gell-Mann, Oakes and Renner. It is clear, however, that a detailed comparison of the two models is only possible, if we write down a Veneziano amplitude which is off the massshell in all the four masses.

References

1. G.Veneziano. Nuovo Cim., 57A, 190 (1968). C. Lovelace. Phys.Letters, 28B, 264 (1968).
2. Fayyazuddin, Riazuddin. University of Islamabad preprint. (1969): 3. M. Gell- Mann, R.J. Oakes, B. Renner. Phys.Rev., 175, 2195 (1968). 4. J.A. Cronin, K. Kang. Phys.Rev.Letters ; 23, 1004 (1969).
3. M. Suura. Phys.Rev.Letters, 23, 551 (1959).
4. F. Csikor. JINR preprint E2-4865, Dubna, 1969.
5. M. Ademilllo. G.Veneziano, S.Weinberg. Phys.Rev.Letters, 22,83 (1969).
6. K. Kawarabayashi, S. Kitakado, H. Yabuki. Phys.Letters, 28B, 432 (1969).

Received by Publishing Department on December 17, 1969.

[^0]: AADOPAT PHЯ TE PETKムEKOM OM3MKH
 F. Csikor

 CONSISTENCY OF BROKEN CHIRAL SYMMETRY AND VENEZIANO MODELS

 1969

[^1]: $\mathrm{x} /$ In ref. ${ }^{2,4} \Phi\left(\mathrm{p}^{2}, \mathrm{k}^{2}\right)$ is omitted, which is wrong if we allow for large variations of p^{2} and k^{2} as in 47 .

