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1. Introduction 

Our intention is to extend in this note the results previously 

derived/1/ ·to the most general case of several fields of arbitrary 

transformation character under- the Poincare group belonging to se­

veral non-vanishing masses (see the Appendix). '!'he ·bound states 

are also taken into account (see also the Appendix). We consider 

several locally conserved currents (not necessarily Poincare inva­

riant, see §3b). 

'!'he main result is that the free fields obtained under the sym­

metry transformation and the original free fields are linked together 

by 'a linear, although in general not local, transformation (see § 2). 

'!'he fact that the relations should be linear was conjectured by 

many physicists although no proof was given so far (see e.g/2/, whe-
• re some hand waving arguments in favour of such -a conjecture are 

given). 

Our statement can be viewed as a proof that non-linear rea­

lizations of a· symmetry group which have no counterpart in a linear 

'representation cannot be effected in the prese,nce of a mass gap in 

the. theory with interaction. E.g. the three-dimensional non-linear rea­

lization of the 'chiral group .SU(2) x SU(2) cannot be effected since there 

does r;ot exist an irreducible linear three-dimensional . representation 

. (the (a,-;·) representation in the a -model is four-dimensional). '!'his 

is a sb:ong indication that the non-linear r~alizations are closely 

related to the appearance of massless particles (possibly to Gold-
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stone's particles)- (see e,g,l3 /), provided one does not give up lo­

cality of the fields and currents or translational invariance of the 

charges, 

We obtained our results using a slightly different technique 

from that used in previous papers/1/, It is based on using auxiliary 

fields (used in/4/) like 

[Q' ¢ l' (1) 

where Q denotes the charge and ¢ is the 'field we started with, in­

stead of fields formerly used. by us, viz, 

v ¢ y+ (2) 

with V unitary, '!'he objects (1) exhibit clear - cut transformation pro­

perties under the Poincare trahsformcition whereas the objects (2) 

have sometimes an intricate transformation character as e.g. 

+ 
U(A, a )t/J (x, b)U(A,a) "'U(A, a )exp I ibr Q l ¢(x)exp I- ibr Q JU(A at= 

r r ' 

= t/1 (Ax+ a, A b), 

where U (A, a) denotes the .unitary Poincare transformation correspond­

ing to (A, a), b, are numbers, Q, - operator charges· r .. 0,1,2,3, 

Moreover, (1) is local with :respect to ¢ whilst (2) is not in general; 

it is even .doubtful whether it is always quasilocal or almost local with 

respect to ¢ , 

2, General Considerations 

Let us consider a tensorial quantum field of rank (n +0, n =0,1 ... 

in the Hilbert space J{ 

T (x) = T (x) 
,\1··· ,\n+l ,\ (3a) 

local, real, transforming under the unitary representation U (A, a) ac­

cording to 

U (A,a)T, . , (x) U(A ,at = 
1\l • ••• • 1\n + 1 

=(A-I) Ill ••• (A -I) lln+l T . 
AJ ,\ n+l lln 1•••1ln+J 

(Ax+a), 
(4a) 
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locally .conserved 

_a_T <) A \ X = 0. ax 11• 1 ••••" 11 n (5) 
. . 2 

Let us assume that the spectrum of .the mass operator P where 

U ( l , a ) = exp { i a P l 

consists of two discrete points: 11 2 "'0, corresponding to a unique 

_vacuum, n , and 11
2 = m 2 ,J 0 , corresponding to the one-particle 

subspace }{ 1 • This .latter assumption is made only for simplicity, 

reasons; we show in the Appendix how to handle the case of se .­

veral ·sorts of particles with various, nonvanishing masses, Then 

(6) 

. exists, is translati~nally invariant and transforms under the Lorentz 

. :transformation as a tensor of rank n , We shall call these quanti­

ties (p) - charges, although they can but do not need to be consi­

dered as generators of· a certain group, 

Let us assume further that there exists in }{ an irreducible 

set of real fields 

¢~· (3b) 

where e = l •..• k a and a indicates the transformation character of 

.the field iri the Minkowski space, viz, 
a + 

U (A , a ) ¢ e (x) U (A, a ) 
-1 a p 

I S ( A p ¢£ (Ax+ a), (4b) 
p 

a 
where S p is a number matrix. 

We demand that these fields are local, local with respect to each 

other and to T A as well• as that they have asymptotic limits for 

' m
21 0 · t .. .±.,.; belonging to the mass r and forming an irreducible 

set in}{ , The latter assumption was again made only because of 

simplicity reasons; in the Appendix we show how to incorporate the .. 
bound states into· our scheme, Vie call the asymptotic states 
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a a 
¢

0 
(x)=¢ (x). 

L, eX e, In 
(7) 

out 

To avoid trivial cases we assume, without loss of generality, that 
a p C+>a p 2 ' 

(n,¢ 0 (x)E
1

¢ (y)O)~io 0 l'l (x-y;m ), ( 
t m tm · , 8) 

, . }{ C+l ap ( 2 ) 
where E 1 is the projection operator on 1 , and l'l x,m 

· 'ta • t• f C+>( 2 C+) ap ts the su1 ble generahza 10n o l'l x;m ) and . where l'l ~ 0 

whenever ¢ <:r and ¢ P are of different tensorial character, A field 

a¢ (x) is not considered as· a genuine vector field, Since ¢~ 
ax ll t 

and T ,\ are local and local with respect to each other, they have 

a common TCP operator, viz, 
. a 1 a p 
8¢ e<x)8- = ~ e ¢ n (-x) 

p ' p t 

(9a) 

e a = e a is a number matrix 
p p 

. -1 n+l 
8 T 8 = (-1) 

A I • •••• "-n+l 
T (-x). 
AI'''' ,\ n +I 

(9b) 

Thus 

_
1 

n+l 

8 Q 8 =(-I) 
.\ 1 , .,.,A

0 

Q ,\ 
.\1 •••• n 

(10) 

Under the assumptions listed above our assertion reads: 

i) 
IQ p -IQ 

e ¢f. ex ( x) e 
pm a 

}c;f. a (x-y) ¢m, ex (y)dy' (11a) 

where 

Q "'~a Q·a = ~ 
a <I rr···' n 

a ••• a 
r 1 rn 

Q r I • .. ,r n 
(11b) 

a, -real numbers 

ii) Q r 1 
.... ., is uniquely defined by (11) as a bilinear form in the in-

coming {or outgoing) fields, 
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.. 

iii) [ Q • s l = .a I 

(12) ,· 

where S is the scattering matrix. 

To prove our statements i), ii) and iii) let us first of all define 

the auxiliary real fields 

(13) 

.These fields are local with respect to ¢a since T o,a,."' an is 
rn 

local with respect to them and .Qa is translationally invariant, They 

transform according to the Poincare representation characterized by 

the superscripts aa • The fields A~ acting on the vacuum n 
giye a contribution to the one particle states, provided 

"'; Q A J{ t = 0. 

Then the asymptotic fields · 

i [ Q a 1 ¢ a ( x ) ] = A a a · (x) 
m.ex m.ex 

(14) 

exist .(notice. that Q a does not depend on x ), 

The charges Q a applied to the one particle vectors 

p -;. v 

. _. · ( ¢ denotes here the Fourier transform of </> )x/ yield 

·a = 
{ Q • ¢ t (p) Jn = Qa 'I' ae ( p) = 

a ,a, n · ._e_ 
:£ k e. ~ . ( p ) 'I' n (p ) . .. 

n,p 

(15) 

''1- We obtained (15) using ir~educibiliiy' of 'the fields ¢ on J( 1 and co­

variance of Q a under the Poincare transformation. Qa annihilates 

... 

. . . a 
. the vacuum: since the additive constant numbers Q vanish for 

n =0,2
1
,4 because .·of the TCP invariance, for other .n because of 

. a 
the tensorial character of Q , Because of TCP covariance 

x/ Due to the condition (8) and the· stability of the one-particle sta­
tes the latter are orthogonal to each other ·for differmt lower indices 
and for upper indices characterizing fields of different transformation 

character.; 
7 
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n+l 

(-1) 
- a; U, n 

}; k 
p £. p 

(p) 0 p 
,\ 

}; 0 a 
p p 

a 
and because of the hermiticity of Q 

a, a, n ,\a 

k a; P • n 

f • .\ 

}; k 
,\ £, ,\ 

w.\ a .w .e 
F ( p) = 2 k , 

, ,\ n • 1\ 

F (p) 

with 

... ... w.\ w ,\ 
2w o(p-q)F (p)=('l'n(p),'l'n(q)). 

p 

(p) 
(16a) 

(16b) 

(16c) 

On ,one hand the generalized result of Borchers /
5

/ asserts that 

[; P (p),A aa (q)] 
, ex , £, ex 

"' number, (17) 

Taking the vacuum expectation value of (17) for p G V +and g ~ v-: 

-and making use of (15) and (16c) we obtain 

"' p aa 
[<;6 n,ex(p)•A£,ex ( q) l = 

= i 
a.; a, n p.\ 

};k e , (p)F 2w o(p-q). 
,\ • 1\ p 

.. 

(18) 

On the other hand the same result as in (18) follows by the ansatz 

~a a a ~ a 
A o (ql=i[Q , ¢ o (q)] = 

L,ex L, ex 

a,a, n "'p 
i };k 0 (q)cp (q) 

n,p L, p n 

(19) 

with q still in V Because of the irreducibility of the fields <f>a 

as well as because of the translational invariance of Q relation (19) 

is the right choice, The relation (19) can now be extended to q ~ v+ 

and p ~ v- by using the hermiticity of the fielfs ¢ 

implies automatically 

8 
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a ,a , n 
k . e. p 

() 
-a.a,n 

p =- k e. P 
(.:..p) (16d) 

Q a is uniquely defined by (19) in virtue of the irreducibiiity of 

the fields </> as well as of Qa annihilating the vacuum, It follows 
· ex 

immediately from (19) that Q a is a bilinear form in the incoming (or 

outgoi~g) fields, Q a commutes ·with the scattering matrix since (19) 

·holds for incoming and outgoing fields as well. 

Since we know· how Q acts on cf> we conclude that ex 

I Q: p ( ) -IQ ~ "' p , n 
e 't' q e =..:.c e. ex e, A 

where Q is given by (11b), and 

::: p , n 

c e. A 

k - ~ a 
·a a 

_(e lk)p,n 
e. A 

a ... a 
r("" rn rl 

(q)cf> A (q), 
n, ex 

k r I.,. r n 

r 
n 

(20) 

From (20) follows (11) by taking the inverse Fourier transform, 

Since cf> are real fields, c · is real too, The r.h.s, of (11) has to 

satisfy the K,G, Equation with the mass m ; therefore 

(
"' aq,(y) ~(x-y) J c(x-y) ---- ---cf> (y»dy-+ 0 

s ar ar 
y y 

. x/ To get the result (20) we have only to iterate the formula (19); 
e,g, with Q given by (11a) we have 

[Q ,[Q,.,b'a (q)]]= ~ k a,n 
' e. ex • n, p e. p 

(q)[Q • ; p (q)]= 
,n,ex 

"' r 
~ k a ,n k 

e. P 
p •• 
n , r </> ( q), etc; 

n,p •· r s,ex 
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wherever the 3- dimensional boundary S of the 4- dimensional 

volume tends to infinity, Prcsumabiy the l,h,s, of (1l) is almost local 

with respect to cp ; then c(x) has to fall off very rapidly with~ ... oo, 

3, Example of . Vector. and '!'ens or Charges 

a).Application of the Assertion 

Let us confine ourselves in the sequel for the sake of simplicity 

to the case of f real fields ¢; ,j ~ l, .. ,f , In this particular case v a P 

in (9a) is just a unit matrix, 

For n ~1 we have 

"" [Q .¢. (q)]~kkj 
r s,ex j r,s 

( q)¢ ( q) 
j 

• 
s=l, ... ,r, (21) 

where 

k j 

r,o 
( q) ~q a l 

r • 
(21a) 

and 

a = a J :;:::: a e 
• j (21b) 

(16d) is satisfied automatically, We may diagonalize the matrix a l 

by a nonsingular matrix v l • , For the fields 
., r ., 

1JI (q)= :£vi¢ (q) 
s,ex g= 1 1!1 j,ex 

( 21) takes the form 

[Q 
r 

.IP (ql1=.\ q 
s,ex s 

IF < q l. 
s,ex (22) 

where .\ • are the (real) eigenvalues of a l , '!'he fields 1JI , s ~1,2, .. £, 
3 . s,ex . 

form also an irreducible set, Should the theory of the fields 1J1 be 

non-trivial we expect to have nonvanishing matrix element between 

the outgoing and incoming states describing each different set of 

particles, as pointed out in/4 /, e,g, 
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·. 

... 

(w+ 
j , out 

I 

"'+ (p) ••• 1p 
j 1 out 

p,qG.V+ 

(p )o.w+ (q ) .. ; + (q )0)1 o · 
k 1 , In 1 k.n'ln n 

(23a) 

for some rn and n large than one and some sets of I j I and {k I • Ac­

cording to (22) and using the hermiticity of Q, we find that 

m "'+ 
(ll IJ' 
r:::l j ,out 

r 

n "'+ 
(p )O,Q lliJ' (q )0)= 

r r~=l k
3

,1n s 

(p,lo.nw+ (q 
s::::l k ,In 

)0) = 

n 

Of course, 

m n 

m "'+ 
)(ll IJ' 

s=l f ,out 
r 

kp =kq' 
=I r • =I " 

.. 
n,. 

(p )O,lliJ'+ 
r e=l k ,In 

(q ) o ) . 
• 

(23b) 

(23c) 

(23d) 

(23e) 

Since the .equalities (23c,d) and 23~) hold for a non- enumerable 

'set of q 's and p 's and (23a) is assumed to be satisfied we con­

clude that A does not depend on the index s • Thus, writing 

A. =A , (21a) reduces to 

(q) = Aq 8 I 
r • 

k 
(24a) r,o 

so that ¢ex as well as IJ' ex satisfy the same relation (22) with A 

replaced by A • Moreover, 

Q, =-A P, (24b) 

In words; the only admissible tensor currents of rank two are those 

giving rise - up .to a numerical factor. - to the generators of the 

translation group. This confirms the result stated in/4/ and suggested 

by Sugawara/6/ • 

For n =2 we have 
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"' e l "' 
[ Q ' ¢ ( q)] = ~ k . ( q) ¢ ( q)' 

p.v s,ex j=l JlV ,s j, ex 
(25a) 

where 

j l 
k (q)=a q q +b g, 11 p.v, s e p. v, e r (25b) 

and a l and a l are both imaginary and antisymmetrical (herml-
s • 

tean) matrices. (16d) is again automatically satisfied. Because of the 
' 

commutation relations for the free fields and the irreducibility of these 

fields 

j ~+ ~ 2 2 . 
Q =-~fk (q)¢ (q)¢ (q)8(q -m )O(q)dq, 

P. II s,l p.v '• s l 

If a J and b ' can be diagonalized simultaneou!?lY the algebra of 
• • 

Q will be again abelian. In this case a similar consideration to 
p.v 

that presented for the case n=l (see eq. (23)) brings us to the con-

clusion that 

k ( q) = 0 (26a) 
p.v, • 

or 

Qp.ll = 0, (26b) 

This result (26) can be generalized and we are entitled to claim that 

the abelian tensor charges of rank not less than two vanish. Thus · 

only the case of abelian scalar charges offers some interest (gauge 

transformations, superselection rules). 

If, however, the matrices a 

each other and in addition 

with 

pa 
k k \- k ,k = t \ 

p.v Kl\ Kl\ p.v p.v. K" 

pa pa 
t llii,KA.;- 1 K>.,p.v 

- pa 
1 p.v,KA 

12 
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.' 

then 

[ Q • Q ,\ ] = -A pa Q • 
pv K pv, KA pa 

In this case as well as in other cases of non- abelian tensorial 

cf!arges of rank not less than two we are not able to ,predict any­

thing definite about the structure of the charges, 

b) 'I' he Case of Currents of No Pure 'I' ens or Character 

For the sake of completeness let us look to the case of lo­

cally conserved currents which do no longer transform according 

to (4a) but, nevertheless, the integration performed in (6) results in 

charges which tr:ansform already like (pseudo) tensors, An example 

of paramount importance are the Lorentz group generators 

3 
M = J d x ( x P ( x)- x P,

0 
( x )) ; 

flll Jl 1'0 II r 

P (x) - energy- momentum tensor, 
Jll' 

. More generally, to every locally conserved tensor current T = + T 
Jlll - l'Jl 

corresponds another locally conserved current 

(27) 

which, however, does not display pure tensor properties (see/
7 

/). 

In particular, it is not. translationally invariant. Under the Lorentz 

transformation 

QJ.Lll 
(x T 

Jl vo 
-x T 
+ v_ Jl o 

transform as a tensor of the 2nd rank. However, 

" 
i r r .. - ,'Q , J =- g Q , + g , Q 

t" 'VI\ Jll' 1\ - Jl" II 

(28) 

(29) 

Thus Q Jlll do not commute with the translations, although they are 

time independent· (due to local conservation). One . can easily check 

that 

13 
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.· 

.. 

... 

[P,'[P,,Q ]]~0. 
K " p.v 

(30) 

In virtue of (30) Q p. v transform one particle states into one particle 

states of the same mass m· • Since vye can not exploit the commuta-

bility of !} p.v · with . P, . , our final· result reads 

. " , e , "' · 2 2 
, [Q ·; rf> (p)] =i I. JK .(p,q)rf> (q).S(q -m )O(q)dq; {31a) 

JLV j,ex s=l js,J.LV s,ex 

"' where K is a real function and 

K 
mn, J1 V 

(p,q)=-K nm ,·p. v ( q, p), . (31b) 

Formula {31) shows that the relation remains still linearx/, 
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Appendix 

Let us concentrate - for simplicity reasons - again· on the 

case of· n. scalar rec;l fields r/> ( x) j =1, .. , n , These fields are ·sup-
. . j . . 

posed . to conform with. all the requirments imposed upon them in § 2 

except that r/> l. ex belonging to mass m f 0 do not form an 

irreducible set whereas r/> l themselves do, 

xf When this note was accomplished we got,.a preprint/B/ where it 
is shown under very mild as-sumptions that Q p.v= c M p.v , c - a num­
ber, This makes the above example trivial, Nevertheless, the method 
indicated by us can easily be extended· to cases when the tensor 
current T is of higher rank than two. 
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There are still other free fields, let us call them f3 t,ex t=l, •• ,k 

belonging . to a mass M differentx/ from m and from zero which give 

rise to one particle states and span the Hilbert subspace }{ M 

The fields ,{3 l,ex are asymptotic for the fields {3 
1 

, Then 

k 

I b E {3 (f) n = 0 
t=l t :... t 

(A,l) 

where E 
m and EM are .the projection operators on }{ m and J{M 

respectively, Both sets, f3t,ex and {3 1 , can be constructed out 

of the fields rp 
1 

assume that f3 1 

(in virtue of the irreducibilitY of the latter), We 

are local with respect to rp 
1 

[{3 (x), rp (y)]=O 
I j 

2 
(x-y) < 0 

t=l, .. ,k;j=l, .. ,n. 

Hence follows 

[{3 (x),T (y)]=O 
I ,\ 

2 
(x-y) <0 >-=0,1,2,3. 

(A,2a) 

(A,2b) 

as well as that f3 
1 

that 

are local themselves too, We assume further 

(+) 2 
(0,{3 (x)E {3 (y)O)n i o t1 (x-y;M) 

t M e te 
t,s=l, .. ,k 

(A,3) 

as well as 

(A,4a) 

(A,4b) 

X} The difference in the masses m and M 
we keep it for notation convenience • 

is not essential but 
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The last assumption is the same as ·to say that <P l . and f3 t are 

irreducibly represented in J{ m and· J{M resp, In addition f3; 
should transform . under the same Lorentz representation as </> l and 

have the same TCP operator as the latter, 

Let us consider the simplest case of Q being a (pseudo) 

scalar, For <P ( r>= q, (f) n 
j j,ex 

and f3 (f) =f3 (f) n 
e e,ex 

x/we 

have 
n 

i Q ¢ ( f) ~ :£ a ¢ (f) + ~ ( f , f3 
l k~t l k k l 

,m2) (A,5a) 

k 
iQf3t (g)~:£ y f3 (f)+ 1J (£, </> 

e~t t e e t "" ex 
,M2 ), (A,5b) 

where the matrices a and y are real and skewsymmetric of di-

mensions n and k resp, and ~ l , 1J t depend only on f3' and q, 
ex ex 

resp. and are orthogonal to <llk as well as to f3 • , 
Let us apply the Borchers's theorem (see also/7/ to the auxi­

liary fields 

i[Q,¢ (x)1=Al(x) 
l 

i [ Q , f3 (x) 1 = B ( x). 
. . t t 

Both sets are local with respect to </> and f3 
the one particle states. We get 

[ </> (X), A ( y) 1 = 
j,ex k,ex 

[¢ (x),B (y)1= 
j,ex l'l:,ex 

a nnmber 

[ f3 (x),A (y )1 ~ 
t,ex k,ex 

[{3 (x), B (y)1 = 
t,ex e,ex 

(A,6a) 

(A,6b) 

and contribute to 

(A.7a) 

(A.7b) 

(A,7c) 

(A,7d) 

-;{Notice that (<lll (f),¢ k(g))=(<lll (f),f3t (g))=(f3 .(0,{3 t (g))=O 

for .i f, k and t f. s 
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In order to verify . the formulae 

n 

i [ Q • ¢ (x)] = ~ a ¢ (x) 
J,ex k=l jk J,ex 

(A,Ba) 

k 
i [ Q .{3 (x)]= ~y f3 (x) 

t,ex s=f te .s,ex (A,Bb) 

one has to confront the vacuum expectation values obtained on one 

hand by using (A, 7), (A,6) and the orthogonality relations for the 

one particle states, on the other hand directly by substituting (A.B) 

into (A, 7) and !-Asing the canonical commutation relations, It turns out 

that the states q and 'fJ are equal to zero ..• 

A similar scheme may be adopted in case of two sorts of 

particles _of mass m and 

will be replaced by 

M (no bound states), In this case (A,1) 

In 

l_t af E m ¢ f (f) n = 0 iff a f = 0 , (A,9a) 

n 

~ b OE M ¢n (f) n = 0 
f=t L L 

iff b r= o • (A,9b) 

The fields ¢f,ex (x;m
2 

) and ¢f.ex (x; M 2 ) 

Instead of (A.3) we have · 

form an irreducible set. 

m <+) 
(0,¢ (x)E cp

0
(y)O)=ia

0 
t'1 (x-y;m 2 

k m L kL (A, lOa) 

M (+) 2 

{n,¢k(x)EM¢f(y)O)=Jakft'1 (x-y ;M ), (A,10b) 

m ,M m,M m,M 
where a kk ;::_ 0 ' (positive definite metric) and a kf =a kf (TCP co-

variance), It is, in general, not possible to perform simultaneously the 

"diagonalization" of the one particle states in both spaces J{n and 

·J{ M • This manifests itself in the non-standard commumtion relations 

of the fields ¢ e,.~ x; m 
2 

, M 2 
) • Nevert_heless we may perform the diago­

nalization of the one particle states in every subspace separately. 
" Then the corresponding free fields ¢~ being linear combinations 

. Lt ex 

of ¢ 0 ( · m 
2

, M 2 ) , will satisfy the normal canonical commutation rela-
t,ex 

tions. 
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The field (A,6a) has also two limits depending on the test fun-

ction used, namely A J,ex ( x; m 2 
) and A J,ex ( x; M 

2 
) , The applica-

tion of the Borchers's theorem leads us to 

" 
i [ Q • cp j,ex 

2 ·m "' 
(x;m )]=~am¢. 

k=l jk k,ex 
( x; m 2 ) · (A,11a) 

i [Q ,¢ (x;l\1
2
)] 

j,ex 

n ~ • ·2 
:£aM¢ (x;M) 
k:::l jk k,ex 

, (A,11b) 

where 
m,M 

are· real and skewsym'Tletric matrices, a 
jk 
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