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1, Introduction
Our intention is to extend in this note the resulis previously:
} vderived/ 1/ 'to‘ the most general case of several fields of arbitrary

‘transformatioh character under the Poincaré group belonging to se-

veral nonvanishing m.assesv (see the Appendix), The bound states

.are also taken into account (see also the Appendix), We consider

several locally conserved currents (not necessarily Poincaré inva-
riant, see §3b), ‘

The main result is that the free fields obtamed under the Sym-
metry transformatlon and the original free fields are linked together

by a linear, although in general not local transformatlon (see §2).

The " fact that the relations should be linear. was conjectured by
) many' physmlsts although no proof was given so far (see e.g./ / whe-
re some hand wav-mg- arguments m.} favour of such -a conjecture are
gwen) ‘ ) ‘ .

' Qur statement can be viewed as a proof that non~linear rea-
;‘lizatlons of a symmetry group which have no counterpart in a linear
"representation cannot be effected .in the presence of a mass gap in
the. theory with interaction, E.g. the three-dimensional non-linear rea-
lization of the chiral group SU2) x SU(2) cannot be effected since there
does rjot exist an irreducible linear three—dimertsional ‘répresehtation ’
(the (‘7}_’;') representation in the ¢ -model is four—'dimensional)."I“his
is a s‘tr,'ong, indication that the non-linear realizations fare,‘closely

related to the appearance of massless particles (possibly to Gold-
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stone’s particles) (see e.g./3/), provided one does not give up lo-
cality of the fields and currents or translational invariance of the
charges, ’
We obtained our results using a slightly different techruque
from that used in previous papers/ 1/ It Is based on using auxﬂlary

fields (used 1n/4/) like

i1Q. 41, o (i).

where (Q denotes fhe chérge and ¢ is thefield we started with, in-
" stead of fields formerly used. by us, viz, ) ]

Ve V? o ' (@
with V. unitary, The ob]ects (1) exhibit clear - cut transformation pro-
perties under the Poincaré transformation whereas the ob]ects (2)

have sometimes an intricate transformation charapter as e,g.

1

U, @) G, B)UA @) = U(A, a)exp 1ib Q1 d(exp. {— ib" Q 1U(A) =

= ¢ (Ax+ a, Ab),

where U(A,a)  denotes the .unitary Poincaré transformation correspond-
“ing to (A, a),b, are numbers, § ~ operator charges r =0,1,2,3,
Moreover, (1) is local with respect to ¢ whilst (2) is- not in genéral;

it is even doubtful whether it is alvmys‘ quasilocal or almost local with

respect to ¢ .

2., General Considerations

Let us consider a tensorial quantum field of rank (n+1),n =0,1..
in the Hilbert space X
T (x) =T, (x) ' ' :
Ajewe A 241 A : (3a)
local, real, transfo‘rr‘ning under the unitary representation U(A,a) ac-

cording to

. +
VAT, dyyy D UA2) - (42)
=(ATHH L (ATHHerr T A

Ay n+1 Fnpebogg (Ax+a ), )



+

‘ locaily .conserved

d
e T . (x)=0, :
ax# y./\l..../\n ) (5)
Let us assume ‘that the spectrum of the mass opefétor PZ_ , where

U(l,a)=exp {iaP }

consists of two discrete poin’cs:u2 =0, corresponding to a unique
‘v;-lcuum', Q@ ,and p? =m?4£0 , corresponding to the one-_par{ticle
'Subépace }(, This latter assumption is made only for simplicity, -
reasons; we show in the Appendix how to handle the case of se -
veral sorts of particles with various, nonvanishing masses, Then ‘
TR, O

0,/\ gty

' .exists,' is translationally invariant and transforms under the Lorentz

.transformation as a tensor of rank n. , We shall ca11~tAhes‘e quanti-
ties (6) - charges, although they can but do not need to be consi~
dered as generators of 'a certain group.

Let us éssume further that there exists in { an irreducible

set of real fields
4

¢’ o | (3p)

where [ =1 ...,k,a and ¢ indicates the transformation character of

" the field in the Minkowski space, viz,

‘e

UA,a) ép (0U (Aa) = ‘
-1 a P .
=2 S(A )p gp (Axwa) _ v (4b)

o . .
where § p is a number matrix,

We demand that these fields are local, local with respect to each

other and to T ,\ as well-as that they have asymptotic limits for

; R 2
“t+ tw belonging to the mass m #0 and forming an irreducible

set in { ., The latter assumption was again made only because of
simplicity reasons; in the Appendix we show howto incorporate the

bodnd stlates. into. our scheme, We call theé asymptotic -“states .



g 4 ) ’ o .
4y ex(")‘zd’z, W X (?

out

To avoid. trivial cases we assume, without loss of generality, that

g P B Hop T _
(.67 (B, ¢ () =18y &7 emyim®)
1 +
where FE; is the projection operator on Hi, and A %0 (x,m?)
(€3]
is the suitable generalization of A“')(x;mz) and where ' A op -0

whenever ¢ % and ¢‘p “are of different tensorial character, A field

.%M is not considered as a genuine wvector field, Since ¢z

X . - g

® : . : " .
and T, are local and local with respect to each other, they have

a common TCP operator, viz,

@qsog(X)@—l =3 90 ¢p (=x) (9a)
p et

9% =607 is a number matrix .
p p
A . e n+1
erT e =" T (. (9b)
)\1.....)\,,*_1\ )\1,.., An+] ‘ . d
Thus
- n+1 .
® (1 : .
%, o ® ) O, (20)

Under the assumptions listed above our assertion reads:

N SV P ~1Q  pm o
1) ¢ . qsz.ex (x)e = jcgz'a (x—-y) qsm_ ex (y)dy. (11a)
where
‘a Tyaenty ' o
=%a Q" =%
° a a Pt AT 0 ‘ (11p)
a ~real numbers

r . N
frreer .
iy Q PR s uniquely defined by (11) as a bilinear form in the in-

. coming (or outgoing) fields,



. i) :[Q.H=l0p; ' T . (12)°

'where S is the scattering matrix,

To prove our statements i), i) and iii) let us first of all define

the auxmarjy‘real fields

im“.¢:(ﬂ]EAT<Q.~ T

[ S ’
These fields are local with respect to qb since T %1 %n o is

+:-local with respect to them and Q% is translationally derlant They

- transform according to the Poincaré representahon characterized by

‘the "superscripts a9 ., The fields Ap acting on the vacuum Q
' glve ‘a’ contnbutlon to the one particle states, provxded
A .
Q% K,
" Then the asymptotic fields "’

0%, ¢ ° (01=A%% () | (19)

m,e m,ex

: exnst (notice . that Q does not depend on x Yo

The charges Q% applied to the one particle vectors

60 (pa=Y ) p e VT,

m, ex

(¢ denotes here the Fourier transform of ¢ )x/ yield

[ .;; e =¢° '\y"z(p)=
a,0,n £ (15)
=3k g, MY G
n,p L.

(, We obtained (1.)) using 1rreduc1b1hty of the fields ¢ on }( and co-

i a
‘vanance of 0 under the Poincaré transformatlon. Q¢ anmhﬂates

: .the vacuum since the additive constant humbers 0 vanish for

n =O 2 4 because of the TCP invariance, for other n because of

)

the tensonal character of Q Because of TCP covariance

/ Due to the condition (8) and the' stability of the one—partlcle sta~
. tes the latter are orthogonal to each other for differant lower indices
~and for upper indices characterizing flelds of different transformatlon

character o
. 7




and because of the hermiticity of 0

a, 0, n WA a ¢ Ao : :
o - ‘ A - oo .
ihea BRI P (161)
with
20 5(7=3)F" HOPCIROR NS L (1ed)

On ,one. hand the generalized resuit of Borchers /5/ asserts that

[é? (p)A (:Zo (g) 1] = number, (12)
“Taking the vacuum expectatlon value of (17) for p cvt and gcV”
-and making use of (15) and (16c) we obtain

[¢ n,ex p)’Az,e: (q) ] =
(18)
N @i 0.n P/\ ' el '
=i fk [ (p)F 2mp6(p-—q).

" On ‘the other hand the same result as in (18) follows. by the ansatz

’;azgex(‘;)E‘[Qa"gzg,x(“”= : :
(19

- zk“";'“ (0af (
n,p s P n

with q.  still in VT , Because of the irreducibility of. the fields ¢,
as well as because. of the translational invariance of Q relation (19)
is thé right choice, The relation (19) can now be extended to ge vt
and p €V” by using the hermiticity of the fielfs ¢ and A , This

implies aufomatically



ca,0 ,n a0, n

koo ' (p)=-k. Lo, (—p) 1 e (184)

Q“ is uniquély defined by (19) in virtue of the irreducibility of
the fields ¢, as well as of Q% annihilating the vacuum, It follows |
immediately . from (19) that 0% s a bilinear form in the incoming (or
. outgoing) fields, Q¢ commutes ‘with the scattering matrix since (19)
'holds> for incorﬁing and outgoing fields as well. .

Since we know~how Q acts on ¢»exwe conclude that

15 p -iQ =pen T
€ ¢’E, ax(q)e =z cf, A (q)¢, n, ex (q)' (20)

“where ( is given by (11b), and

= p.a.n ik n
c = (e )P .
[4
_'/\ £, » . . (20a)x/
k= Z2a ka=2 a a k17 Ta
a a r r 1 Ta

From (20) follows (1) by taking the inverse Fourier transform.
Since ‘¢ are real fields, ¢ is real too, The r.h.s. of (1) has to

satisfy the K.G, Equation with the mass m ; therefore

f(;(x—y) a¢(y) = clx—y)

s r r
Y. - b4

(y))dy -0

x/ To get the result (20) we have only to iterate the formula (19);
e.g. with Q given by (1la) we have .

'[Q.[O,éf" (=3 k72"

. (DIQ . ¢ ° (0k
e)‘( . n‘P y P . . Jn,ex

n T
cn,p 8T ' L siex.

= 3 3 kae';k"’” b (), ete



s

wherever thé 3~dimensional boundary S ‘of the '4-dime-'nsior;xal

volume tends to infinity, Presumably the Lh.s, of (11) is almost local

with respectt to ¢ ; then C(X) has to fall off very'rapidly with,;-.m,

3, Example of Vector and Tensor Chargeé

'a).Application of the Assertion

Let us confine ourselves in the 'seyquel'for the sake of simplicity E

to the case of [ real fields &, d=1,..0 ._'In this particular case ‘vak

in (9a) is jﬁst a unit matrix,
For n=1 we have
P $ =~ :
[Qr .<75__'.”(q)]=j§3k‘_.s (q)qu (q) s=1,..,¢, (21) -
where
k' (=g a’
e (0)=q a , (212).
and
a! =_u_i =a *® )
. R ; | ‘ (21b)
(16d) is satisfied automatically, We may diagonalize the matrix a, °
by a nonsingular matrix v, s, For the fields
.= z . 53
Y (qg)= Zv ieg (q)
g,ex ; g=1 s jiex
(21) takes the form
[Qr "?s,ex(q)] = A sq riiJ s,ex(q)v ‘ ' (22)

where A, are the (real) eigenvalues of a .} + The fields ¥, oos=l2..L,
form also an irreducible set, Should the theory of the fields ¥ be
non-trivial  we expect’to have nonvanishing matri;c element between
the outgoing and incoming states describing each different set  of

/4

par‘ticleé, as pointed out in' 7/, e.g.
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2

¥t (p..9* G IRYY (g ). ¥ (g )0)4 0

Jl.out im.out kl,ln 1 k ,n n
. P - (236)
p,q &YV

for some m and n large than one and some sets of {jl and tk} . Ac—
cording to (22) and using the hermiticity of Qr we find that

+

(i ¥, S (90,0, n@“‘m(q‘sm)»= (23b)
m T + ma gy v
=(r§1 A N pr')‘(Ej ‘Pir. t (pl' )Q'sl.]-:l ll‘ks,ln (q L] )Q )= (230)‘
n B m::l+ n_m ' .
SO L GO E o) ()
Of course,
L r=1 pr s=lq! (236)

Since the .equalities (23c,d) and 23e) hold for a non- enumerable
‘set of 9°s and p’s and (23a) is assumed to be satisfied we con-
clude that A does not depend on the index s . Thus, writing

A,=r , (21a) reduces to

’ . .
kr.s (q)= /\qr 5!! 2 ) ’ ) (24:6)

so that 9, as well as Y., satisfy the same relation (22) with A

- -replaced by A, Moreover,

Qr =)‘ Pr © ! . ‘ ‘ ' (24b)
) In "\Norrds: the only admissible tensor currents of rank two aré those
giving rise - up to a numerical factor - to the generators of the
translation gr‘oup. Thls confirms the result stated m/4/ and suggested
- by, Sugawara/ 6/

For n=2 we have

11



[Qyu ’ ¢s,°x (q)] =-=j=l
where

i
k (q) =a i
Hv . s L a q}l

and' a ,j and. a

tean) matrlces. (16d) s again automatically satisfied, Because of the -

commutation relations for the free fields and the 1rreduc1b111ty of these

fields

==-3
QI“’ ,_,f kpv

§

j : .
If a and ba can be diagonalized simultaneously the algebra - of

s

Q . will ‘be again abelian. In this case a similar consideration to

that presented for the case n= 1 (see eq. (23)) brings us to the con-

clusion that

RV,.s

or

Q,, =0

This result (26) can be generalized and we are entitled to claim that
the abelian tensor charges of rank not less than two vanish, Thus
only the case of abelian scalar charges offers some interest (gauge e

transformations, superselection ru.les).

By e

If, however, the matrices a ! |
s

each other and in addition

kpvkk}\ _kk}\kpv=
with po po
uv kA= L,

po

tyV. KA

pPo

"yv,x}»

12

(_q)¢

k

(aq),

are both imaginary and antisymmetrical (hernﬁ-

/! (q)Z‘s+(q>$s‘j (q)8(a°=m”)0(q)dq .

and b

po

do not commute with




then ' ) . o

. : po
[QFV'QK)‘ ]~—A}1V,K)\ po’

In this case as well as in other cases of non-abelian tensorial

charges of rank not less than two we are not able to predict any-

thing definite about the structure of the charges,
b) ’I‘he.Case of Currents of VNo Pure Tensor Character

E‘or the sake of completeness let us look to the case of lo-
cally conserved currents which do no longer transform according
to (4a) but, nevertheless, the integration performed in (6) results in
charges which transform already like (pseudo) tensors, An exampie
of paramount importance are the Lorentz group. generators

3
w=Jd x(x u pvo (x)—xu Puo (x)?;
P (x) - energy- momentum tensor.
. More generally, to every locally conserved tensor currentT =+ T

o
corresponds another locally conserved current

=% TAy " "A.T,,_,l , ’ , ‘ (27)

fai,

In. particular, it is not translationally invariant, Under the Lorentz

- which, however, does not display pure tensor properties (see

transformation
A "' 3" o . T .
Q‘yv‘s [ d x~(x#'l"u.0 ixu_T#o) ‘ 4(28)

_transform as a tensor of the 2nd rank. However,

i[P],l./ 'QVA]=- ng/Q A tg#)\ QV . (29)
Thus Q do not commute with the translations, ‘a.lthough they are

 time mdependent (due to local conservatxon) One can easily check

that

13



[PK ’[PA '_va .]]=0. ) ‘ . o . (30)

_In virtue of (30) Q‘“,‘ transform one particle states into one particle
states ofrfhe same mass m . Since we can not exploit the commuta-

‘bility of Q#V-Mth P, our final result -reads

jex

srtow-;?s (,,n_.sz (P08, (@800’ -n*)0(0)da} (31a)

=3

where K 'is a real function and

Kmn'#v (p,q)==K S (q,p). Co ) "~ (31b)

x|

Formula (31) shows that the relation remains still linear™.

Acknowledgement

The author is grateful to Mr, A.Z. Jadczyk, Dr. A. Efremov and
‘Dr, V. Ogievetsky for discussions, He is also indebted for the hos-
pitality.r extended to him at the Joint Institute .for Nuclear Research at

Dubna where the major part of this work has been accomplished,

A.ppendix.

Let us concentrate - for simplicity reasons - agai.n' on the
case of " n, scal_ar’ real fields ¢j (x) jgl,...d . These fields are sup- '
posed to conform with. all the requirments imposed upon them in §2
except that ¢j' ox bb'elonging to mass ‘m #0 do not form an

irreducible set whereas ¢ ; themselves do.

x/ When this note was accompllshed we got, a preprmt/ ! where 1t
is shown under very mild assumptions that Q V—CM w , ¢ = a num-
ber, This makes the above example trivial, Nevertheless, the method .
indicated by us can easily be extended to cases when the tensor
current T is. of higher rank than two. :

7
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Thezje are still other free fields, let us call them B b oex t=1,..,k
belonging to a mass M differentx/ from m and from zero which give
rise to one particle states and span the Hilbert subspace H, .

The fields B are asymptotic for the fields B, . Then .

t,ex .

. .
f—:lbt E:.l B'(f)ﬂ =0 it b =0 : (A'l)

where E and E, ~ are the projection operators on }(m and }(M
respectively., Both sets, g,,, and g8, -, can be constructed out
of the fields ¢, (in virtue of the irreducibility of the latter). We

assume that B . are local with respect to ‘qu

[B,(x), ¢ (P1=0 (=) <0

(A.20)
t=11 vk il -"—'1' 1
'Hence follows
]
(B (x),T)\(y)]=0 (x—=y) <0 A=0,1,2,3. (A.2D)
t . .
as well as that Bt, are local themselves too, We assume further
. that
(0.8 WE_ B Wm)=is 4% 2 -
B E By is . (x-yiM*) (A.3)
!,S=1, ,k
as well as
E ¢,(DQ=0 ' : , . (A.48)

!

: x[’l‘he difference in the masses m and M is not essential but
we keep it for notation convenience,
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The last assumption is the same as 'to say that ‘751 . and Bt are
irreducibly represented in H n and }(M resp, In addition: 8,

should transform .under the same Lorentz representation as qu and
have the same TCP operator as the latter,

Let us consider the simplest ~case of Q being a (pseudo)

. scalar, For <I)j (f)Equ,ex (f)Q and- ﬂs(f)Eﬁs,ex (na o 7x wé.
- have )
00 (D-Za © O+¢, (1,p_m2) (A.5a)
k=1 ik 'k K ex
108, ()= %y B (D +y (1, ¢ M), : © (A.5b)

where tHe matrices a and y are real and skewsymmetric of di-
mensions n  and k resp. and {,,7, depend only on 8 and ¢
K R . ex ex
‘resp. and are orthogonal to ¢, as well as to 8.
Let us apply the Borchers's theorem (see also/7/ to the auxi-

liary fields
i0,8 (01=A,6) | ‘ (A.68)

ilQ, [3t )] =8B, (x). : (A.6b)

[y

Both, sets are local with respect to ¢ and B and contribute to

the one particle states, We get

(6, GMA__ (1= . (A7a)
[ ¢)1,ex (x), B!'Bx {y)l= } a number ' - ‘ (A.70)
[Bt,ex (X)'Ak,sx (y)] = , (A‘7C)
B, B, (=) | | T (Aw7d)

*/ Notice that (8, (1, ® (g)=(0, (1.8, () =(8 (1,6 (&)=0

for j £k and t#£s .-

16 -



In order to verify the formulae

i[0,¢ (N=%a ¢ (x) o " (A.8a)
Jrex k=1 jk iex : .
i0 .8 ()l ‘l{-‘;yu B (x) (A.85)

one has to confront the vacuum expectation values obtained on one
hand.by using (A7), (A.6) and the orthogonality relations for the
one particle states, on the other hand directly by substituting (A.8)
into (A.7) and using the canonical commutation relations. It turns out .
that the states ¢ and 5 are equal to zero.. ; '

A similar scheme may be adopted ivn case of two sorts of
particles .of mass m and = M (no bound states). In this case (A,1)
will be replaced by

z}? E ¢ nNa =0 iff =0, (A.9a)

2 b Ey g, (NQ=0 iff b0, (A.9b)

The fields ¢Z (x;m?) and ¢ (x;M ?) " form an irreducible set.

Instead of (A.3) we have ° b

(9.¢k(x5E-m¢g(y)n)=iak2 AP(xmyim?) (A.10a)
’ M (€] 2
(Q'¢k(X)EM¢Z(y)Q )=io sz (x-y _ M), (A.10b)
m,M —m

m M
- where ¢ Kk

>0 ' (positive definite metric) and o8 =% (rcp com

ixrc\riance). It is, in general, not possible to perform simultaneously the

"diagonalization" of the one particle states in both spaces H, and
_'}( u + This manifests itself in the non-standard commutation relations

of the fields bg ixim? M?) | Nevertheless we may perform ‘the diago-

nalization of thé one particle states'in every subspa;:e separately. .
Then the corresponding free fields ;'Z,ex beiﬁg linear combinations

" of ¢2.ex (m2,M?), will satisfy the normal canonical commutation rela- .

tions,

17



The field (A. 6a) has also two limits dependmg, on the test fun-
ction used, namely A fox (x3m?)  and A, (x;M?) . The applica-

tion of the Borchers’s theorem leads us to

i[9,6  (xim")] “Ta™ & (xim?)] : (A.11a)
1e oy gk Tkex 4
A . no--. ~ , ‘g S . o
i10 ,6  (uMH1=Sa™ ¢ (M) (A.11b)
. frex jmt ik keex S :
where a Tk" are real and skewsymmetric matrices,
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