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§ 1. Introduction 

The study of a three-body system in nuclear physics led· to 

the construction of basis functions in the form Jf SQ-called K -po

lynomials, i.e. harmonic polynomials in the six- dimensional spacJ';./ 

In order to obtain these functions, which look 1 ke a generalization 

of the usual spherical functions, it is necessar:r to find the complete 

set of solutions of the Laplace equation on the five dimensional 

sphere. For this purpose we worked out a method for calculating 

the generators of the group of motion on the fi're dimensional sphere, 

and constructed the explicit form of the corre<.ponding complete 

set of commuting operators/
2

•
3

/. 

The salient feature of the problem which nakes it somewhat 

difficult is that the required functions have to l: e the eigenfunctions 

of the angular momentum operator and a repreE: entation of the three

particle permutation .group simultaneously. It is, of course, easy to 

find the solution of the problem , if we do not require the permu-
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tation symmetry of the eigenfunctions. The simplest way is to ob

tain such a solutic•n directly by using the method of graphs/
4

/. In 

this case the eige >functions of the Laplacean (i.e. the basis functi

ons of the problerr) are characterized by the ·following five quantum 

numbers: 

K - the degr·ee of the polynomial 

j 
1
M 

1
, j 

2 
M 

2 
- angular momenta and their projections conjugated to 

l ccnd Ti . (1) 

Instead of j 
1 

anci j 
2 

we may, of course, introduce the total mo

mentum J 

In our previcus papers/
2

•
3

/ the aim of the work was the con

struction of a set :>f functions possessing certain symmetry proper

ties with respect to the permutations. This set of functions was cha

racterized by another five quantum numbers 

K,J,M,v,n. (2) 

The meaning of th?se quantum numbers was considered in detail 

in/
3

/. It was shown, that the general form of the required harmonic 

function is 

<f!J 
M,V 

= }; a ( :\ , M ') U A ,( A , a , 0) D J , ( ¢ e ¢ ) . 
A,M' v v,M 2M , M 1 2 

(3) 

The coefficients a (A, M ') are determined by the condition that 
v 

the function <fl J has to fulfill the Laplace equation on the five-M,v 

dimensional sphere and the eigenvalue equation of operator n 
the meaning of the variables will be discussed later. 

In the present paper we choose another way: nall'fely, we try 

to find a transformution from the complete set of "tree" - functions, 
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i.e. functions constructed with the help of the nethod of graphs, to 

the K -harmonics. In this case we first have b transform the ini

tial "tree" - functions to a set with a given totc,l angular momentum, 

that is, to a set characterized by the quantum 'lumbers 

K' J 'M' j I ,j 2 (4) 

In the next step we pass over to the quantum numbers 

( '5) 

In order to do this it is necessary to carry cut a simple Fourier 

transform. To be correct, ( .i 
1 

j 
2 

) is not a real quantu~ number {in 

the sense, that functions corresponding to diffet ent pairs ( j 
1 
i) do 

not form an orthonormal set), but this notation c emonstrates the pa

rentage of the functions (i.e. it shows where we got the'TI from). 

Let's point out, that j 
1 

and j 
2 

cease to be eig~nvalues any more 

after performing the Fourier transform. 

Finally, we have to take the sum 

(6) 

where ( j j ) vvill run over each pair of values v rhich can give the 
. I 2 

total angular momentum J such that 

.J ~.i t + .i 2 ~ K. 

In the present paper we will show, how tc construct the set 

of functions (5). So far we couldn't find a set o: eigenfunctions of 

n in a closed form. Although a method for calculating such functi

ons expressed in a power series is given in/:5/, it is very difficult 

to get a general solution because the increase of the eigenvalue 



makes the corresponding equation too complicated, As soon as our 

final purpose is the construction of a complete orthonormal set of 

functions, we have to come back to the properties of n 
more in the next paper, 

once 

In the follmv:ing we will obtain the "tree" functions in such a 

form, for which the Fourier transform becomes almost trivial, 'I'hus, 

from a formal point of view, the present work demonstrates how 

to calculate the Pourier transform of the "tree" functions. 

§.2, Coordinates and Parametrization 

Dealing with a three-particle system, we will use the coordi-

nates introduced in/
3

/. Let ~ 1 ( i = 1, 2, 3) be the radius-vectors 

of the three particles, and fix 

... ... 
X + X +X 0. 

I 2 3 

'I'he Jacobi coorc inates for equal masses will be defined as 

r-t=v ~ (~1 -x ... 2) 

~2+772 ~r~ 

(7) 

(s) 

where p is the radius of the five-dimensional sphere, (We will 

take for simplicit:r p~ 1 ). Further, following/
3

/ we introduce the 

complex vector 

... 
+ i.,., 

(9) 
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Let us consider now a triangle, the vertices of vrhich are determi

ned by three particles. The situation of this triang,le in the space 

will be characterized by the complex vectors f + and £ which form 
_. _,. 4 ... 

together with eo =E+ X e_ the moving coordinate system. Vectors e+ ... 
and r fulfill the usual conditions 

... ... 

r r = 1. 
+ -

_, ... 
They are connected with the vectors z and z* 

,\ 
-1--

... 2 
z =e 

e 

... a -> 
( a o 

cos ;r L + + i sin Te 

a ... 
(cos 2 e 

... 
i sin~ r ). 

2 + 

(10) 

n the following way 

(11} 

Variables A and a determine the form of the triangle (we excluded 

similarity transformations, taking p = const). Note, that the compo

nents of the moment of inertia can be expressed ::ts 

2 a TT 
sin(---) 

2 4 • 
cos 2 

( ~- E..). l • 
2 4 

... 

(12) 

In the following it will be useful to return to ( and 71-> and connect 
... ... 

them with the coordinates e + and r 

1 ... ... 
-(ue +u*f 
2 + 

.L(vf -v*E ). 
2 + 

7 

(13) 



The introduced u v , u * and v* are, as follows 

U =I' 

-1 _-i 
2 

-1....:1. 
2 

v =e 

._A_ 

* 
I 2 

u = {' 

v* =e 
,.;\. 

2 

a 
eo.-; ""2" - i e 

a 
eos-2 + ie 

a ('(); 2- +- i c 

('(IS 
a 
2 

- i c 

a 

,\ 
2 

l;r a 
sin 2" 

,\ -!....., a sin 2 
,\ 

-I-
2 sin a -2. 

(14) 

In formulae ( 13) the Euler angles, describing the orientation of the 

triangle, and the coordinates, characterizing its deformations, are 

separated explicitly x/. These expressions can not be obtained as 

products of fund ons of the Euler angles and functions of the coor

dinates related tc the deformations (they are, in fact, sums of such 

functions).This fe . .J.ture of (13) corresponds to the connection of ro

tations and defor nations. The meaning of the coordinates introduced 
... 

becomes clear if we rewrite the expreessions for I; and ~ in the 

form 

x/ 
Let's turn our attention to a happy correspondence between 

spinors and the ·.rariables u , v , u* v* • Consider 

/;
8
+ TJ 

2 = l = c}- ( uu * + vv*) . 

Introducing two ~ pinors 

* a= ( u ) and {3 = ( -v*) 
u 

we can rewrite tl1e above expression as an invariant product of 
them: 

I TJ c. a 1 {1 ~ - a 2 {:3 1 
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(15) 

(16) 

Here we have introduced the phases t/J 
1 

and t/J 

(17) 

from where, obviously, 

u 211/JI _, e 
u* 

v 
-= e 

v* 
(18) 

Finally, 

and the angle 

8 "'t/J - t/J 
I 2 

(19) 

... 
is the angle between the vectors ~ and ~ 

... 
~ • ~ = I ~II 7! I cos 8 . (20) 

Making use of the equations 

~
2

= ~ u u* (21) 

712,.Lvv* 
2 

we can express the angle 8 in terms of our v.:.riables 

cos 8"' 
cosAsina 

(22) 
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This irrational connection between e and the angles a and A 

makes it necessary to find another way for the Fourier transform. 

Let's introduce the unit vectors i: and m defined by 

-> -> 

-> _{_ -; TJ 
n = m 

1~1 lr1l 

From (:15) and (H) it is clear, that 

4

0 = 
1_( e 

!t/JI -> -lt/JI r +e E_) 
y2 + 

-> lt/J z -> -lt/1 -> 

m = ...L(e r + e zf_ 
vz + 

It will be useful t·J rewrite these expressions in the form 

-> l lt/J -> -I t/1 -> 
n = D (0, .!!. • 0) [ e I r + e I e 

01 2 + 

I 
-> ,o 
m o t 

or, for the components of ; and 
-> 
m 

n 
I -> 

<o • - ..11. • t/1 ) o < e r 
2 l 11

1
M l + 

(M .) I 1T 1 -> -> 
m = I D 0 (0 • - - • t/Jz ) D,, M ( e e 

llz rz 2 rz 2 + 

_, -> 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

Remember, that tht~ components of E+ and E can be expressed in 

terms of the Wign•~r D -Iunctions 

0 
I (n) 

(¢0¢ ),f . 
mn 1 2 m (30) 

In fact we have IJ ( ¢
1 

0¢ 
2

) =D( E+ (l , and we introduced this some

what unusual nota :ion just to show, that the Euler angles determine 

:10 



the position of a trihedron defined by the unit Vl~ctors 'e I ,P 2 ' f 3 • 

The expression (28) describes in fact the rotation, in consequence 
... -> ... 

Of which the trihedron f I 1 f
2

, f 
3 

transforms to a trihedron deter-

mined by the unit vector rt and two other Orthog::mal vectors n I ,.f
2

, 

(The precise definition of them is of no interest to us). Similarly, 

the formula (29) describes the rotation to a trihe:iron defined by 

the unit vectors ~ , ;. 
1 

, -:n 
2 

• Thus, expressi,)ns (28) and (29) 

might be considered as transformations of Legen::ire polynomials of 

first degree (namely, vectors I: and irt ) and the~r can be generali

zed easily to the case of an arbitrary· degree, I'or example, for a 

polynomial Constructed from the unit vector n WE can obtain the 

following expression 

j jl j j 
D I '(~)"" l 'I I 

OM D o."
1
(0' 2" '- t/1 1) D" M ( ¢ 1 () ¢2 

I 11 =--J r rl I 
I I 

(31) 

and similarly, for a polynomial built up from ~ 

12 ia 
D 

0 
(0, !L, -t/J 

2 
) D ( ¢ () ¢ 

l12 2 11 2M 2 I 2 
(32) 

it 
It is easy to rewrite these formulae to such a f·)rm, in which D 

0111 
J2 

and D
0 112 

are functions of the same arguments: 
111 tP•t -t/1 2 

lt -> I 2 i tP +t/J j 1 
D

0 
(n)= l e D 1 (0.~.-(-1 --=-->ID (¢()¢) 

Ml 111 0111 2 2 11!MI I 2 

- 111 .:!!.J - t/1 _J 

D la (rlr) = l e 2 2 D J2 (0,.!!.... -( t/11 +t/1:_)))) J2 (¢ ()¢ ). 
OM 2 l1a 011 2 2 2 112 M

2 
I 2 

(33) 

(34) 

F'or the three-body problem we have to introduce one more restric

tion. Namely, as soon as the ·problem possesse:5 certain symmetry 

properties with resp~ct to the reflection in the plane defined by the 
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... 
moving vectors + and e _, the values of 11 1 and 11 2 have to be 

either only even, or only odd (e. g. in the sums (28) and (29) only 

11 =+1 is possil:le). 
1,2 -

The variety of the introduced paramete_rs and coordinates, 

and the performed transformations might seem so far to be super-

fluous; among others, u , v u * 
' 

and v* are constructed in a 

rather artificial w.:~.y. Still, in the following we will see, that just 

they will make ec sier the calculation of the Fourier coefficients of 

our polynomials. 

§ 3. The Case J = 0 

For the states with zero total angular momentum the solution 

might be easily o ::>tained. From the corresponding equation o/
3

/ we 

get for this case the following result: 

K 

0 4 
I/ V 
2'-2 

(2..,2a,O). (35) 

The degree .!. of the 0 -function corresponds to the degree 
4 

of the polynomial, since the latter is defined by the trigonometri-

cal functions of a~gument 2 so that every trigonometrical function 

of 2 a increases the degree by 4 units. 

The structure of (35) is easy to understand even without 

solving the equati ::>n. Note, that at J =0 the polynomial can not in-... ... 

valve the vectors e + and e_ i.e. it has to be a function of z 
2 

and 

z* 2 
• We know, t:1.at 

- I,\ 
z 2 

"' i sin a e 

Looking at the tatle of 0 -functions we notice, that 

12 
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2 t/2 
z ~o /: ·;: (2A 2a ,0) 

* 2 z 

-I 2,1 2 

l/2 
0 1/ 2 .-t/2 (2A, 2a,O) (37) 

and that the sum of the lower indices is equal to zero. This feature 

remains valid, naturally, for 0 -functions of higher order also if we 

construct harmonic polynomials from the functiors (37). Thus it is 

clear, that we come to the expression (35). The specific feature of 

our problem turns out to be the absence of dia:?,onal elements 

and 

in the basis. 

l/2 
0 -l/2,-t/:: 

(38) 

It seems to be interesting to study the expansicn of (35) in terms 

of the "tree" functions, i.e. in functions with giv,~n pairing angular 

momenta. The J ~O state of the system can be c escribed as the ro

tation of the vectors l and ij in opposite dirEctions with equal 

momenta. This problem leads among others to questions con:-tected 

\vith the theory of Clebsch-Gordan coefficients, which will be dis

cussed in another paper. 

Presenting the calculations in the Appendix, here we remark 

only, that the amplitudes of states vvith j 
1

: j 
2 
:j 

the Wigner coefficientx/ 

are proportional to 

x/ This formula was obtained by us together with V. Efros. After 
thiJ rork has been finished , we received the paper of R.C. Whit
ten 

8 
, in which the expansion of two-body pate '1tials in terms of the 

functions corresponding to J, 0 is given. 

13 



( 
K ...K 

) 4 4 

..!::. 1/ 0 
(39) 

2 -2 

The expansion in functions with definite pairwise momenta.· 

leads presumably to different coefficients of vector sums in the case 

of J ~ 0 also. We will consider this case separately. 

§4, The "Tree" Functions 

The solution of the Laplace equation on the five dimensional 

sphere can be given in a coordinate system corresponding to the 

"tree" on f ig.1 

\ 

Fig. 1. 
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In this coordinate system we assume 

f = cos <I>; 

(40) 

taking into account that ~ 2 
+"7 

2 
= 1 • The eigenfurction corresponding 

to this "tree" is build up in the following wa)
4

/. The function 

(j ,+...!.., i2+...!..) 
i j2 2 2 

(cos <I>) 1 
(sin <I>) P n (cos2<1> (41) 

will correspond to the intersection n (where 2n = K -j 
1 

-.i 
2 

). From 

(40) it follows, that 

cos 
2 

<I> =~ 2 
' sin 

2 
<I> = "7 

2 

So we can rewrite the expression (41) in the fot·m 

(it+~.iz+~> 
~it T/ j2 p K . . 

-1 1-12 

-> 

( ~. ij')' (42) 
------2 

where 

n-m 

(-1) (43) 

The functions corresponding to the "branch" chc:.racterized by .i 
1
M 

1 

and .i 2 M2 are 

( 0 I) e (44) 

and 

15 



respectively. Multiplying the functions (43) and (44) we obtain the 

eigenfunction of the whole "tree": 

(45) 

Here we used the notations 

(46) 

(47) 

p ( .... )- l2p ( ... ) 
j M T/ - T/ j M m • 

2 2 2 2 

(48) 

Making use of the equations (18) and (21) we can pass over to the 

variables u , v 

( 48) in the form 

u* and v* and rewrite the expressions (47) and 

(49) 

and 

) 

j2+p.2 
M ( -tM )! ~ ( . 2 --

( 
... ) 2 . 2 2 -J 2 

P T/ =i [---] I- v v* 
l:!M..! ( -M )! 1-12 2l2 

. 2 2 

Here we applied the notation o/
6

/ 
(m) m m 17 

~ k r = 0 k r <o · t · o> = P kf <cos ~ >. (51) 

16 



l1 ( ) i2 ( ) Expanding the product D IL tt
1 

¢ (} ¢ 2 D IL 
2 

M 
2 

¢ 1 (} 'i' 2 in terms of 

the functions o: M ( ¢
1 

(} ¢ 2 ) (where M = M 1 +M 2 , IL = IL 1 + IL 2 ) 

and considering only one term J of the sum (where Jj
1
-.i

2
l:S_J:S_j

1
+j

2
), 

we get 

-+ -> M 
p JM ( ~ oT/ ) = (i) 

(52) 

:c!:J. i2 -IL 2 

2 2 
v u v * 

2 2 (J) (J) 
( .i r ,j IL I J ) L\ D (¢ 8¢ ). 

I I 2 2 /L !LM p.M I 2 

With the help of (18) and (21) we can rewrite ti-e expression (43) 

Substituting into (45) formulae (52) and (53), we obtain the eigen-... 
function <ll ( ~, ~ ) in the following form: 

IL2 (" + j +.Lln+j + .l.) ... (-i) n-m 2 (J) I 2 2 2 
<ll(~. ~) .. A' I I . +l + (-1) (j IL ;j IL IJIL) L\ X 

JM m llt/La 2 l I 2 n I I 2 2 OIL m n-m 

l t+IL 1 
n-m ---+m 

2 J 

D (¢ ecp ), 
IL M I 2 

u v * 

17 



where 

M 

A ~M =(-1)2 
((ji+MI:!( .i +M )! Y:2 

~-=M)!(/2 -~/1 <i 10,j 2 0\JO)( j M ,j M I JM). 
l 1 2 2 

We have pointed out it before, that all the following calculations 
-> 

are needed just tc get <I> ( ~ .~) in a form for which the Fourier 

transform becomes relatively easy. We will use now the equation 

given ij?/ 

1 . y 
-:- ____ -__ (cos·L 

1
2 -IL . 

VIJ-k)!lpk)! 1 • .;";" ~· , ),_, 

j 

y 
-12 l+k 

( i sin ::_ +cos.!!.: c ) 
2 2 

P fk (cos a ) -If y 
= l 

f=-i --======= 
v<i- e)! <.i +e)! 

remembering 

- j r- k 

P fk (cos a ) = (-1) 
j 

P "· (eosa ). 
-r.-k 

c 

(55) 

(56) 

Indeed, if we comp'ire (~5) and its conjugated with the expressions 

(14) for u 

u* 

i1-P.1 +m 
2 

K-0 
4 

X }; 

VI=-(K-0) 
4 

v , u' and v*, we see that 

_!z~P.z_+n-m 

v 

K-0 
p -4-

vl. w + .!!_ (cos a ) 
4 

. . + ~ 
J 1- p. l .I ~ p. 2 

= ( (----+m)! (----- +n-m)!] 
2 2 

-1v
1
,\ 

c 

K-o K-o ~2 
((-----vi)!(---+ v 1 )!] 

4 4 

18 
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and 

i I +Jl I 
-2--+m 

u v* 

K-H5 
4 

+m 

(58) 

e 
X ~ ------------. 
v~-cK+B> 

2 4 
K+B K+B J,f 

[(---v )! 1--+ v )!] 
4 2 4 2 

where 

. j 2 -j 1 n 
\l,---+--m 

4 2 

Thus, carrying out the expansion of 

K 

K-8 
p-4--

v W+J!_ 

K+B 
4-

(cos a) P p.(cosa) 
-1/2 ,-W+ 4 

in terms of the functions 

the eigenfunction 
.. .. 

<1>(~,,/) 

K 
--K 

X p 2 

v. p./2 

J 

(cos a )0 
I' M 

I' , 4 
--K 

p 2 
v.~ 

(cosa) (where v v - v 
I 2 

might be obtained in the form 

~ 
K 

I 
i 1 +i 2 +n 

2 

19 

K-0 +~ + 1:.__...!..:_ 
4 2 2 2 

(-1) 

) 

X 



Making use of different relations for the Clebsch-Gordan coeffici

ents, we can trarsform (59) in such a way that it becomes easy 

to take the sum •Jver c ~ v + v by introducing 
I 2 

(a, {:3> 
p k (O) = Lo( k +a Y k + {:3) 

m A n-m (60) 

k-m 

(-0 
2~ 

Concerning the SL.m over v , in the following only one definite 

term of it will be considered. Then, after tedious calculations we 

get the final expression 

K-0 . p. K+ o p. K p. 
(--,W+ -; --- -W+ -1---K ;-) 

4 4 4' 42 2 
------------------- X 

(.:G_+m /l+~; jz+n-m f._~ I K; L) 
2 '4 2 '4 2 2 

K +11-0 v 
----- -+K 

4 2 (~--K) 
~(J} ~ i/ 

op. 2·v 

(!L) 
~ 2 

(61) (-0 K-2K+l ~2 
[ l 
(K+K +l)!K! 

X -- X 

2 K/4 

lL,lL 
2 2 

X X +2m)!(,· +2n-2m)! 
I · 2 

K 
--K J 

x n 2 
( ,\' a, 0) n ( ¢ 1 e ¢ 2)' 

ll /l, M 
l./. L.:...-

2 

20 



where _2..z, 
(-l) 2 

A 
JM 

-----A' .4..±k JM 
2 2 

Thus, the general solution of the problem is obbined in the form (3). 

(In our notation there will be M ' = ~ , A = ~ - K ). Looking at the 

structure of the coefficient of 1L-K ) J it is D 2 (A, a, 0 D . ¢ 
1 

8¢ 
2 

) 
II _J.!. JL.M 

easy to understand, that 0ur atte~~ts/3/ to deternine a 
11 

(A, M ') expli

citly couldn't be successful. 

§5. Another Way of Calculating the EigenfL.nction <I>([, ~) 

While calculating the explicit form of the ?igenfunction, we 

noticed, that besides the expression for it in thE· form of the product 

of two D -functions there is another possible s ::>lution, which m~ght 

be more convenient in the following. We begin \'"ith the expressi-

on (54). Remembering the explicit · form of u v ' u* and v* (14), 

expand them in a series of a and a we power siny ('082 

A ( J ,_, ~±!!.. A +s 
A 2 AA (cos !..) -2- 2 -2- iA~ 

~ (sin ; ) (-i) 2 u e 
+s 2 

~~-..A 2-
2 

~-~· ( 8 ) -= 
B+t B +t -- 1 A.!_ B a 2 a 2 2 

B;!. (cos Z) (sin yl (i) 2 v e 

2 

(62) 
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D 

D 2 
v* = I 

v=-.!!... 
2 

(cos f) (sin f) 

a 
(sin "2) 

I?- v 

2 

Using these expre;;sions we can write 

1-,...1 
--2--+m 

u * v 

~ ,t,u ,v 
~+t+u+v=-2V 

2 +JL2 
---2-+ 

K-~-t + u --v --------2 

n-m 

u 

j I +JLI 
--r-- + m 

K +~ +t- u- v --------2 

X (COS ; ) (sin ; ) (i) 

( i) e 

D-v 
2 

tA--'!.. 
2 

(-i) e 

tA~ 
2 

v* 

j 2 - Jl2 
~+ n- m 

-0-~+t-u+v ~+t+2 u+v );\ 
--2---1( 

c 

(a,f3) 
Two of these sums can be easily taken if we introduce P (0) 

k 

in the form (60). Thus we have 

l!..::L 
( --i) 2 

(-1) 

22 



t,u 
~+t+u+v=-ZV 

(i) 

K 0 ----z 2 
2 

K 

z 
e 

-1v,\ 

X 

(G
2

+!_+_o +m)!(l.J- _Jl_+_o +m)! (1.1+ ll-o+n-m)!(~- ll..:.~+n-m) y, 
4 2 4 2 4 2 L 2 

X (--- -------· ----- 1 
(!.+ .1!:.. + s+l) !(~+£.- ~-)!(!__ £. +~~)!(~- £. .• ~~)! 

4 4 2 44 2 4 42 44 2 

cE- + ..1!:..' 
4 4 

(~- .1!:.., 
4 4 

X ~ 
Ht 0 ---.w-- u+v 0 ---,-W---
z 4 2 4 

K 

z 
X (cos ; ) 

( ~+ t) - ( u + v) 

2 

X 

K (~+t)- ( u+v) 
-+ 

2 2 

This formula can be rewritten in the following forn 

-> -> 

<ll ( ~' TJ ) l N (K,v,j 1 ,j 2 l ll,o,a,W) x 
p. ,o ,a,w 

-~-..!!... 
x ( cos a + l ) 

4 4 
E..+.!!... 

(eosa-1) 
4 4 oJ (¢ ec:p >. 

/l M I 2 
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where a=s+t-(utv) , and 

n-m p.+8 u-8 z 
< j -- r ..t;;...._, J p. > x 

I 2 ' 2 2 
N(K,v,j ,j jp.,8,a,W)=A (-1) 

I 2 J M 

,..(..!._1!:.., 
~ 4 4 

(66) (!.... + _/!;_) 
4 4 (J) 

X ~ 
Op. 

~ +~-.-w- ~ 1 

We have introducHd here the notation 

(67) 

A is the nor nalization constant, the explicit form of which is 
JM 

now out of interest for us. The boundaries of summations in (65) 

are 

-K.::; a.::; K , 
K-2j K-2j I 

-· __ .!, < w < ---
4 4 (68) 

The boundaries ir p. and 8 with given a and m are defined 

by the factorial in the denominators of the functions X 

§6. Conclusions 

The problem of constructing a basis for a system of three 

free particles, realizing representations of the three-dimensional 

rotation group and of the permutation group, turned out to be, quite 

24 



unexpectedly to the authors, rather complicated, We couldn't solve 

directly the obtained set ·of equations for determining the eigenfun

ctions x/, and had to construct the solution in ar other way, Functi

ons vvere constructed, which fulfill four of the gLren five equations, 

so that the final solution (with the quantum numb :!r n ) is to be 

found by substituting a linear combination of solutions with several 

(j j ) in the equation of n obtained in/
3

/. It is not difficult to get 
I 2 

the solution of the eigenvalue equation for n in every particular 

case, (For polynomials it was already done in j:;J). However, if 

seems to us, that there must be some more effe :::tive means for 

the orthogonalization of the polynomials, may be even without using 

the operator n . by some symmetrization pr :::>cedure, In any 

case this question will be discussed separately. 

Besides that, there are several problems c:.rising from our 

work, It is necessary to generalize the method ·Jf expansion of fun

ctions into series in terms of functions with give:1 partial momenta 

in the case of the total angular momentum J f. 0 • It would be very 

interesting to know how to construct an approxi natively orthonor

mal set of functions with a cut off at a certain 5iven value j 
1 

= j 
2
=j ; 

such a set may be convenient for the calculatic n of matrix elements. 

x/ The obtained formulae are complicated, becaL se we got polyno
mials which are not classical and their theory is not worked out 
yet, If our method will lead to useful results, it will not be difficult 
(in principle, at least) to study the properties of these new poly
nomials and tabulate them, 

Note, that the transition to a larger number of particles makes 
the formulae still more complicated; in a certain sense this is simi
lar to the transition from the hypergeometrical function of one va
riable to hypergeometrical functions of few varic.bles, the theory of 
which is also almost not known. 
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After the orthogonalization of the wave functions obtained 

in the present par•er it is reasonable to study t.he problem of the 

origin of the rotat~onal spectrum of the system. For that purpose 

we have to construct a wave packet es a superposition of "spheri

cal harmonics" with different 0 and K , which have approximate-

ly conserved projE!ctions of the angular momentum to the normal 

of the plane of the triangle. The detailed discussion of this prob

lem will follow in our next paper. 

It would be nlso of interest to see, whether it is possible 

to make use of an expansion of this kind for the motion of a mas

sive top. Especially interesting (and so far not well understood) 

is the case of the Kovalevskaya top, the quantum analogue of 

which is not known yetx/. 

A possible application of the technics worked out in the pre

sent paper could be the classification of Dalitz plots of the three

particle decays. It seems to us now, that the generalization of our 

results to the relat vis tic case cannot be too difficult. 

Finally, from :1. practical point of view, it will be important 

to work out the method for the calculation of matrix elements of 

pairwise interaction::;, 

APPENDIX. 

'l'o obtain the contribution of the partial momenta in the .J,.O 

state, it is necessa ~ to calculate the Fourier coefficient of the 

function 

x/ In this case we nust start with a more general expansion. 
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(i+"f.i+-t) 
P (cos2<1>)P. (n,m). 

K , J 2-J 

j j 

<1>
0
((,7]) = (cos<l>) (sin<l>) 

(A.l) 

From the condition ~ 2 
+ 1) 

2
= l it follows, that vve can take cos2 <1> =~ 2 

and rewrite (A.l) in the form 

<i+-f, i+-t) 
r u= 2- 2>r. 

K <, 1) J 

2-i 
( n. m). (A.2) 

'I'he zero total angular momentum state is compm.ed from two equal 

partial mometa j = j = j 
I 2 

• As soon as in this ca~;e the eigenvalue 

of n plays no role, it is obvious, that the J =0 state can be ob-

tained from the states described in the present r.a.per by replacing 

the quantum number v by j • 'I'hus, the functio'1 (A.2) has to be 

the superposition 

t/2 
lC(j,v)Dv v(2A.,2a,O) 
J.! z-·--2 (A,3) 

and we have to calculate the coefficient C ( j, v ) · • 'I'he Fourier co

efficient of (A.2) will be obtained by the use of the condition n ·m = I, 

which means, as it can be seen from (21), a=!!_ , On the other 
2 

hand, 

eos 2<1> = sin a sin A 
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which leads in the case a = f to 

eos2<1l = sin.\ 

sin 2 <ll = eos) (A.4) 

To get the stanclard formulae, we put sin,\= eosA and use the Ge-

genbauer polynonial instead of the Jacobi polynomial: 

(('OS 2<1J). (A.S) 

Doing so, we ob :afn from ( A.l) 

i i f' ( 2j + 2) I" ( K + f ) 
(eos<ll) (sin<ll) ---

HI 
C (eos 2<1l ). 
~-j 

2 

(A. 6) 
r(~+j+2lr(j+il 

Making use of the integral representation of the Gegenbauer poly

nomia/7 /, one ca.1 write 

l i H 
- (sin A) C 
2j ~-j 

2 

j 

(eos A ) = _i --
22Hl 

rr K ~ 

f(2+ j+ }l 

!L !r ( j + 1 l 
2 

X I (('OS A- i ~in A ('()S 0) 
2 c (eos O)sin e d(:l. 

0 

12 

X 

Remembering C (eos 0) =Pi (eos 0 ) , we have 

_, .i I"(2J'+2)f(K+_2) 
_, 1 2 

<IJ ( {;, 1'/ ) = --:- -;.,-------- X 
0 22J+I ' '3 - : I' ( 1· + 1 l r ( 1· + .:_) ! . . 2 

" K 

': I (eos A- i sit Aeos8 )2 P. (('osO )sin 0 dO. 
0 
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It is easy to obtain the Fourier coefficient directly, expanding cos I\ 

and sin I\ in terms of the exponents and opening t'1e parentheses. 

For the terms with 
-tvA 

e in the integral we can write then 

K -tv/\ {) 2+V 
(cos2) Pi (cos())e sin()£)() 

or, in another form: 

....!i. i -iv/\. v-..!. 11 

z I p 4 

K v 
(cos () ) P 4 

( cos () )P 
0 0 

(cos ())e sin () d () . 
K V 0 -.-

1 a 

Finally, we obtain 

-> 

K 
j-~ 

<I> (~.Til= 
0 22j..;2j~ 

--.---; 

f' (2 j + 2) f' (K + !-l ________ ...__ X 

[' ( .i + l ) [' (j + 22) 

e 
( K " K v 

1 
·o) 

X 4' 2; 4 '- 2 J -------=--=--
y( ~ -j)! ( ~ + j + l)! . 
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