C-51
объЕДИНЕННЫЙ ИНСТИТУТ Я.ДЕРНЫХ ИССЛЕДОВАНИЙ
Дубна

V.L.Cherniak, B.V.Struminski, G.M.Zinovjev

PROTON STRUCTURE AND HYPERFINE SPLITTING IN THE HYDROGEN ATOM

Submitted to Yadernaya Fizika

1. Analysis of the Pole Terms

In part I of the paper ${ }^{1}$ a correction to the hyperfine splitting in the S-state of the hydrogen atom, proportional to $a \mathrm{~m}$, was evalated

$$
\begin{equation*}
\delta=\left(\delta_{\mathrm{N}}-\delta_{\text {stat }} j\right)+\Delta_{\mathrm{cut}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\delta_{N}-\delta_{\text {stat }}^{0}=\frac{a \mathrm{~m}}{\pi} 8 \int_{0}^{\infty} \frac{\mathrm{dk}}{\mathrm{k}^{2}}\left[\mathrm{G}_{\mathrm{N}}\left(-\mathrm{k}^{2}\right) \mathcal{H}(\mathrm{k})-H(0)\right] \equiv \delta_{T \mathrm{~L}}+\delta_{\mathrm{TT}} \delta_{\text {stat }}^{0} \tag{2}
\end{equation*}
$$

$$
H(k)=\frac{k^{3}}{\pi} \int_{0}^{\pi / 2} \frac{d \phi \sin ^{2} \phi}{k^{2}+4 m^{2} \cos ^{2} \phi}\left[f_{1}\left(-k^{2}\right) \frac{2}{\cos ^{2} \phi+\left(k^{2} / 4\right)}+\left(f_{1}\left(-k^{2}\right)+3 \mu f_{2}\left(-k^{2}\right) \frac{\cos ^{2} \phi}{\cos ^{2} \phi+\left(k^{2} / 4\right)}\right] \equiv\right.
$$

$$
\begin{align*}
& \equiv H_{T L}(k)+H_{T T}(k) \\
& G_{N}(x)=-\frac{f_{1}(x)+\mu f_{2}(x)}{1+\mu} ; \quad H(0)=(1+m)^{-1} .
\end{align*}
$$

(We set the proton mass equal to one and use the same symbols as in part I). In these formulae $\delta_{T L}$ is the contribution from the exchange of longitudinal and transversive photons, and δ_{TT} is the contribution from the exchange of two transversive photons (fig. ib), $\delta_{s t a t}^{0}$ corresponds to the diagram of fig. ic (see ${ }^{1}$). (The cross diagrams follow automatically)

a.

b.
electron

- - - - - longitudinal photon

YXXAXPADS tranversal photon is
nucleon

$$
\begin{equation*}
\Delta_{\text {out }}=\frac{a m 2}{\pi^{3}(1+\mu)} \int \frac{d^{4} k}{k^{2}\left(k^{4}+4 m^{2} k_{0}^{2}\right)}\left[\left(2 k^{2}+k_{0}^{2}\right) H_{1}^{\text {out }}\left(-k^{2}, i k_{0}\right)-3 k^{2} k_{0}^{2} I_{2}^{\text {cut }}\left(-k^{2}, i k_{0}\right]\right] \tag{4}
\end{equation*}
$$

(Note that in formulae (3) and (4) some of the terms proportional to m^{2} (from the electron propagator) are retained since in the limit $\mathrm{m} \rightarrow \mathrm{O}$ we get logarithmic divergences in δ_{N} and $\Delta_{\mathrm{H}_{1} \text { out }}$).

To evaluate (1) we choose the nucleon form factor in the form

$$
\begin{equation*}
f_{1}\left(-k^{2}\right)=f_{2}\left(-k^{2}\right)=f\left(-k^{2}\right)=\left(1+\frac{k^{2}}{m_{0}^{2}}\right)^{-2} ; m_{0}^{2}=0,71 \mathrm{BeV}^{2} \tag{5}
\end{equation*}
$$

It is convenient to present the integral
(2) in the form

$$
\begin{gathered}
G_{N}\left(-k^{2}\right) \mathcal{H}(k)-\mathcal{H}(0)=f^{2}\left(-k^{2}\right)\left[\left(\mathcal{H}_{T L}^{\prime}(k)-\mathcal{H}^{\prime}(0)\right)+\mathcal{H}_{T}^{\prime}(k)\right]+H^{\prime}(0)\left[f^{2}\left(-k^{2}\right)-1\right](6) \\
\mathcal{H}^{\prime}(k)=\mathcal{H}(k) / f^{2}\left(-k^{2}\right)
\end{gathered}
$$

since in the static limit $M_{N} \rightarrow \infty, \delta_{T T} \rightarrow 0$ and $\delta_{T L} \rightarrow \delta_{s t a i}^{0} \quad$ (if $\left.\left(-\mathrm{k}^{2}\right), 1\right)$. The first and the second summands in (6) can be interpreted as "the effect of the finite nucleon mass" and "the effect of the form factor". The first bracket yealds a value $26,1 \mathrm{ppm}\left(1 \mathrm{ppm}=10^{-6}\right)$ (the contribution from $\mathcal{H}_{\mathrm{TT}}$ being equal to $53,4 \mathrm{ppm}$), whereas the second gives $-43,2 \mathrm{ppm}$. The total being thus $-17,1 \mathrm{ppm}$

For the estimation of the contribution from the cut we evaluate that from the N_{33}^{*} resonance in (4) (see Appendix II).

Substituting

$$
I_{1,2}^{\mathrm{N}_{33}^{*}}\left(-\mathrm{k}^{2} ; i k_{0}\right)=\frac{2 \nu_{0}\left(-k^{2}\right)}{\nu_{0}^{2}\left(-k^{2}\right)+k_{0}^{2}} R_{1,2}^{\mathrm{N}_{33}^{*}}\left(-k^{2}\right)
$$

and performing numerical integration we obtain the value $\cong-35 \mathrm{ppm}$ (in fact, the whole contribution comes from $\mathrm{II}_{1}^{\mathrm{N}_{3}^{*},}, \mathrm{II}_{2}^{\mathrm{N}_{3}^{*}} \approx 0,5 \mathrm{ppm}$). Therefore $\Delta_{\text {out }}$ is in-general not small as compared to the first summand in (1). Since. little is known about the behaviour of the amplitudes $\mathbf{H}_{1,2}$ on the cut the application of the expression (4) is rather difficult.

If we turn back to the integral (1) and to the contribution from N_{33}^{*} in (4, and consider the integrals in k as functions of the upper limit of integration then we can see that, in fact, the whole contribution to the integrals comes from the region of small values of $k: 0 \leq k \leq m_{\pi} \quad$. One of the reasons for this is the smallness of the electron mass and the logarithmic divergence of the integrals at $\mathbf{m} \rightarrow \mathbf{0}$. The situation remains unaltered even in the case of much slower decrease of the nucleon and N_{33}^{*} form factors. It could thus be expected, that has we found the contribution from cuts at small k^{2} the evaluation of the contribution from the remaining region would not be substantial.

Let us present $\Delta_{\text {out }}$ in the form

$$
\begin{align*}
& \Delta_{\text {out }}=\frac{\alpha \mathrm{m}}{\pi(1+\mu)} \cdot \frac{2}{\pi^{2}} \int \frac{d^{4} k}{k^{6}}\left[\left(2 k^{2}+k_{0}^{2}\right)\left(H_{1 c u t}\left(-k^{2}, i k_{0}\right)-H_{1 \text { out }}(0,0) \phi\left(-k^{2}\right)\right)-\right. \\
& \left.-3 k^{2} k_{0}^{2} H_{2 \text { out }}\left(-k^{2}, i k_{0}\right)\right]+\frac{\alpha m}{\pi(1+\mu)} \frac{2}{\pi^{2}} H_{1 \text { cut }}^{(0,0) \mu \int} \frac{d^{4} k}{k^{4}} \frac{k^{2}}{k^{4}+4 m^{2} k_{0}^{2}} \phi\left(-k^{2}\right)_{E} \\
& \equiv S_{2}+S_{3}+S_{B} ; \phi(0)=1 . \tag{7}
\end{align*}
$$

We have added and subtracted a term proportional to II $_{1 \mathrm{cu}}(0,0)=\mathrm{H}_{1}(0,0)$ then in the first term we have set $\mathrm{m}=\mathbf{0}, \mathrm{H}_{1}(0,0)$ can be evaluated by the low energy theorem

$$
\begin{equation*}
H_{1}(0,0)=\frac{1}{\pi_{\nu_{t}} \int_{t}^{\prime 0} \nu^{2}} \frac{\mathrm{~d} \nu^{2}}{\nu^{2}} \operatorname{lm} I_{1}(0, \nu)=-\frac{\mu^{2}}{4} \tag{8}
\end{equation*}
$$

At small $k \quad S_{2}$ behaves like $\int \mathrm{dk} k$ const and such a contribution from the cut of the amplitude H_{1} in the region of small \dot{k}^{2} reduces to the term S_{B} in (7). Choosing $\phi\left(-k^{2}\right)=r^{2}\left(-k^{2}\right)$ we get $S_{B}=-22,6 \mathrm{ppm}$ (In this case the sum of the nucleon pole contribution plus S_{B} is equal to the contribution of the modified Born diagram with such a vertex as if the nucleon were on the mass shell). We note thiat we have not transformed the term $\mathrm{II}_{2}^{\text {cut }}$ in (7), since the region of small k^{2} is already demped in $S_{3} \quad$.

2. Estimation of \mathbf{S}_{2} and \mathbf{S}_{3}

Our calculations of S_{2} and S_{3} are considerably facilitated by the fact that we try to obtain a reasonable upper limit since too little is known about the amplitude II $_{1,2}$. If the estimated upper bound will turn out to be small, this will be sufficient for our program.

Now we assume that in the region of large \mathbf{k}^{2} the amplitudes II ${ }_{1,2}$ behave not worse than those obtained by Bjorken ${ }^{3}$, i.e.

$$
H_{1}\left(k^{2}, \nu\right)\left|\begin{array}{ll}
\frac{z_{1}}{k^{2}}, & H_{2}\left(k^{2}, \nu\right) \tag{9}\\
k^{2} \rightarrow-\infty & \leqslant \frac{z_{2}}{k^{4}} \\
\left(\nu / k^{2}\right) \rightarrow 0
\end{array}\right| \begin{array}{ll}
k^{2} \rightarrow-\infty \\
\left(\nu / k^{2}\right) \rightarrow 0
\end{array}
$$

A rough estimation of S_{2} and S_{3} can be obtained in the following way. Separating the integrals in (7) into region of "small" $\left(0 \leq\left|k^{2}\right| \leq 1\right)$ and "large" $\left(k^{2} \mid \geq 1\right.$ values of k^{2}, we can set in the first region (we admit the possibility of the existence of the asymphotic $\Rightarrow \mathbf{O}\left(\frac{1}{\mathbf{k}^{4}}\right)$ instead of $\mathbf{O}\left(\frac{1}{\mathbf{k}^{5}}\right)$ in ${ }^{4}$ though in the equal time commutater $\left[\mathrm{j}_{\mu}(\mathrm{x}) ; \mathrm{j}, V^{(0)}\right]_{x_{0}=0}$ the possible contribution to H_{2} vanishes at $\overrightarrow{\mathrm{P}}=0$, since this difference is inessential in the estimation of the contribu ton from the region of large k^{2} in S_{3}):

$$
\begin{equation*}
\left[H_{1}^{\text {out }}\left(-k^{2}, i h_{0}\right)-\ddot{\phi}\left(k^{2}\right) H_{1}^{\text {cut }}(0,0)\right] \approx k^{2}\left|H_{1}^{\text {cut }}(0,0)\right| \tag{10}
\end{equation*}
$$

$\left.\left|\mathrm{S}_{2}\right|_{\mathrm{k}}^{2} \leq 1=\frac{a \mathrm{~m} 4}{\pi^{2}(1+\mu)} \int_{0}^{1} \mathrm{dk}^{2} \int_{0}^{\pi} \mathrm{d} \phi \sin ^{2} \phi\left(2+\cos ^{2} \phi\right)\left|\mathrm{H}_{1}(0,0)\right| \approx \frac{4 a \mathrm{~m}}{\pi(\mathrm{l}+\mu)}\left|\mathrm{H}_{1}(0,0)\right| \approx 2 \mathrm{ppm}.\right)$

For I_{2} we assume $I I_{2}^{\text {cut }}\left(-k^{2}, i k_{0}\right) \approx\left|H_{2}^{\text {cut }}(0,0)\right| \approx\left|H_{2}^{N_{33}^{*}}(0,0)\right|$

$$
\left|\mathrm{S}_{3}\right|_{\mathrm{k}^{2} \leq 1} \approx \frac{4 a \mathrm{~m}}{\pi^{2}(\mathrm{l}+\mu)^{0}} \int_{0}^{1} \mathrm{dk} \int_{0}^{\pi} \int_{\mathrm{d}}^{\pi} \mathrm{d} \phi \sin ^{2} \phi 3 \cos ^{2} \phi\left|\cdot H_{23}^{\mathrm{N}_{33}^{*}}(0,0)\right| \approx \frac{3 a \mathrm{~m}}{2 \pi(1+\mu)}\left|\|_{2}^{\mathrm{N}_{33}^{*}}(0,0)\right| \approx 4 \mathrm{ppm}
$$

(We note that the contribution from N_{33}^{*} in H_{2} in fact is $\approx 0.5 \mathrm{ppm}$). One can put in the second region

$$
\begin{align*}
& \left.\left|S_{2}+S_{3 k^{2} \geq \tilde{\sigma}} \frac{6 a m}{\pi^{3}(1+\mu)} \int_{1}^{\infty} \frac{\mathrm{d}^{4} k}{\mathrm{k}^{4}}\right|\left|I I_{1}^{\text {asympt }}\left(\mathrm{k}^{2}\right)\right|+\mathrm{k}^{2}\left|I I_{2}^{\text {asymp }}\left(\mathrm{k}^{2}\right)\right|\right] \approx \frac{6 a \mathrm{~m}}{\pi(\mathrm{l}+\mu)} \int^{\infty} \frac{\mathrm{dk}^{2}}{\mathrm{k}^{4}}\left[\left|\mathrm{z}_{1}\right|+\right. \\
& \left.+\left|\mathrm{z}_{2}\right|\right] \approx \frac{6 a \mathrm{~m}}{\pi(1+\mu)}\left(\left|\mathrm{z}_{1}\right|+\left|\mathrm{z}_{2}\right|\right) \approx 6 \mathrm{ppm} \quad\left|\mathrm{z}_{1}\right| \approx\left|\mathrm{z}_{2}\right| \approx 1 \tag{12}
\end{align*}
$$

One sees that the contributions obtained are really small. Alternatively we can damp in S_{2} the region of small and large k^{2} and transmitt their contribution to S_{B} by choosing e.g. the function $\phi\left(-k^{2}\right)$ in (7) in such a way that $\phi(0)=1$ and $\phi\left(-k^{2}\right) \left\lvert\,-k^{2} \gg 1 \rightarrow \frac{z_{1}}{k^{2}}\right.$ We have numerically $\dot{S}_{\mathrm{B}}=-25,5 \mathrm{ppm}$ if $\phi\left(-k^{2}\right)=\left(1+\frac{k^{2}}{\mathrm{~m}_{0}^{2}}\right)^{-1} \quad \mathrm{~m}_{0}^{2}=$ $=0.71(\mathrm{Bev})^{2}$ and $\mathrm{S}_{\mathrm{B}}=-22,6 \mathrm{ppm}$ if $\phi\left(-\mathrm{k}^{2}\right)=\left(1+\frac{\mathrm{k}^{2}}{\mathrm{~m}_{8}} 5^{\mathrm{m}_{0}^{2}}\right.$, . For a possibility of more accurate estimate we use dispersion relations for $H_{1,2}^{\text {cut }}$

$$
\begin{equation*}
\text { II }{ }_{1,2}^{\text {cut }}\left(\mathrm{k}^{2}, \nu\right)=\frac{1}{\pi} \int_{\nu_{\mathrm{t}}\left(\mathrm{k}^{2}\right)}^{\infty} \frac{\mathrm{d} \nu^{\prime 2}}{\nu^{\prime 2}-\nu^{2}} \operatorname{lm} \mathrm{II}_{1,2}\left(\mathrm{k}^{2}, \nu\right) \tag{13}
\end{equation*}
$$

and substitute them into (7). We obtain (see ${ }^{2}$)

$$
\begin{equation*}
\mathrm{S}_{2}=\frac{a \mathrm{~m}}{\pi(\mathrm{I}+\mu)} \int^{\infty} \frac{\mathrm{dk}}{\mathrm{k}}\left[\frac{9}{4} \mu^{2} \phi\left(-\mathrm{k}^{2}\right)-\frac{4}{\pi} \int_{\nu_{\mathrm{t}}}^{\infty} \frac{\mathrm{d} \nu^{2}}{2} \nu_{m} \nu_{1}\left(-\mathrm{k}^{2}, \nu\right) \beta\left(\frac{\nu^{2}}{\mathrm{k}^{2}}\right)\right] \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{S}_{3}=-\frac{12 a \mathrm{~m}}{\pi^{2}(\mathrm{l}+\mu)} \int_{0}^{\infty} \frac{\mathrm{dk}}{\mathrm{k}_{\nu_{\mathrm{t}}\left(-\mathrm{k}^{2}\right)}^{\infty} \mathrm{d} \nu^{2} \mathrm{ImH}_{2}\left(-\mathrm{k}^{2}, \nu\right) \delta\left(\frac{\nu^{2}}{\mathrm{k}^{2}}\right), ., ~ ., ~} \tag{15}
\end{equation*}
$$

where

$$
\begin{align*}
& \beta(x)=3 x-2 x^{2}-2(2-x) \sqrt{x(x+1)}, \delta(x)=1+2 x-2 \sqrt{x(x+1)} \tag{16}\\
& \nu_{t}\left(-k^{2}\right)=\frac{2 m \pi^{+} m^{2} \pi^{\prime}+k^{2}}{2}
\end{align*}
$$

We now concentrate our attention on the high energy (Regge) region $\left(\nu / \nu_{t}\right) \gg 1$ (for the region of small ν / ν_{t} we retain the N_{33}^{*} resonance only , since the behaviour of $\mathrm{Im}_{\mathrm{H}}^{\mathbf{1 , 2}}$ in the "low energy region" was studied in detail in ${ }^{4}$.

The asymptotic behaviour of the amplitudes $H_{1,2}$ is treated in Appendix.I.

The calculations were performed in the following way. We have chosen for $H_{1}^{\text {cut }}$ the representation
$\frac{1}{\pi} \operatorname{Im~H} 1_{1}^{\text {out }}\left(k^{2}, \nu\right)=\delta\left(\nu-\nu_{0}\left(k^{2}\right)\right) R_{1}^{N_{3}^{*}}\left(k^{2}\right)+\theta\left(\nu-\nu_{0}^{\zeta}\left(k^{2}\right)\right) \beta_{1}^{a_{1}}\left(k^{2}\right)\left(\frac{\nu}{\nu_{t}\left(k^{2}\right)}\right)^{a_{1}}(17)$
where θ is the step θ function. The Regge-residue was chosen in the form

$$
\begin{equation*}
\beta_{1}^{a}\left(k^{2}\right)=\beta_{1}^{a_{1}}(0) \Gamma_{1}\left(k^{2}\right), \Gamma_{1}(0)=1 \tag{18}
\end{equation*}
$$

The norm was chosen in accordance with the low energy theorem, by a substitution of (17) into (8). The behaviour of $\Gamma_{1}\left(k^{2}\right)$ was. chosen "maximal" allowed by the condition (8). Also, we have put $\Gamma_{1}\left(k^{2}\right)=\left(1+\frac{k^{2}}{m_{0}^{2}}\right)^{-1}$.

The parameters of the N_{33}^{*} resonance are given in the Appendix IT.

The calculations give a small value of S_{2} not exceeding $\approx 1,5 \mathrm{ppm}$. The $H_{2}^{\text {cut }}$ amplitude representation was chosen in analogy with (17), (18), $a_{2}=a_{1}=-1, \Gamma_{2}\left(k^{2}\right)=\left(1+\frac{k^{2}}{m_{0}^{2}}\right)^{-2} \quad$ and $\beta_{2}(0)$ was chosen in accordance with the condition (9),

$$
\left.H_{2}\left(k^{2}, \nu\right)\right|_{\substack{k^{2} \rightarrow-\infty \\ \nu / k^{2} \rightarrow 0}} \rightarrow H_{2}\left(k^{2}, 0\right)=\int_{\nu_{t}}^{\infty} \frac{\nu^{2}}{\nu^{2}} \beta_{2}(0) \Gamma_{2}\left(-k^{3}\right)\left(\frac{\nu}{\nu_{t}}\right)^{-1} \frac{12 m_{0}^{2} \beta(0)}{k^{4}} \rightarrow \frac{z_{2}}{k^{4}}
$$

-at $\left|z_{2}\right| \approx 1,\left|\beta_{2}(0)\right| \approx\left|z_{2}\right| \approx 1$.
The calculations give a value of $S_{3}=1-2 \mathrm{ppm}$.

3. Summary

Collecting the results obtained above, we have for the correction to the Fermi term, proportional to $a m$ the following value

$$
\delta=(-40 \pm 6) \mathrm{ppm} .
$$

The error in δ was chosen as a "reasonable upper bound" from the estimates obtained earlier. It is known ${ }^{8}$ that the figure presented above agrees with the value $a^{-1}=137,0359$

The situation in hyperfine splitting can be summarized as follows: according to the calculations performed in ${ }^{4,3}$ and in the present paper there is no realistic "candidate" which could contribute in the terms of the type S_{2} and S_{3}. According to our point of view this is not surprising since (by the assumptions used above) the dominance of the contribution from the region of small mass photons $0 \approx / k \nmid \ll 1$ is quite natural.

We are deeply indepted to S.B.Gerasimov for numerous valuable discussions.

Our thanks are also due to R.M.Ryndin, Ya.A.Smorodinsky, A.N.Tavkhelidze, R.N.Faustov, and D.V.Shirkov for their interest in this work and stimulating criticism.

Appendix I

There is some contraversy among the results on the asymptotical behaviour of the virtual compton scattering amplitude ${ }^{6}$. Therefore we devote a special section to this problem.

Let us write the covariant wirtual Compton scattering amplitude in the forward direction in the form?
$\Psi_{\lambda^{\prime}, \lambda}^{\mathrm{ba}}(p, k)=\bar{U}\left(p, \lambda^{\prime}\right) \mathrm{e}^{\mathrm{e}^{\mathrm{b}}}(\mathrm{k}) \mathrm{C}_{\mu \nu}^{\mathrm{N}}(\mathrm{p}, \mathrm{k}) \mathrm{e}_{\nu}^{\mathrm{a}}(\mathrm{k}) \mathrm{U}(\mathrm{p}, \lambda)$
$\mathrm{C}_{\mu \nu}^{\mathrm{N}}(\mathrm{p}, \mathrm{k})=\left(k_{\mu} \mathrm{k}_{\nu}-\mathrm{g}_{\mu \nu} \mathrm{k}^{2}\right) \mathrm{t}_{1}\left(\mathrm{k}^{2}, \nu\right)+\left[\nu^{2} \mathrm{~g}_{\mu \nu}+\mathrm{k}^{2} \mathrm{p}_{\mu} \mathrm{p}_{\nu}-\nu\left(\mathrm{p}_{\mu} \mathrm{k}_{\nu}+\mathrm{p}_{\nu} \mathrm{k}_{\mu}\right) \mathrm{t}_{2}\left(\mathrm{k}^{2}, \nu\right)_{+}^{(1,1)}\right.$
$+\frac{1}{\mathrm{i}} \epsilon_{\mu \nu \sigma \tau} \quad \mathrm{k}_{\sigma} \gamma_{T} \gamma_{5} \mathrm{D}\left(\mathrm{k}^{2}, \nu\right)-\mathrm{i} \epsilon_{\mu \nu \sigma r} \quad \mathrm{k}_{\sigma} \mathrm{P}_{\tau} \hat{\mathrm{k}} \gamma_{5} \mathbf{G}\left(\mathrm{k}^{2}, \nu\right)$.
(Here and in what follows we use the c.m.s. with the nucleon momentum along p axis $z \quad e_{\nu}^{a}(k)$ and $e_{\mu}^{*^{b}}(k)$ are the polarization vectors of the incident and scattered photons with momenta k,
$U(p, \lambda)$ and $\bar{U}\left(p, \lambda^{\prime}\right)$ are the spinors of the initial and final nucleon with spin projections λ and λ^{\prime} on the z axis, $\overline{\mathrm{U}} \mathrm{U}=1, \nu=(p k)$ the nucleon mass is equal to one).

The four independent helicity amplitudes in the S-channel are related to the invariant amplitudes as follows $f=0-\frac{1}{2}, 1 \frac{1}{2}=0-\frac{1}{2}\left|1 \frac{1}{2}\right\rangle$

$$
\begin{align*}
& f_{0 \frac{1}{2}, 0_{2}}^{s}=k^{2}\left(t_{1}-t_{2}\right), \quad f_{0-\frac{1}{2}, \frac{1}{2}}^{3}=\sqrt{2 k^{2}} \mathrm{D} \tag{1,2}\\
& f_{\frac{1}{2} \pm 1, \frac{1}{2} \pm 1}=\left(k^{2} t_{1}-\nu^{2} t_{2}\right)-\left(\nu D+\left(\nu^{2}-k^{2}\right) \mathrm{G}\right)
\end{align*}
$$

$$
\begin{align*}
& t_{1}\left(k^{2}, \nu\right)=\frac{1}{k^{2}-\nu^{2}}\left[\frac{1}{2}\left(f_{\frac{1}{2}-\frac{1}{2}-1}^{3}+f_{-1}^{3} 1, \frac{1}{2} 1\right)-\frac{\nu^{2}}{k^{2}} f_{\frac{1}{2} 0, \frac{1}{2} 0}\right. \\
& t_{2}\left(k^{2}, v\right)=\frac{1}{k^{2}-\nu^{2}}\left[\frac{1}{2}\left(f_{\frac{1}{2}-1, \frac{1}{2}-1}^{s}+f_{\frac{1}{2}}^{s} \cdot \frac{1}{2} 1\right)-f_{\frac{1}{2} 0, \frac{1}{2} 0}^{s}\right] \\
& D\left(k^{2}, v\right)=\frac{1}{\sqrt{2 k^{2}}} f_{0-\frac{1}{2}, 1 \frac{1}{2}}^{s} \tag{1.3}\\
& G\left(k^{2}, \nu\right)=\frac{1}{\sqrt{\left(k^{2}-\nu^{2}\right)^{2}}}\left[\frac{1}{2}\left(f_{\frac{1}{2} 1, \frac{1}{2} 1}^{s}-f_{\frac{1}{2}-1, \frac{1}{2}-1}^{s}\right)+\frac{\nu}{\sqrt{2 k^{2}}} f_{0-\frac{1}{2}, 1 \frac{1}{2}}^{s}\right]
\end{align*}
$$

In t-channel there are six helicity amplitudes different from zero, with crossing symmetry $\left(\int_{10, \frac{1}{2}-\frac{1}{2}}^{t} \equiv\left\langle 10 \left\lvert\, \frac{1}{2}-\frac{1}{2}\right.\right\rangle\right)$

$$
\begin{align*}
& f_{\frac{1}{2} 0, \frac{1}{2} 0}^{s}=\frac{1}{2}\left[f_{\frac{1}{2} \frac{1}{2}, 11}^{t}+f_{\frac{1}{2} \frac{1}{2},-1-1}^{t}-2 f_{\frac{1}{2}}^{t} \frac{1}{2}, 1-1\right] \tag{1.4}\\
& f_{ \pm \frac{1}{2}, 0-\frac{1}{2} 1}^{s}=\frac{1}{2 \sqrt{2}}\left[\mp \sqrt{2}\left(\int_{\frac{1}{2}-\frac{1}{2}, 10}^{t}-f_{-\frac{1}{2} \frac{1}{2}, 10}^{t}\right)+f_{\frac{1}{2} \frac{1}{2}, 11}^{t}-f\left(\frac{1}{2} \frac{1}{2},-1-1\right]\right. \\
& f_{\frac{1}{2}-1, \frac{1}{2}}^{s}=\frac{1}{4}\left[2\left(f_{\frac{11}{2}, 1-1}^{t}-f_{\frac{1}{2} \frac{1}{2}, 00}^{t}\right)+f_{\frac{1}{2} \frac{1}{2}, 11}^{t}+f_{\frac{1}{2} \frac{1}{2},-1-1}^{t}\right] .
\end{align*}
$$

Since at $t=0 \quad \int_{\frac{1}{2} 0,-\frac{1}{2} 1}^{s}=f_{\frac{1}{2}-1, \frac{1}{2} 1}^{s}=0$ we get the following two constrains

$$
\begin{equation*}
\sqrt{2}\left(f_{\frac{1}{2}-\frac{1}{2}, 10}^{t}-f_{-\frac{1}{2} \frac{1}{2}, 10}^{t}\right)=f_{\frac{1}{2} \frac{1}{2}, 11}^{t}-f_{\frac{1}{2} \frac{1}{2},-1-1}^{t} \tag{1,5}
\end{equation*}
$$

$$
\begin{equation*}
2 \int_{\frac{1}{2} \frac{1}{2}, 00}^{\mathrm{t}}=\int_{\frac{1}{2} \frac{1}{2}, 11}^{\mathrm{t}}+\int_{\frac{1}{2} \frac{1}{2},-1-1}^{\mathrm{t}}+2 \Gamma_{\frac{1}{2} \frac{1}{2}, 1-1}^{\mathrm{t}} . \tag{1.6}
\end{equation*}
$$

Now, taking into account (1.5) and (1.6) the crossing can be written in the form

$$
\begin{align*}
& t_{0}\left(k^{2}, \nu\right)=k^{2} t\left(k^{2}, \nu\right)-v^{2} t_{2}\left(k^{2}, \nu\right)=\tilde{T}_{\frac{1}{2} \frac{1}{2}, 00}^{t} \\
& i_{2}\left(k^{2}, v\right)=\frac{2}{k^{2}}{ }^{\approx}{ }_{\frac{1}{2}} \frac{1}{2}, 1-1 \\
& I I_{1}\left(k^{2}, \nu\right)=\frac{1}{2 \sqrt{2 k^{2}}}\left(\tilde{\tilde{\Gamma}^{t}} \frac{1}{2}-\frac{1}{2}, 10 \quad-\tilde{\tilde{f}}_{-\frac{1}{2} 1_{2} 10}\right) \tag{1.7}\\
& \nu I_{2}\left(k^{2}, v\right)=\frac{1}{2 k^{2} \sqrt{2}}\left(\int_{\frac{1}{2}-\frac{1}{2}, 10^{t}}+\tilde{f}_{t} \frac{1}{2} \frac{1}{2}, 10\right) \text {, }
\end{align*}
$$

where $\tilde{\lambda}_{\lambda \mu}^{t}$ are the reduced helicity amplitudes

$$
\begin{aligned}
& \approx_{\lambda \mu}^{\mathrm{t}}=\left(\sqrt{2} \sin \frac{\theta_{\mathrm{t}}}{2}\right)^{-|\lambda-\mu|}\left(\sqrt{2} \cos \frac{\theta_{\mathrm{t}}}{2}\right)^{-|\lambda+\mu|} \mathrm{f}_{\lambda \mu}^{\mathrm{t}} \\
& \mathrm{H}_{1}=\frac{1}{2}(\mathrm{D}+\nu \mathrm{G}), \quad \mathrm{H}_{2}=-\frac{1}{2 \nu} \mathrm{G}
\end{aligned}
$$

the scattering angle in the t channel is $\cos \theta_{t}=z_{t}=\frac{\nu}{\sqrt{k^{2}}}$. It can be seen from (1.7) that the invariant amplitudes have no kinematical singularities. For our considerations the amplitudes H_{1} and II_{2} will be necessary.

The decomposition on the states with the given value of the total momentum has the form ${ }^{8}$

$$
\tilde{f}_{\frac{1}{2}-\frac{1}{2}, 10}^{t} \pm \tilde{f}_{-\frac{1}{2} \frac{1}{2}, 10}^{t}=\tilde{f}_{\frac{1}{2}-\frac{1}{2}, 10}^{t}=\sum_{\text {even }} F_{\frac{1}{2}-\frac{1}{2}, 10}^{J+} e_{1}^{J_{1}}\left(z_{t}\right)+\sum_{\text {od }}^{t} F_{\frac{1}{2}-\frac{1}{2} 10^{J}}^{e_{11}^{J}}\left(z_{t}\right) \cdot(1 ; 8)
$$

States with $\mathrm{P}=\mathrm{C}=\sigma=1, \mathrm{I}=0,1$ will contribute to the first sum in (1.8), those with $\ddot{P}=\mathbf{C}=-\sigma=1, \mathrm{I}=0,1$ to the second one (σ is the signature)

$$
\begin{equation*}
\underset{\frac{1}{2} \frac{1}{2}, 11}{\approx}-\tilde{f}_{\frac{1}{2} \frac{1}{2},-1-1}^{\mathrm{t}}=\underset{\frac{1}{2} \frac{1}{2}, 11}{\mathrm{t}}=\sum_{\mathrm{J} \text { even }}^{\mathrm{F}} \mathrm{~J}_{\frac{1}{2} \frac{1}{2}, 11}^{\mathrm{J}-} \mathrm{e}_{00}^{\mathrm{J}+}\left(\mathrm{z}_{\mathrm{t}}\right) . \tag{1.9}
\end{equation*}
$$

Here the contribution comes from the states with $C=-P=\sigma=1, I=0,1$. In the pure Regge pole model (and in the absence of the fixed singularities) we have

$$
\begin{align*}
& a_{a}^{ \pm}(0)-1 \quad-\quad-\quad a^{\mp}(0)-2 \\
& \tilde{f}_{\frac{1}{2}-\frac{1}{2}, 10}^{\mathrm{t}} \underset{\left(\nu / \nu_{\mathrm{t}}\right) \rightarrow \infty}{ } \sum^{ \pm} a^{ \pm} \beta^{ \pm}\left(\frac{\nu}{\nu_{\mathrm{t}}}\right)^{a(0)-1}+\Sigma\left(a^{\bar{F}}-1\right) \beta^{\mp}\left(\frac{\nu}{\nu}\right) \tag{1.10}
\end{align*}
$$

where $a^{ \pm}$is the trajectory with the positive (negative) signature. \cdots The leading terms will be in $\tilde{f}_{\frac{1}{2}-\frac{1}{2}}^{t_{-}}, 10$ the Pomeranchuk tarajectory, in $\tilde{\tilde{\Gamma}}_{\frac{1}{2}-\frac{1}{2}}^{t}, 10$ the A_{1}-trajectory, in $\tilde{\tilde{f}}_{\frac{1}{2} \frac{1}{2}-11}$ - the π-tarajectory $\left(a_{A_{1}}(0) \approx a_{\pi}(0) \approx-0,02\right)$. One sees that in this case the asymptotic of the right-and left-hand sides of the equality (1,5)
differ essentially $\left(\approx \nu^{a_{p}(0)}\right.$ in the r.h.s and $\approx \nu^{a} \pi^{(0)}$ in the l.h.s.). In the framework of the Regge pole model it is necessary thus to set at $t=0$ the residua of every trajectory in the r.h.s. with $a_{1}(0)>a_{\pi}(0)$ equal to zero. (The π^{\prime} trajectory, e.g. with $a_{\pi^{\prime}}(0)=$ $a_{\pi}(0)$ at $t=0$ will be a leading one in (1.5)). The amplitudes H_{1} and H_{2}, have asymptotics

$$
\begin{equation*}
H_{1} \approx \nu^{a_{A_{1}}(0)-i^{2}} \quad, H_{2} \approx \nu^{a_{\pi}(0)-2} \tag{1.12}
\end{equation*}
$$

II $_{2}$ satisfying the superconvergent sum rule

$$
\begin{equation*}
\frac{\mu(\mu+1)}{4} f^{2}\left(k^{2}\right)=\frac{1}{\pi} \int_{\nu_{t}\left(k^{2}\right)}^{\infty} d \nu^{2} \operatorname{Im} H_{2}\left(k^{2}, \nu\right) \tag{1.13}
\end{equation*}
$$

Let us consider now the possible changes of asymptotics (1.12) taking tinto account the contribution of the J-plane cuts.

Following the fact that the cut asymptotically has definite signature ${ }^{9}$ from (1.18) the important conclusions can be made for the amplitude $\mathrm{II}_{1}: \mathbf{a}$) the leading cut with positive signature $(\mathbf{P}-\mathbf{P})$ gives a contribution $\left.\approx \frac{1}{\nu \ell_{n} \nu} ; b\right)$ the leading, cut with negative signature $\left(P-A_{1}\right)$ gives a contribution $\approx \frac{\nu^{a_{A_{1}}(0)-1}}{\ell_{n} \nu}$. Thus, the asymptotics of II_{1} when no other singularities are present is $\leqslant \frac{1}{\nu}$. The behaviour II $_{1} \rightarrow$ const and hence the subtraction in the dispersion. relation for the amplitude II_{1} can result only from the $\delta-\mathrm{Kro}$ necker type of fixed singularity at $\mathbf{J}=1$. We assume that such a singularity is absent. (Besides that an, estimate of the type (11),(12)
(assuming that condition (9) is satisfied) does not depend on the form of the dispersion relations).
For the amplitude H_{2} the asymptotics in any case is $\leqslant \frac{1}{\nu}$.

Appendix II

We present now an example how to calculate the contribution from the \mathbf{N}_{33}^{*} resonance. Contributions from the other resonances can be calculated in a very similar way.

For convenience we choose c.m.s. photon and nucleon (in the rest system of the resonance). The nucleon momentum goes in the z direction.

The imaginary part of the v.c.s. amplitude

$$
\begin{equation*}
\operatorname{Im} \Psi_{\lambda}^{\mu \nu}(p, k)=\frac{E_{p}}{2} \int d x e^{\mathrm{fkx}}\left\langle p, \lambda^{\prime}\right|\left[\mathrm{j}_{\mu}(\mathrm{x}), \mathrm{j}_{\nu}(0)\right]|\mathrm{p}, \lambda\rangle \tag{11.1}
\end{equation*}
$$

(we use the norm $\left\langle p^{\prime}, \lambda^{\prime} \mid p, \lambda\right\rangle=(2 \pi)^{3} \delta_{\lambda^{\prime} \lambda} \delta(\vec{p}-\vec{p} \cdot), \bar{U} U=1$ the nucleon mass equal unity) in the resonance approximation (vanishing widths) has the form

$$
\begin{equation*}
\frac{1}{\pi} \cdot \operatorname{Im} \Psi_{\lambda^{\prime} \lambda}^{\mu \nu}(p, k)=\sum_{J, \lambda} \delta_{\sim}^{\prime}\left(\nu-\nu_{J}\right) M_{J} \Phi_{\lambda^{\prime \prime} \lambda^{*}}^{\mu}(\mathfrak{p}, k, J) \Phi_{\lambda^{\prime \prime} \lambda}^{\nu}(p, k, j)+\text { cross }, \tag{11.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.\Phi_{\lambda \lambda}^{\mu}(\mathrm{p}, \mathrm{k}, \mathrm{~J})=\sqrt{\mathrm{E}_{\mathrm{p}}}<\lambda^{\prime}, \mathrm{J}\left|\mathrm{j} \mu_{\mu}(0)\right| \mathrm{p}, \lambda\right\rangle \tag{11.3}
\end{equation*}
$$

is the matrix element of the electromagnetic current between the nucleon and a resonance of $\operatorname{spin} I, \nu_{J}=\frac{M_{J}^{2}-1-k^{2}}{2}, M_{J}$ is the reso nance mass, λ^{\prime} and λ are the projections of the nucleon and resonance angular momenta on the Z axis.

For a photon with given helicity $\Phi_{\lambda^{\prime} \lambda^{\prime}}(p, k, J)=e_{\mu}^{a}(k) \Phi_{\lambda}^{\mu} \lambda^{\prime}(p, k, J)$ $a= \pm 1,0, \mathbf{e}_{\mu}^{\mathbf{a}}(\mathrm{k})$ is the polarization vector of the photon. P and T invariance give.

$$
\begin{equation*}
\Phi_{-\lambda, \lambda}^{-\mathrm{a}}=\eta_{\mathrm{JN}}(-1)^{\mathrm{J}-1 / 2} \Phi_{\lambda^{\prime} \lambda}^{\mathrm{a}}, \quad \Phi_{\lambda^{\prime} \lambda}^{{ }^{\mathrm{a}}}=\Phi_{\lambda^{\prime} \lambda}^{\mathrm{a}} \tag{11.4}
\end{equation*}
$$

η_{JN}-being nucleons and resonances relative parity. Now we write the $\gamma \mathrm{NN}_{33}$ vertex in the form 12

$$
\begin{align*}
& \Phi_{\lambda^{\prime}}^{\mu}\left(p, k, J 3 / 2^{+}\right)=\sqrt{\mathrm{E}}<\mathrm{J}=\frac{3^{2}}{2}, \lambda^{\prime}\left|\mathrm{j}_{\mu}(0)\right| \mathrm{p}, \lambda>= \\
& =\overline{\mathrm{U}}_{\nu}\left(p^{\prime}, \lambda^{\prime}\right) \gamma_{5}\left[-\left(\hat{\mathrm{k}}_{\mu} \mathrm{g}_{\mu}-\mathrm{k}_{\nu} \gamma_{\mu}\right) \mathrm{C}_{3}+\left(\mathrm{kp}^{\prime} \mathcal{H}_{\mu \nu}^{\left.-k_{\nu} p_{\mu}\right) \mathrm{C}_{4}+}\right.\right. \tag{11.5}
\end{align*}
$$

$\left.+\left(\mathrm{kpg}_{\mu \nu}-\mathrm{k}_{\nu} \mathrm{p}_{\mu}\right) \mathrm{C}_{5}\right] \mathrm{U}(\mathrm{p}, \lambda)$.
where $U_{\nu}\left(p^{\prime}, \lambda^{\prime}\right)$ is the N_{33}^{*} spinor $\bar{U}_{\nu} U_{\nu}=1 \quad p^{\prime}=(p+k)=(M, 0,0,0), M$ is the N_{33}^{*} mass, E -the nucleon energy in the c.m.s., $\mathrm{C}_{3,4,5}$ are the three independent form factors depending on, k^{2}.

The contribution of \mathbf{N}_{33}^{*}; to each of the invariant amplitudes can be found from the relations (1.3), (1.4), (11.2), (11.4) and from

$$
\begin{align*}
& \Phi_{\frac{1}{2}}^{0} \frac{1}{2}=-\sqrt{2 k^{2}} \frac{1}{\sqrt{3}} \sqrt{\frac{E-1}{2}}\left(C_{3}+M C_{4}+E C_{5}\right)_{F}-\sqrt{2 k^{2}} \frac{1}{\sqrt{3}} \sqrt{\frac{E-1}{2}} \zeta_{0} \\
& \Phi_{\frac{3}{2} \frac{1}{2}}=-\sqrt{\frac{1}{2}}\left[\left(M_{+1}\right) C_{3}+\left(k p^{\prime}\right) C_{4}+(k p) C_{5}\right]=-\sqrt{\frac{E-1}{2} \zeta_{3 / 2}} \\
& \Phi_{\frac{1}{2}-1}^{1}=\frac{1}{\sqrt{3}} \sqrt{\frac{E-1}{2}}\left[(M-1-2 E) C_{3}+\left(k p^{\prime}\right) C_{4}+(k p) C_{5}\right] \equiv \frac{1}{\sqrt{3}} \sqrt{\frac{\bar{E}-1}{2}} \zeta_{1 / 2} \\
& (k \beta)=\nu_{0},\left(k p^{\prime}\right)=k_{0} M=k^{2}+\nu_{0}, E=\frac{\nu_{0}+1}{M}, \nu_{0}=\frac{M^{2}-1-k^{2}}{2} . \tag{11.6}
\end{align*}
$$

We get for H_{1} and H_{2}

$$
\begin{align*}
& \frac{1}{\pi} J_{m} H_{1,2}\left(\mathrm{k}^{2}, \nu\right)=\left[\delta\left(\nu-\nu_{0}\right)-\delta\left(\nu+\nu_{0}\right)\right] R_{1,2}^{N_{33}^{*}}\left(\mathrm{k}^{2}\right) \\
& \mathbf{R}_{1}^{\mathrm{N}_{33}^{*}}=\frac{M(\mathrm{E}-1)}{8\left(\mathrm{k}^{2}-\nu_{0}^{2}\right)}\left[\frac{2}{3} \mathrm{k}^{2} \zeta_{0} \cdot \zeta_{1 / 2}+\nu_{0}\left(\zeta_{1 / 2}^{2}-\frac{1}{3} \zeta_{1 / 2}^{2}\right)\right] \tag{11.7}\\
& \mathbf{R}_{2}^{\mathrm{N}_{23}^{*}=-\frac{M(\mathrm{E}-1)}{8\left(\mathrm{k}^{2}-\nu_{0}^{2}\right)}\left[\frac{2}{3} \zeta_{0} \zeta_{1 / 2}+\frac{1}{\nu_{0}}\left(\zeta_{3 / 2}^{2} \frac{1}{3} \zeta_{1 / 2}^{2}\right)\right] .}
\end{align*}
$$

The multipole decomposition of the vertex (11.5) is of the form ${ }^{13}$

$$
\begin{align*}
& (\mathrm{M} 1)=\mathrm{e} \frac{3}{2} \sqrt{\frac{\mathrm{E}-1}{2}}\left(\zeta_{3 / 2}-\frac{1}{3} \zeta_{1 / 2}\right. \\
& (\mathrm{E} 2)=\mathrm{e} \frac{\sqrt{5}}{2} \sqrt{\frac{\mathrm{E}-1}{2}}\left(\zeta_{3 / 2}+\zeta_{1 / 2}\right) \quad \frac{\mathrm{e}^{2}}{4 \pi}=a, \quad|\vec{k}|^{2}=\mathrm{k}_{0}^{2}-\mathrm{k}^{2} \tag{11.8}\\
& (\tilde{\mathrm{O}} 2)=-\mathrm{e} \quad \sqrt{\frac{20}{3}} \sqrt{\frac{\mathrm{E}-1}{2}}|\overrightarrow{\mathrm{k}}| \zeta_{0}
\end{align*}
$$

At $k^{2}=0$ only two independent constants remain, namely $C_{3}^{0}=C_{3}\left(k^{2}=0\right)$ and $\lambda^{+}=M\left(C_{4}^{0}+C_{5}^{0}\right) / C_{3}^{0}$, they can be determined, e.g. from the data on pion photoproduction in the region of the resonance N_{33}^{*}
One of the conditions reads

$$
\begin{equation*}
\lambda^{+}=-1+2 \frac{M+1}{M-1} \frac{\delta}{1-\delta}, \delta=\frac{1}{\sqrt{5}} \frac{(E 2)}{\left(M_{1}\right)} . \tag{11.9}
\end{equation*}
$$

The purely magnetic transition approximation corresponds to the values of $\delta=0$ and $\lambda^{+}=-1$. We note that even small values of δ lead to cunsiderable derivatives of λ^{+}from (-1) since the nucleon
mass is very close to that of the \mathbf{N}_{33}^{*} resonance. For $\delta \approx 2,5 \%$ $\lambda^{+} \approx-0.63 . \quad C_{3}^{0}$ can be determined if we know the cross section of the photoproduction of the pion in the $\mathbf{N}_{33}^{*}\left(\sigma_{\text {max }}\right)$ peak ${ }^{14}$. From. the Breit-Wigner formula $\Gamma_{\gamma}=\frac{1}{16 \pi} \frac{\left(M^{2}-1\right)^{2}}{M^{2}} \Gamma_{\text {tot }} \cdot \sigma_{\max }^{33} \Gamma_{\gamma}$ being the $\mathbf{N}_{33}^{*} \rightarrow \mathbf{N}_{\gamma}$ decay width, $\Gamma_{\text {tot }}$ the total $\mathbf{N}_{33}^{*} \rightarrow \mathbf{N} \pi$ width. Taking into account the smallness of δ, we write

$$
\Gamma_{\gamma}=a \frac{\left(M^{2}-1\right)^{3}}{16 M^{3}} \cdot \frac{(3 M+1)^{2}}{6}\left(C_{3}^{0}\right)^{2}\left(1+2 \frac{M-1}{3 M+1} \lambda^{+}\right.
$$

Combining these formulas and using the values $\Gamma_{\text {tot }} \approx 0,128$, $\sigma_{\text {max }} \approx 3,9 \cdot 10^{-28} \mathrm{~cm}^{2}, \lambda^{+} \approx-0,63$ we obtain $C_{3}^{0}=2.0$.

Unfortunately, the available experimertal data on electroproduction of the N_{33}^{*} resonance does not allow us to determine the behaviour of each form factor $C_{3,4,5}\left(\mathrm{k}^{2}\right)^{\prime}$ separately. In view of the fast decrease in $k^{2} 1^{15}$ we are really interested only in the behaviour in the region of small k^{2}. Therefore the following recipe was used in our calculations: after we have normalized the form factors at $k^{2}=0, C_{3,4,5}\left(k^{2}\right)=C_{3,4,5}^{0} \cdot \phi_{3,4,5}\left(k^{2}\right), \phi_{3,4,5}(0)=1$ we put $\phi_{3}\left(k^{2}\right)=\phi_{4}\left(k^{2}\right)=\phi_{5}\left(k^{2}\right)=\phi\left(k^{2}\right)$ and use for $\phi\left(k^{2}\right)$ data from ${ }^{15}$. The constant $\lambda^{-}=\frac{M\left(C_{4}^{0}-C_{5}^{0}\right)}{C_{3}^{0}}$ which remains unknown is variated in the region $\left|\lambda^{-}\right| \leq 3$.

References

1. V.L.Cherniak, R.N.Faustov, G.M.Zinovjev. JINR Preprint E2-4718, Dubna, 1969.
2. S.D.Drell. Tests of Quantum Electrodynamics. In " Particle Interactions at High Energies". Scottish University Sumner School, 1966, p. 199 ?
3. J.D.Bjorken. Phys.Rev., 148 , 1467 (1966).
4. S.D.Drell, I.D.Sullivan. Phys.Rev., 154, 1477 (1967).
5. W.K.H.Panofsky. Viena's International Conference on High Energy, Physics, 1968.
6. H.D.J.Abarbanel, S.Nussinov. Phys.Rev., 158, 1462 (1967). N.G.Antoniou, C.Palev, M. Samiullah. Nucl Phys., B4, 479 (1968).
7. C.K.Iddings. Phys.Rev., 138, B442 (1965).
8. M.Gell-Mann, M.L.Goldberger, F.E.Low, E.Marx, F.Zachariasen. Phys.Rev., 133, B145 (1964).
M.Gell-Mann, M.L.Goldberger, F.E.Low. Rev.Mod.Phys., 36, 640 (1964).
9. D.Branson. The Signature of Regge Cuts Coupled to Spinning Particles, Preprint DAMTP 68/21, University of Cambridge, England, June 1968.
10. J.Matthews. Phys.Rev., 137, B444 (1965).
11. A.I.Dufner, Y.S.Tsai. Phys.Rev., 168 , 1801 (1968).

Received by Publishing Department on October 10, 1969

