

E2 - 4734
C. Gheorghe, E.Mihul
n-POINT LORENTZ INVARIANT DISTRIBUTIONS. I

1969

n-POINT LORENTZ INVARIANT DISTRIBUTIONS. I

Institute for Atomic Physics, Bucharest, Laboratory of Theoretical Physics

1. Introduction

The aim of this paper is to represent the space of the distributions invariant to the orthochronous proper Lorentz group L_{+}^{\top}, defined on the topological product $\mathbf{M}_{\mathbf{n}}$ of \mathbf{n} Minkowski spaces, by the distribution space defined on the manifold of orbits of Lorentz group in M_{n}. The orbit manifold is concretely realized by the matrix manifold, with the Lorentz invariant matrix elements. For $n=1$ the problem was solved in ${ }^{11,2,3 /}$ and for $\mathrm{n}=2,3 \mathrm{in}^{14 /}$ and $/ 5 /$.

We denote by $M \nRightarrow R^{4}$. the Minkowski space of real points $x=\left(x^{0}, x^{1}, x^{2}, x^{3}\right) \quad$ with the scalar product $\langle x, y\rangle=x^{0} y^{0}-\sum_{\ell=1}^{3} x^{\ell} y^{\ell}$ for any $x, y \in M\left(R^{m}\right.$ is the m-dimensional Euclidean real space).

Let M_{n} be the topological product of n Minkowski spaces formed with the points $\hat{x}=\left(x_{1}, \ldots, x_{n}\right)$ for $x_{i} \in M, i=1, \ldots, n, D\left(M_{n}\right) \equiv D\left(R^{4 n}\right)$ is the Schwartz's space of the complex-valued C^{∞} - test functions with compact support in M_{n} and its dual $D^{\prime}\left(M_{n}\right)$ is the space of the distributions in $M_{n} / 6 /:$

The distribution $f \in D^{\prime}\left(M_{n}\right)$ is said to be Lorentz invariant if $f=f_{\Lambda}$, where

$$
\begin{align*}
& \left.f_{\Lambda}(\phi) \equiv f(\phi)^{\prime}\right) ; \phi \Lambda(x) \equiv \phi\left(\Lambda x_{1}, \ldots, \Lambda x_{n}\right), \tag{1}\\
& \phi \in D\left(M_{n}\right), \quad \hat{x} \in M_{n}, \Lambda \in L_{+}^{\uparrow} .
\end{align*}
$$

For $\Lambda_{0} \in L_{+}^{\dagger} \quad$ (where L_{+}^{\downarrow} is antichronous proper Lorentz group) every Lorentz invariant distribution f can be decomposed into the even part $f_{+}=\frac{1}{2}\left(f+f_{\Lambda_{0}}\right) \quad$ and the odd part $f_{-}=\frac{1}{2}\left(f-f_{\Lambda_{0}}\right)$. We denote by $D_{+}^{\prime}\left(M_{n}\right)$ and $D_{-}^{\prime}\left(M_{n}\right)$ the even and odd Lorentz invariant distribution spaces, respectively.
2. Representation of Lorentz Invariant Distributions on

Lorentz Orbit Mixnifold

Let S_{n} be the manifold of the $n \times n$ real symmetrical matrices. $S_{n} \quad$ is a $\frac{1}{2} n(n+1)$-dimensional analytic real manifold.

We define the following determinants

$$
\begin{align*}
& G_{1}^{j_{1} \ldots 1^{p}}(u)=\operatorname{det}\left(u_{1 j}\right)\left(i=i_{1}, \ldots, i_{p} ; j_{i=j_{1}}, \ldots, j_{p}\right) \text {, } \tag{2}\\
& G_{1_{1} \ldots 1_{p}}\left(u^{2}\right) \equiv G_{1_{1} \cdots_{1} i_{p}}^{I_{p}}(u),
\end{align*}
$$

where $u \in S_{n} ; p, i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{p}=1, \ldots, n$.
Let us introduce the map $\pi: M_{n} \longrightarrow S_{n}$ such that $\pi(\hat{x})=u$ and $u_{1 j}=\left\langle x_{1}, x_{j}\right\rangle\left(\hat{x} \in M_{n}\right), i, j=1 \ldots, n$.

We showed in $\mid / 2$ that the image U_{n} of M_{n} by mapping π is a semialgebraic manifold formed with the matrices $u \in S_{n}$ which satisfy the following conditions :

1. $u_{11} \geq 0$ implies $G_{u}(u) \leq 0$ and $G_{1 j k}(u) \geq 0$,
2. $\mathbf{u}_{11}<0$ and $G_{i j}(u) \leq 0$ implies $G_{i j k}(u) \geq 0$,
3. $G_{1 \mathrm{jk} \ell}(\mathrm{u}) \leq 0$,
4. rank $u \leq 4$,
where $\mathrm{i}, \mathrm{j}, \mathrm{k}, \ell=\mathrm{l}, \ldots, \mathrm{n}$.
We can consider U_{n} as the orbit manifold of the full Lorentz group L in M_{n}. Indeed, two points in M_{n} are equivalent if they belong to the same orbit of L and we devide M_{n} with, respect to this equivalence relation. Then there exists a bijective mapping,
induced by projection π, which carries any matrix u $\in \mathrm{U}_{\mathrm{n}} \backslash\{\overline{0}\}$ to the orbit $\pi^{-1}(\overline{0})$ of L in $M_{n} \backslash\{\hat{0}\}$ ($\hat{0}$ is the zero point of M_{n} and $\overline{0}$ is the zero matrix of $U_{n} ; \pi^{-1}(\mathbf{0})$ is the union of the 2^{n} orbits of \dot{L} containing the vectors $x \in M_{n}$ with x_{1}, \ldots, x_{n} isotrope and collinear $)^{/ 7 /}$. The extension of the projection π for the topological product of n complex Minkowski spaces was studied thoroughly in $18 /$.

Let us now decompose $\mathrm{U}_{\mathrm{n}} \ldots$ into analytic, submanifolds. To avoid certain complications we introduce the following notations:

$$
\begin{align*}
& U_{n h} \equiv\left\{u \mid u \in U_{n} ; \text { rank } u=h\right\}, \\
& M_{n h} \equiv \pi^{-1}\left(U_{n h}\right), \tag{4}\\
& M_{n-} \equiv\left\{\hat{x} \mid \hat{x} \in M_{n} ;<x_{1}, x_{1}><0, i=1, \ldots, n\right\}, \\
& M_{n h+} \neq M_{n h} \backslash M_{n}-, U_{n h+} \equiv \pi\left(M_{n h}\right),
\end{align*}
$$

where $h=1,2,3,4$. We shall denote by \bar{A} the closure of the set A in M_{n} or S_{n}. . We consider the closed sets $X, Y \subset R^{m}$ with $X \subset X$. $D(Y)$ is the Schwartz space of the restrictions to Y of the functions belonging to $D\left(R^{m}\right)$ and $D(Y \backslash X)$ is the subspace of $D(Y)$ consisting of the functions which vanish over X with all their derivatives.

With the above statements we shall prove that the Lorentz invariant distribution spaces on the submanifolds of M_{n} are isomprphic to the distribution spaces on the images of the considered submanifolds in U_{n}.

Theorem 1, a) $U_{n h}(h=1,2,3,4)$ is a real analytic submanifold of S_{n}, of dimension $h_{n}-\frac{1}{2} h(h-1)$, with a unique analytic structure.
b) $D_{+}^{\prime}\left(M_{n h}\right) \quad(h=2,3,4)$ is isomorphic to $D^{\prime}\left(U_{n h}\right)$ and $D_{+}^{\prime}\left(\bar{M}_{n 1} \backslash\{\hat{0}\} \quad\right.$) is isomorphic to $D^{\prime}\left(\bar{U}_{n 1}\right)$.
c) $\bar{D}_{-}^{\prime}\left(M_{n h}\right) \quad(h=2,3,4)$ is isomorphic to $D^{\prime}\left(U_{n h+}\right)$
and
D^{\prime}. $\left(\bar{M}_{n 1}\right)$ is isomorphic to $D^{\prime}\left(\bar{U}_{n 1+}\right)$

Proof, a) We begin by introducing the index sets $I_{h}=\left\{\left(i_{1}, \ldots, i_{h}\right)\right\}$, 1 where $i_{1}, \ldots, i_{h}=1, \ldots, n ; i_{1}<\ldots<i_{h}$ and we define the algebraic manifolds

$$
\begin{align*}
& V_{1}, \ldots i_{h}=\left\{u \mid u \in U_{n h}, G_{1_{1} \ldots 1_{h}}(u) \neq 0\right\}, \\
& N_{1, \ldots 1}=\pi^{-1}\left(V_{1_{1}, 1_{h}}\right) . \tag{5}
\end{align*}
$$

Consider now the following $h n-\frac{1}{2} h(h-1)$ local coordinates in $\mathrm{V}_{1} \ldots \mathrm{I}_{\mathrm{h}}$

$$
\begin{equation*}
\left\{_{\ell_{\ell}{ }_{\ell}}\right\}\left(j_{\ell}=1, \ldots, n ; j_{\ell} \neq i_{\ell^{\prime}} ; \ell^{\prime}<\ell ; \ell, \ell=1, \ldots, h\right) . \tag{6}
\end{equation*}
$$

The relations (3) and (4) give the equations

$$
\begin{align*}
& G^{1}{ }_{1} \cdots 1_{h} k \tag{7}\\
& 1_{1} \cdots 1_{h} R
\end{align*}
$$

in $V_{1_{1}, \ldots 1_{h}}$ for $k, \ell=1, \ldots, n$.. From (7) it follows that every $u_{k} \ell$ is a rational function of local coordinates with the nonzero denominator $G_{1} \ldots i_{h}(u)$. We remark that $\left\{V_{1_{1} \ldots 1_{h}}\right\}$ for $\left\{i_{1}, \ldots, i_{h}\right\} \in I_{h}$ is an open covering of $U_{n h}$ in the topology induced by S_{n}. Then
it follows that the local coordinate system (6) determines on U_{nh} an analytic structure /9/. We shall prove that this structure is unique; we prove this only for $h=4$ (the proof for $h<4$ is similar). We consider the following transformation of variables

$$
\begin{equation*}
\hat{\mathrm{x}} \longrightarrow\left(\left\langle\mathrm{x}_{1}, \mathrm{x}_{\mathrm{f}}\right\rangle, \mathrm{x}_{\mathrm{i}}^{a_{1}}, \mathrm{x}_{1}^{a_{2}}, \mathrm{x}_{1}^{a_{3}}, \mathrm{x}_{1}^{a_{2}}, \mathrm{x}_{1}^{a_{3}}, \mathrm{x}_{\mathrm{k}}^{a_{3}}\right)_{1} . \tag{8}
\end{equation*}
$$

where $\mathbf{j}_{\mathcal{R}}=1, \ldots, \mathrm{n}^{\prime} ; \mathbf{j}_{\mathcal{Q}} \neq \mathrm{i}_{\mathcal{Q}} \quad$ for $\ell, \ell^{\prime}=1 \ell^{\prime}<\ell$ and

$$
i, j_{1} k \in\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\} ; a_{1}, a_{2}, a_{3} \in\{0,1,2,3\}
$$

are fixed with $\mathrm{i} \neq \mathrm{j} \neq \mathrm{k}, a_{1} \neq a_{2} \neq a_{3} \quad$. For any $\hat{\mathrm{x}} \in \mathrm{V}_{1} 1_{2}^{1} 1_{1}^{1} 4$
there exist $1, \mathrm{j}, \mathrm{k}, a_{1}, a_{2}, a_{3}$ with nonzero Jacobian of the trans formation (8):

$$
\begin{aligned}
& \geq
\end{aligned}
$$

where $\ell \in\left\{i_{1}, i_{2}, i_{3}, i_{1}\right\}, a_{0} \in\{0,1,2,3\}$ with $\ell \neq i_{1, j}, k$ and $a_{0} \neq a_{1}, a_{2}, a_{3}$ (indeed because of the nonvanishing of the Gram.
 linearly independent), The relations (8) and (9) show that the restrictron of π. to $M_{n 4}$ is coregular $/ 9$. But if a factor manifold is an analytic manifold (U_{nh}) and the respective projection (π) is coregular then its analytic structure is unique /9/. A consequence of (3) is that $\mathrm{U}_{n h}$, are connected excepting' $\mathrm{U}_{11}, \mathrm{U}_{22}, \mathrm{U}_{33}$ and U_{44} which have $2,2,8$ and 64 components, respectively.
b) Let $h=1,2,3,4$.

For any $\phi \in D\left(M_{n h}\right)$ we define the transformations

$$
\begin{equation*}
F_{h+}(\phi)(u)=\int_{M_{n h}} \delta_{h+}(\hat{x}, u) \phi(\hat{x}) d \mu_{h}(\hat{x}),\left(u \in U{ }_{n h}\right), \tag{10}
\end{equation*}
$$

where μ_{h} is the measure on $M_{n h}$ induced by M_{n} and
where δ is the Dirac distribution.

To make more accurate the meaning of the above transformations, for instance for $h=4$, we consider in (10) and (11) the local analytic transformations (8) with the Jacobian (9) and the partition of the unity belonging to $\left\{N_{11_{1}} 1_{1} 1_{3}{ }_{4}\right\}$ for $\left(i_{1}, i_{2}, i_{3}, i_{4}\right) \in I_{4}$ and the Dirac distributions have sense. Using the analytic structure of $U_{n h}$ it follows immediately that any $F_{h+}(\phi)$ is a C^{∞}-function of compact support and $F_{h+}: D\left(M_{n h}\right) \longrightarrow D\left(U_{n h}\right)$ is a linear continuous and surjective mapping.

The following proof generalizes the canonical construction given in $/ 1,2,3 /$. For any $f \in D_{+}^{\prime}\left(M_{n h}\right)$ one defines

$$
F_{h+}^{\prime}(f) \in D^{\prime}\left(\mathbf{U}_{n h}\right) \quad \text { by }
$$

$$
\begin{equation*}
f(\bar{\psi}) \equiv F_{h+}^{\prime}(f), \tag{12}
\end{equation*}
$$

where $\psi \in \mathrm{D}^{\prime}\left(\mathrm{U}_{\mathrm{nh}}\right), \vec{\psi}=\Phi\left(\psi_{0} \pi\right) \quad$ with $\Phi \in \mathrm{D}\left(\mathrm{M}_{\mathrm{nh}}\right)$. and $\mathbf{F}_{h+}(\Phi)=1 \quad$. Conversely, for any $F_{h+}(f)$. one defines the distribution

$$
\begin{equation*}
\bar{f}(\phi) \equiv F_{h+}^{\prime}(f)\left(F_{h+}(\phi)\right), \quad \phi \subseteq D\left(M_{n_{4}}\right) . \tag{13}
\end{equation*}
$$

To show that (13) is correct and that $\overrightarrow{f^{\prime}} G D_{+}^{\prime}\left(M_{n 4}\right) \quad$ we shall prove that

$$
\begin{equation*}
(\overline{\mathrm{f}}-\mathrm{f})(\phi)=f\left(\overline{\mathrm{~F}_{\mathrm{h}+}(\phi)}-\phi\right) \tag{14}
\end{equation*}
$$

where $\omega=\overline{\mathrm{F}_{\mathrm{h}+}(\phi)}-\phi$ satisfies the equation $\mathrm{F}_{\mathrm{h}+}(\omega)=0$. If we apply now the Gauss-Ostogradski formula to $F_{h+}^{\prime}\left(\omega^{\prime}=0\right.$, using also the partition of the unity and by passing to the variables x (for instance for $h=4$ reversing the transformations (8)), it follows

$$
\begin{equation*}
\omega=\sum_{\substack{a_{a} \beta=0 \\ a<\beta}}^{3} \mathrm{~A}_{a} \xi_{a \beta} \tag{15}
\end{equation*}
$$

where $\xi_{a \beta} \in D\left(M_{n h}\right)$ and

$$
\begin{equation*}
\mathrm{z}_{a \beta}=\sum_{1=1}^{\mathrm{n}}\left(\mathrm{~g}_{\alpha a} \mathrm{x}_{i}^{a} \frac{\partial}{\partial \mathrm{x}_{1}^{\beta}}-\mathrm{g}_{\beta \beta^{x_{1}}}^{\beta} \frac{\partial}{\partial \mathbf{x}_{1}^{a}}\right) \tag{16}
\end{equation*}
$$

are the infinitesimal generators of the group $\mathbf{L}^{\mathbf{4}} \quad$ in M_{n} and $g_{a \beta}=2 \delta_{a 0} \delta_{\beta_{0}}-\delta_{a \beta} \quad$ is the Minkowski metric. $f \in D^{\prime}\left(M_{n}\right)$ is a Lorentz invariant distribution if and only if $A_{a} \sigma^{f=0}$ for any a and β. Then from (14) and (15) it follows $f=\vec{f}$. Therefore the mapping $F_{h+,}^{\prime}: D_{+}^{\prime}\left(M_{n h}\right) \longrightarrow D^{\prime}\left(U_{n h}\right)$ is bijective one.

Taking into account the above results, F_{h+}^{\prime} is a bijective linear bicontinuous mapping, hence it is a isomorphism.
c) Let us take $f \in D_{-}^{\prime}\left(M_{n h}\right)$. We define $g \in D!\left(U_{n h}\right)$ so that $f(\phi)=g\left(F_{h+}(\phi)\right)$, where $\phi \in D\left(M_{n h}\right)$ with its support in $M_{n}-$ Consider that the support of ϕ is in a bounded open set invariant to the $\Lambda_{0} G L_{+}$with $\left(\Lambda_{0}\right)=-g_{a \beta}(a, \beta=0,1,2,3)$. It follows $f\left(\phi_{\Lambda_{0}}\right)=g\left(F_{h}(\dot{\phi})\right)$. Then $f(\phi)=f\left(\phi_{\Lambda_{0}}\right)$. Since f is odd: $f\left(\phi_{\Lambda_{0}}\right)=-f(\phi)$. Hence $f=0$ if f has the support in $M_{n-} \cap M_{n h}$. Taking into account this remark we define the transformations

$$
\begin{align*}
& F_{h-}(\phi) \equiv \int_{n h} \delta_{h}(\hat{x}, u) \phi(\hat{x}) d \mu_{h}(\hat{x}) \equiv \\
& \equiv \int_{M_{n h}} \delta_{h+}(\hat{x}, \mathrm{u}) \bar{\phi}(\hat{x}) d \mu_{h}(\hat{x}), \tag{17}
\end{align*}
$$

where $\phi \in D\left(M_{n h}\right) \quad$ and $\bar{\phi}(\hat{x})=\sum_{j=1}^{n} \operatorname{sgn} x_{i}^{0} \phi(\hat{x})$ for $\hat{x} \in M_{n}$. One can show now as in the proof of b) that any F_{h-} :
$D\left(M_{n h}\right) \longrightarrow D\left(U_{n h}\right) \quad$ is a linear, continuous and surjective mapping and that there exists respectively the isomorphism $F_{h-}{ }^{\prime}$: $D_{-}^{\prime}\left(M_{n h}\right) \rightarrow D\left(U_{n h+}\right) \quad$ with

$$
\begin{equation*}
f(\phi)=F_{h-}(f)\left(F_{h-}(\phi)\right), \tag{18}
\end{equation*}
$$

where $f \in D_{-}^{\prime}\left(M_{n h}\right), \phi \in D\left(M_{n h}\right)$.

Similarly to $1 /$ and $/ 2 /$ there exist the linear and continuous extensians $\bar{F}_{1+}: D\left(\bar{M}_{n 1} \backslash\left\{\hat{0}_{i}\right\}\right) \rightarrow D\left(\overline{\mathrm{U}}_{n 1}\right)$
$\left.F_{-1}: D_{(}\left(\vec{M}_{n 1}\right) \xrightarrow{\longrightarrow} D\left(\bar{U}_{n 1}\right), F_{1+}^{\prime}: D_{+}^{\prime}\left(\bar{M}_{n 1} \cup \ddot{0}\right\}\right) \rightarrow D\left(\bar{U}_{n 1}\right)$,
$F_{1-}:\left(\bar{M}_{n 1}\right) \longrightarrow D^{\prime}\left(\bar{U}_{n 1+}\right)$ of $\quad F_{1+}, F_{1-}, F_{1+}, F_{1-}^{\prime}$
respectively ($\mathbf{F}_{1_{ \pm}}^{\prime}$ are isomorphisms).
It should be noted that Theorem 1 for $n=2,3$ was proved by Heep ${ }^{/ 5 /}$. The transformations F_{h} are obtained generalizing the Methée and Radon transformations $/ 1 /, / 4 /$.
2. Spectral Representation of Lorentz Invariant Distributions

Now in what follows we extend the isomorphisms given in Thearem 1 to the whole $D_{ \pm}\left(M_{n}\right)$. We begin by introducing the Lorentz invariant distributions with support in 0 . Any distribution $f \in D^{\prime}(\hat{0})$ has the form $/ 6 /$:

$$
\begin{equation*}
f=P\left(\frac{\partial}{\partial \hat{x}}\right) \delta(\hat{x}), \tag{19}
\end{equation*}
$$

where $\delta(\hat{x})=\prod_{l=1}^{n} \prod_{\mu=0}^{3} \delta\left(x_{1}^{\mu}\right) \quad$ and $P\left(\frac{\partial}{\partial \hat{x}}\right) \quad$ is a differential polynomial with the complex coefficients in the $\frac{\partial^{*}}{\partial \alpha^{\mu}}$ variables. If $\mathrm{f} \in \mathrm{D}_{+}^{\prime}(0)$, , then according to the Weyl's theorem ${ }^{10}{ }^{10}$ (with respect to the theory of invariants) there exists the differential polynomial $P(\bar{\square})$ in the variables $\square=\frac{\partial^{2}}{\partial x_{1}^{0} \partial x_{1}^{0}}-\sum_{p=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{r} \partial x_{1}^{r}}(i, j,=1, \ldots, n)$ in such a way that

$$
\begin{equation*}
f=P(\square) \delta(\hat{x}) \tag{20}
\end{equation*}
$$

Any $g \in D^{\prime}(\overline{0})\left(C D^{\prime}\left(S_{n}\right)\right)$ has the form

$$
\begin{equation*}
g=Q\left(\frac{\partial}{\partial u}\right) \delta(u), \tag{21}
\end{equation*}
$$

where $\delta(u)=\prod_{\substack{1, j=1 \\ i \leq 1}}^{n}\left(u_{i j}\right) \quad$ and $Q\left(\frac{\partial}{\partial u}\right)$ is a differential polynomial with the complex coefficients in the variables $\frac{\partial}{\partial u_{1 j}}(i, j=1, \ldots, n, i \leq j)$. For any $f \in D_{+}^{\prime}(\hat{0}) \quad$ we define $F_{0_{+}^{\prime}}^{\prime}(f) \in D^{\prime}(\mathbf{0}) \quad$ by

$$
\begin{equation*}
\mathrm{f}(\psi \mathrm{o} \pi)=\mathrm{F}_{0}^{\prime}(\mathrm{f})(\psi), \quad \psi \in \mathrm{D}\left(\mathbf{l}_{\mathrm{n}}\right) . \tag{22}
\end{equation*}
$$

If f has the concrete form (20), then $F_{0_{+}^{\prime}}(f)$ has the concrete form (21) with $Q\left(\frac{\partial}{\partial \partial_{u}}\right)=\ddot{P}\left(\hat{\square}_{u}\right)$, where $P\left(\hat{\square}_{u}\right)$ is obtained from $P([\square)$. by the adjoint of the substitution

$$
\begin{equation*}
\hat{Q}_{i j} \rightarrow 4\left(1+\delta_{i j}\right) \frac{\partial}{\partial u_{i j}}+\sum_{k, \ell=1}^{n}\left(1+\delta_{i k}\right)\left(1+\delta_{j \ell}\right) u_{k \ell} \frac{\partial^{2}}{\partial u_{i k} \partial u_{j \ell}} \tag{23}
\end{equation*}
$$

We define $H_{+}^{\prime}(0)=\left\{F_{0}^{\prime}+(f)\right\} \quad$ for all $f \in D_{+}^{\prime}(0) \quad ; \quad F_{0}^{\prime}+$ $\mathrm{D}_{+}^{\prime}(\hat{0}) \longrightarrow \mathrm{H}^{\prime}(\overline{0}) \quad$ is an isomorphism. Let $H_{+}(\overline{0})$ be a locally convex space with the dual space $H_{+}^{\prime}(\overline{0})$

We define now the following direct sums of locally convex spaes

$$
\begin{align*}
& H\left(U_{n}\right) \equiv D\left(U_{n 4}\right) \oplus D\left(U_{n g}\right) \oplus D\left(U_{n!2}\right) \oplus D\left(U_{n y}\right) \oplus H(0) \tag{24}\\
& H_{-}\left(U_{n+}\right) \equiv D\left(U_{n 4+}\right) \oplus D\left(U_{n 3+}\right) \oplus D\left(U_{n 2+}\right) \oplus D\left(\bar{U}_{n 1+}\right) .
\end{align*}
$$

Using these notations we shall prove the following theorem:
Theorem 2. $D_{+}^{\prime}\left(M_{n}\right)$ and $D^{\prime}\left(M_{n}\right)$ are isomorphic to $H_{+}\left(U_{n}\right) \quad$ and $H^{\prime}\left(U_{n+}\right)$

Proof. According to the vinitney theorem /11/ we write the alrect sums

$$
\begin{aligned}
& \left.D\left(M_{n}\right)=D\left(M_{n 4}\right) \oplus D\left(M_{n 3}\right) \oplus D\left(M_{n 2}\right) \oplus D\left(\bar{M}_{n 1}\right)(\dot{0}\}\right) \oplus D(0), \\
& \left.D\left(\bar{M}_{n 1}\right)=D\left(\bar{M}_{n 1}\right)\{\hat{0}\}\right) \oplus D(\hat{0}) . \\
& \text { We obtain the dual sums }{ }^{\mid 11 /} \text { of (25) }
\end{aligned}
$$

$$
\begin{align*}
& D_{+}^{\prime}\left(M_{n}\right) D_{+}\left(M_{n 4}\right) \Theta D_{+}\left(M_{n 3}\right) \oplus D_{+}^{\prime}\left(M_{n 2}\right) \Theta^{\prime} D_{+}\left(\bar{M}_{n 1} \backslash(\hat{0})\right) \Theta D_{+}^{\prime}(\hat{0}), \\
& D_{-}^{\prime}\left(M_{n}\right)=D^{\prime}\left(M_{n 4}\right) \oplus D^{\prime}\left(M_{n 3}\right) \Theta^{\prime}\left(M_{n 2}\right) \oplus D^{\prime}\left(\bar{M}_{n 1}^{\prime}\right) \tag{726}
\end{align*}
$$

Finally, we consider now the isomorphisms given in Theorem: 1 and we define the following direct sums of isomorphism.

$$
F_{+}^{\prime} \equiv{ }_{h=0}^{4} F_{h+}^{\prime}, F_{-}^{\prime}={ }_{h=1}^{3} F_{h-}^{\prime}
$$

Hence we obtain the isomorphisms $F_{+}^{\prime}: D_{+}^{\prime}\left(M_{n}\right) \rightarrow H_{+}^{\prime}\left(U_{n}\right)$ and $F_{-}^{\prime}: D_{-}\left(M_{n}\right) \longrightarrow H^{\prime}\left(U_{n}\right) \quad$ It should be noted that $H_{-}\left(U_{n+}\right)=D\left(U_{n+}\right) \quad$. Theorem 2 for $n=1$ was obtained by Methée $1 /$.

It follows from Theorems 1 and 2 that any Lorentz invariant distribution has the following formal spectral representation in the sense used by Rieckers and Guittinger/3/:

$$
\begin{align*}
& f(\hat{x})=\sum_{h=1}^{4}\left[\int_{U_{n h}} g_{h+}(u) \delta_{h+}(\hat{x}, u) d \vec{\mu}_{h}(u)+\right. \\
& \left.+\int_{U_{n h+}} g_{h-}(u) \delta_{h-}(\hat{x}, u) d \bar{\mu}_{h}(u)\right]+P\left(\square^{n}\right) \delta(\hat{x}),
\end{align*}
$$

where $g_{h+} \in H_{+}\left(\overline{\mathrm{U}}_{n h}\right), g_{h-} \in H^{\prime}\left(\overline{\mathrm{U}}_{\mathrm{nh}+}\right)$, and $\cdot \mathrm{H}_{+}\left(\overline{\mathrm{U}}_{\mathrm{nh}}\right)$ and $H^{\prime}\left(\bar{U}_{n+}\right)$ are the restrictions of $H^{\prime}\left(U_{n}\right)$ and $H-\left(U_{n+}\right)$ to $\bar{U}_{\mathrm{nh}} \mathbf{P}(\hat{\square}) \delta(\hat{\mathrm{x}})$ is given in (20). $\vec{\mu}_{\mathrm{h}}$ are the measures on the manifolds $U_{n h}$; this representation is unique modulo direct sums.

The spectral representation,(28) for $n=1$ is just that estabdished by Rieckers and Guittinger $/ 3 /$.

Remarks: 1. Theorems 1 and 2 can be proved for Lorentz invariant tempered distributions using the proofs given above with unessential modifications. Then the Wightman distributions for $n+1$ points admit the spectral representation (28). The Fourier transform(28) has the structure of Lehmann representation $3 / \% 12 /$.
2. Theorems 1 and 2 can be extended also for Lorentz covariant distributions. To express the Lorentz covariant distributions as a finite sum of distributions belonging to $\mathrm{H}_{ \pm}\left(\mathrm{U}_{\mathrm{n}}\right)$ multiplicated by Lorentz sovariant differential polynomials, it must be used the results established by Hepp $/ 13 /$ extended by using the theory of ideals of differentiable functions $/ 11 /$.
3. Theorem 1. a) on the mass shell was proved by Jacobson ${ }^{14 /}$ and it follows that the restrictions of the Theorems 1 and 2 on the mass shell are true.

The authors express their gratitude for kind hospitality they received at the Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research.

References

1. P.D.Methée. Commun.Math.Helv., 28, 225 (1954); CNRS, Nancy, 1956. 2.LGarding and L.L.Lions. Nuovo Cimento, vol.XIV, Ser. X, 9 (1959). 3. A.Rieckers and W.Guittinger. Commun.Math.Phys., 7. , 190 (1967). 4. I.M.Gelfand and G.E.Shilov. Generalized Functions, V New York, London: Academic Press 1964.
2. K.Hepp. Helv.Phys.Acta, 37, 639 (1964).
3. L.Schwartz. Theorie des distributions I,II, Paris, Hermann, 1957, et 1959.
4. E.Mihul, C.Gheorghe and D.B.Ion. Preprint Helsinki, 1966.
5. J.J.Loeffel. Helv. Phys.Acta, 36, 216 (1963).
6. J.P.Serre. Lie Algebra and Lie Groups, New York, Amsterdam, Benjamin 1965.
7. H.Weyl. Classical Groups. Princeton: University Press 1946. 11. B.Malgrange. Ideals of Differentiable Functions. Oxford: University Press 1966.
8. S.Schweber. Introduction to Relativistic Quantum Field Theory. New York, Harper \& Row 1961.
9. K.Hepp. Helv.Phys.Acta, 36, 355 (1963).
10. D.A.Jacobson. Nuovo Cimento, $\frac{45,}{1} 905$ (1966).

Received by Publishing Department on October 8, 1969

