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"1, Introduction

The aim of tis paper is to represent the space of the distri-
butions ‘invariant to the orthochronous proper Lorentz group L’r ,
' defined on the topological product M, 'of n Mmkowskl spaces,
by the distribution space defined on the manifold of orbits of Lorentz
: group in M_ |, The orbit manifold is concretely realized by the mat-
rix manifold, with the Lorentz invariant matrix elements, For n=1

the problem was solved in/1’2’3/

and for. n =2,3 in/4/ and/5/.
" We denote by M =R* the Minkowski space -of r'ealb poihts
x =(x0,x!? 'xz‘ +x%) " with the scalar product <x,y >= x°y°—zu Sl yE
for any x,y €M ( R™ is the m ~dimensional Euchdean real space).
Let M, be the topologxcal product of n MlhkOWSkl spaces for-
- med with the points x = (x ; g x,) for x &M, i=l,...n . D(M)=D(R*™)
. is the Schwartz’s space of the complex-valued C ~' test functions
with compact suppor't in M and its dual D’ M_) ' is the space

of the distributions in M, /6/ .
The distribution f¢ D (M 2) is said to be Lorentz invariant
if f=f, , where
fA(¢)Ef'(¢A) H ¢A_(x)s¢(1\x] ,...,Axn)', v ) (1)
Ac L', ‘

¢’€D(Mn), vaMf], N



For A < Lt (where L + is antichronous proper Lorentz grvéup)‘

every Lorentz invariant distribution [ can be decomposed into the =
X =L ' ar =1L -

even par't‘ M= 3 (f +1p,) ~and the odd part [ _ 5 (l" on ,).‘ o
‘We dencte by D (M,) and D~ (M) k the even and odd Lo-

rentz invariant dxstmbutlon spaces, respectively,

[

-

2. Representation of Lorentz Invariant Distributions: on

- Lorentz Orbit Manifold

Let Sn" be the manitold ot the n xn real symmetrical _matmces.n

Sn- is a -2-n(n +1) —dlmensmnal analytic real mamfold.
We define the 'following determmants '

yee . 3 A , S

G (w=det(u ) Ciz=i ,eemi’ 55=J_ 4eennj )y =
‘ll..'..lp : i . P B n
RARSE
G, =6 ), |

where uGSn:p,il,‘...,i N AT T R

Let us introduce the map 7 : M, —S, such that nv(’;c)=‘u‘. e
and u|1j<x,,x> (%R =M ),1]-1 yeres N . ‘

We showed. m/7/ that the image U, of M .’ by mapping #-

1s a semlalg,ebralc mamfold formed with the matrices u G S which

’

satlsfy the fouowmg, condltlons

1. u,, >0 implies (u)<0 and G”k ’(u)f?_ O’ (3) '
2, n,; <0 and G“ (u) < 0 1mp1_1es Gy (u) 2 0, :
3. G - ()< O, __"_.."

. 4., rank u < 4,
wherellk [’=1,...,n. , ;
We can consider lU . @as the orbit manifold of the full Lorentz. .

group- L in M ‘

n - Indeed, two points in M, are equlvalent if they':f

belong to the same orbit of L and we devide M, w1th .respect. 5

to’ this equivalence relation. Then there exists a bijective mapping,’




S N . L

induced by proje.ction. T, Wthh carmes any matmx wue U \{ 0 }
“to the vorbit - ' (0-) of L inM \[0} ( 0 is the zero pomt of M,
and f‘l,_(_) is the zero matmx of U, “'0) is the union of the 27"
orbits of L containing the vectors x & M n with x’i,-h'-,Axn ‘isotrdpev and

collinear )/7/..The e‘:ttensiorx_ of the projection 7 for the topolegieal,
/,v product of n complex Minkowski spaces was studied thorough.ty in 78,
Let us now decompose U, ~ into analytie;‘submantfolqls. Toiayoid

certain c;omphcat_lwons we introduce the follbewvihg notations:

U =lufuc U sranku=hl)

g‘
i

-1 ’ .
a (U ), : }
nh . nh ) ) . . . ) ) . (4)
M _=lx |xEM 5 <x,,x ><0i=lu,nl
M +E nh\ B nh+E‘”(‘Mn'h'+ ),

‘where h =1,2,3,4, We shall denote by A the closure of the set A

inM or 5§, ., We consider the closed sets X- Yc R" with XCY«

D(Y) s the Schwartz space of the restrlcttons to Y of the func- .,
tions belong1ng ‘to D(R ) - and D(Y\X) is ‘the subspace of D(Y)
: conststmg of the functlons whlch vanish over X w1th all their deri-
vatives,

W1th the above statements we sha11 prove that the Lorentz mva- '
riant dlstmbutton spaces on the submamfolds of M, are isomorphic
to the d1str1but10n spaces on the 1mages of the constdered submam-
.'folds in U, - ' ) ‘

Theorem 1. a) Uyp (b =1 2,3,4) is a real analytic submaru-

fold of 8§, - of dlmenslon hn- l-h(h—l) , with. a unique analyhc struc~

R

tuce, - . ‘ ' ’
b) ' (Mn,,) (h =2,3,4)31_s isomorphic ,tc;' nf" (U ) ) and’
(Mnl\{O } ' ) is. isoniorphic to D’(ﬁ A ) . - “ ‘
c) D; M_, ) ( h =2,3, 4) is 1s6m®rphlc to D’ (Unh+ ) . and
D (H )- L 15'1s0morph1c to D (U ars) .

nt



. Proof a) We begm by mtroducmg the mdex sets 1 —t(l,. wi )t ;

,where "'x RIS 1% =1,.,,, iy << 'h “and we defme the algebram.",

3

mamfolds

VL =tulueu .6 (wrol
: : RS MR PR

e by i n . 1 .‘.. h . :
L R O
N =7 (V ). RRERSE E
ll i . : I‘l . 1 h o (
Consider now the following hn - Zl h(h=1)  local coordiha,.tee.‘
in V : . . ‘ :
ety ‘
lu vy } (jll=1""’n; jef-' ie! H £ <E=£.£ =1,.-:,]‘l )~ (6)
£°¢ . ' : '
The relations (3) and (4) give' the equations ;
U4y 10k - o
¢ "M (w=0 : @
' N ~ ‘ o
in V for -k, =li..,n -, From (7) it follows that every U,y 1s

o

vty o
a ratlonal function of local coordinates w1th the ‘nohzero denommatork._
6y ) L we- remarkthat tV } for i, u,i, fe 1 - A

ol
S h h =
is an open covermg of U in the topology mduced by S T Then‘

it follows that the local coordmate system (6) determmes on U :
an analytic stmcture/ 9, We shall prove that . this structure .is umque' ‘
we prove this only for h =4 (the proof forh<4 is 51m11ar) We con51der"\,:“"‘

the followmg transformatlon of variables - - N
; : T ay “as jaai as  ag’ ag - !
.x»—>(<xie,x12>,xi_ ,x.l,x! ,xj,x;’,xk ).\. (8)
~ where jg=licans jg#ip  for L0 =1;0°< €’ gpng

1'\k G—li 2,13,ut;\a«';,az,aa‘C-{,0,1,2,3t
-are fixed.- w1th i £ 174 ko, ‘a, # a, o a, . For any "xG,;V", | , ;




. . ! .
there exist i,j, k; a, ,a,a with nonzero Jacobian ‘of the trans -
. formation (8): ’
2.0
+ a
X 0 Xal Xa2 xaa
1 1 1. 1
a a a
1Y a o 1 2
x'xl Xy 1 1 quo xa’, x‘:” x‘:?’
=16]x°]. [x@0 xar xga | , ‘
%0 x% . x:to xi’ x %2 x %3 (9) :
x% x @1 -y as| |7 k k
- - ke ! k ap a a a
/ . - x . 2 3
e TerXg Xy
where € & i ,i,,i,,i,}, & 10,1,2,3:} with £41i,j, k and
4 @, a,,a, (indeed because of the ‘nonvanishing of the Gramn
; . 'G .
determinant . G, (7<) the vectors x L xy,.x, x“ are

linearly mdependent),. The' relations (8) and (9 show that the restric-
tion of 7 to M, is coregular/®, Byt if ,a factor manifold is an ana-
" lytic ‘manifold (Unh) and’ the respective projection (#) is coregular
then its analytlc structure is umquelg/ A conséquence. of (3) is that .
- Unh‘; are connected exceptmg U 110 Upyy Uy, and u,, _wh;ch have
2,2,8 and 64 components, respectively, : o

"~ b) Let ha1,234,

Fdr any ¢ & D (Mn'hv) - we. define the transfoffnations
F @)= f5 (x,u)e(du- (x) , (uclU ),
b+ iy ht L ] h : nh :
i My V
‘where ¢, . is the measure on M . induced by M, and
8 (x,u)= b 4| It 8(<x'4,x >=u . Jy ( )
bt Upem 1 IE 1t g e pig.
' ' 1 ;éig €<Z ‘ ‘

- where 5 is the Du‘ac dnstmbutlon.
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To make _more- accurate the meanlng of .the above transforma-.
:tlons, for instance for h -4, we consider in (10) and (11) the' loca13 U
vanalyhc transformatlons (8) with the Jacobian (9) and the par'tltlon'

of the umty belonging to TN 1,0, },for (1,,12 .13 Jg el

: and the Dn‘ac dlstr‘lbutlons have sense, Usmg the analytlc structurevf?" ‘

. of U ‘it follows 1mmed1ately that any Fh+(q5) is a c” ‘-functlon of
compact support and E,:D (M ) —s D (U

ous and sur_;ectlve mapplng.

The following proof generahzes the canonical constructlon'

given in/123/, For any I & (M,,) = one defines =
F, (1) s D’ (U,) by R |

B T | (g =F’ (), T " (12)
where ¢ & D(U, ), Y =0 (ggm ) with @ < D (M, ):>L‘, -
and I, UT’) =1 . Conversely, for any F . (). one deﬁnes the :
distribution - . . . ’ ‘ o o )
f(¢-.) = Fh;A(f)(F.h+'(¢)), =DM ). e (13) -
To show that (13) is correct and that T’ DL M) we shall
. prove that ) R B a '
C (TGN =ICE, (P ) 0 ()
Av{rhlere = _(qS)-— ¢ satlsfles the equatlon F o) = 0 LI we
- apply now the Gauss-Ostogradskl formula to . b (a.) =0 ’ using

also the partxtlon of the  unity and by passmg to4he variables: " 2

(for instance for  h=4-reversing the transformations (8)), it follows
> ' (19)
‘o= A . 15) -
) a,B:O (ZB § ‘ZB : )
a<f3 .

. ") s . a hnear contlnu—

s e
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' where © ";dﬁ DM, ) ;"?ahdf ‘

H
1

T oL
oo RapmEFaa f_E “BB e s

Mi-are ‘the infirlitesimal generators of the group Lf_‘_ in an'_ and

B= 28aoa/80 - aaB is the Minkowski metric, f& D ,(M ) is

a Lorentz 'invariant dlstmbutlon if: .and only. if ‘A qpt=0 for any .

“and . B' . Then from (14) ‘and (15) it follows f=f . Therefore the

mappmg F" 1 (M )__. D’ (U ) Cis b1_]ect.lve one,

¥

’I‘ak.mg into account the above results Fi:, is a bijective

. linear bicontinuous mapping, hence it is a 1somorphlsm.

Q) Let'us take f c D/(M . We defme gc D (Unh )

nh) .

“so that - f(¢) g(F (¢)) , where ¢ & D(M )w1th its sUpport

din Mo Cons1der that the support of ¢ is ina bounded open set

iuymvanant to ‘the A G L" "with '(Ao)- =_gﬁ( a, B- 01 2 3.

1t follows f(¢A )= g Fh+(¢)) . ’I‘heh' f(¢) =f(¢A0 )y Smce

f is odd: (¢, )=-f(¢) . Hence f 0 if { has the supporl: in
Ao

M._. A M,, . Taking into account this remark we define the trans-

" formations

Fg;(qﬁ)s ‘__‘r- 5, (Riu )f¢(_;?)ydﬁh(,?) =
‘ ‘ N nh l U . i
| (17)

=08, (x,u)¢(x)dy (%),
L . Mnh
"where ¢c D(M W) ~and é(x) = 2 sgn x°, ¢(§) for x &M, .
~ One -can show now as in the proof of b) that any F' ‘:_
“D(M,, )= D (Upn ) is a linear, continuous’ and sur]ectxve

vmappmg and that there exists respectlvely the. lsomorphlsm F'

DM ) — DU )  with

'“hﬂ', "
(@ )=F_(D)(F,_($)), (1)
. k ‘ ' ) lx

where fGD (M . ), ¢€D (M ).



s

o p t ;
2 : Slmu!arly to/ 1/ and/ 2/ there exist. the lmear and contmuous extensn-' ‘
'onsFHg: DM, \10})—*D(U );% |
! X 3

KRS T i 5 had
CUEL D(M )—-»D(U L) Fl‘+"‘ D+’ (M \10!)» (U, )

S

w5 -.,,u

SR P : 3___.\ o , o

L '_.-'Ff‘x..'g"lgj—'(M ni )f'D”(Ux}H-‘) Of ;F1+ ! ,Fl-”"’F!-iy- "’F 1-

- respectlvely ( Fl't are isOmOrphisme") S
| It should be. noted that . Theorem 1 for - n.=2,3 was proved

by Hepp/ / ~The transformations . Fh;e

~are obtained generahzmg the t
Methée. and Radon transformatlons/]'/'/""/ Lo '

2 Spectrel Representation ~of Lorentz Invariant. Distributions
.4 Now . in .what follows we extend the ' isomorphisms giveh in Theo- :
rem 1 to the whole Di (M,) ., We begin by introducing the Lo-
. rentz  invariant dlstmbuhons with suppor't in 0 . Any d.is_trli‘buti‘on

feD’ (0) » has the form//

1= P (2 s, - o (19)

ax ' R

. - n n 3 M a‘ o - ] e ;

where 8 (x) =1'I l'l S(x5) and P( -) is a differential po-
x - : : )

‘lynomla.l w1th the cqmplex coeff1c1ents in the —d vai‘iables. If"‘

fe D; (0 ), then according to the Weyl’s theorem’io/ ( with

respect to the theory of mvanants) there exxsts the d1fferent1a1 poly-'“'"’

2 " ‘2 :
nomial P(L___l) “in the varlables = 9 .89 Gojomdoeam)
4o9x{oxG et IxTyax] s

, in such . a wav _that R .
, f=,P(|‘_'_l,),8'(§) . o)
 Any g&D (D) (. Cl)f(S(n ) has the form N e
o(u), oz (@

g=0(

e 100 N



"w‘here 8 y(u )=’f1 5 (u l; )y e.hd Q("—s@—)f _is a differential pol';y‘iﬁ‘c;-‘

EY .
m1a1 w1th the complex coeffic1ents in. the Vamables 5= (l,j 1,. ol igj).
A u“
F‘or any fc. D (0) we define F (f) cD - by

(o) = F/(0(), gep@y. - (29
If I has the c\,nerete form (20), then Fot-;- (n ;-;has the concrete -

I3 form (22) with Q( )= P ( D ) -, where P( [ ])is obtained from P([T)
. S = LI .
by the adjoint of the sgbstntuhon

DH > A1+ 3,) Juy kzll‘=(11+8'ik W1+ 8 Juy —~ ' - (29
, 1y . c _ D . du u e -
We defme H/ (0) ={F '+ (f) } for an. feD '(6) ;. F0’+ .
D; (0) —.H’ (0) is ‘an. 1somorph1sm. Let . H: (0) be a. locally convex,
.. space with the dual space H; (0 - . o
' - We define now the followmg d1rect sums - of locally convex spa-—
ces ' :
H(U )~ D(UM)@D(Una)@D(Un2)@D(U“)@H(0) .
_. } (29)
;(U )=D(U 4+)@D(Un3+)@D(U2+)@D(U 1 ) )
Usmg these notat1ons we shall prove the followlng theorem:
’I‘heorem 2, D (M ) and D’ (M _are isomorphic to

Proot. Accoramg o me vvmmey meorem/ M/ we wmte tne ai-

. frect sums’ T R ‘
D(Mn )_D(Mn4 )@D(M )@D M, )@ n( Mn,\)lol)Q)D(O) (29)

D(M ,)=D(M 1\10 l)@D(O)

&

‘ We obtam the dual sums/ / of (25)

11



D" (M, )==D+(M,,4 @Dy (M.,,,)@D (M,,.,, y @D +(M,,,\m;) @n+ ),
. | i ((a@j;
. D;~<M'f,,‘>=n;;(M,.',; >C+>D;<_M,,a mn'_(M‘.;a ) @D, ) '

F‘ma.l.ly, we con51der now - the lsomorpmsms glven in ’I‘heorem 1

. and we define the followmg direct sums of lsomorphlsm .

o]
il
+
-
oo
u
+
|

Hence we obtain the isomorphisms F7 : DM )-HI (U, )

“and FZ : DM, )— HZ. (U,) .1t should be noted that' .
N B " i v"' .

H_(U,,)=D(U, ;) "+ Theorem 2 for n=1 was obtained by -
‘Methéelt, , , L

1t follows from Theorems 1 and 2 that any Lorentz mvamaht

dlstﬁbutmn has" the following formal spectral represenbatlon m thé

sense used by Rieckers and Guttmger/3/

.f(x)=.h§l[ ‘{_h .(u)ﬁ (x.u)dp (u?+ , (2{3)
v+ [g,_u)3 (Q,u)dph(un + p([:j 18 (%),
Unh+ - B o " R
where g,, €H} @, ) meC B, ) and MU0 {

‘and H_ (U .,y ), . are the restficti_ohs of HiUa' "and H=(Ux+ ]
to UhlP(D)a(") is given in (20). ﬂ' h are the  measures on,the‘- ma.’

mfolds u,. this . representatlon is umque modulb ‘direct su'ms.,

he spectral representatlon;(28) for n =1 is just that estab—

llshed by Rleckers and: Guttmgerla/
Remarks: 1. Theorems 1 and 2 can be proved .for Lorentz in~

variant tempered ~ distributions using the proofs given above with - :
unessential modificatlons Then the Wightman dlstrlbutlons “for n+1
points admit the spectral representation (28), The Fourier transform- 1“";
(28) has the structure of Lehmann representatlon/3/:/ 12/ '

e . 12 - ‘ R
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2, Theorems 1 and 2 can be extended also for Lorentz cova-
" riant distributions, To express the Lorentz covariant distributions’ as
a 'finit'e'sum'of distributions belonging to Hy(U,) multipiicated by’
Lorentz " covariant differential polynomials it must be used the

results established by - Hepplls/ extended by usmg the theory of

ideals of differentiable functions -
/
3, Theorem 1. a) on the mass ‘shell was proved by Jacobson 14/
“‘and it follows that the restrictions of the Theorems 1 and 2 on the
‘ o

mass shell are true.

The authors e:gér:ess their gratitude for kind hospitality they
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