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1, Introduction ' \

Calculation -of the hyperfine _‘splitting of the § -level of the
s hydrogen atom A Ehi’s' has been carried out in many papers.‘An
. up—‘to---ciatet survey ‘of the p‘roblem ‘with complete reference can be
found in the excellent review article by S.Dr'elll as‘ well as -in the
; : paper by S.Drell and I.'Sullivénz; we shall therefore only . briefly
kgmention‘ some of the results on calculations of the corrections to
: the Fermi kfor'mula_ due to the structure of the proton,

A set of diagrams contributing in the appropriate order is de-

plcted on flg.l Dlagr'am 1d contams the amphtudes of. the wvirtual
,Compton scattermg (V.C s)-on the ‘electron and proton,
= In the papers by lzl.ﬁu'nowﬂzt3 and WNewcomb and E Salpe-
‘t by means of the pertur'ba’uon theory for the Bethe- Salpeter

‘equatlon AE was evaluated neglectmg the electromagnetlc form

"”“:'factors‘ of the proton (l.e. assummg the proton to be pomt like.
"w1th anomalous “magnetic moment) and usmg the Born approxxmatlon

"for' the dlagram (flg.ld) ’I‘he result is
£




' A , L
—T=A°+ln—'l\_4— | - (1)

N |

( A, is the Fermi splitting described by the diagram (fig.1a)

-without proton form factors, M N is the proton mass and A is
‘a’ cut-off parameter), A logarithmic divefgence appears . in’ the term
. with the double Pauli interactiton in the diagram (fig.1d). A_O is
finite and depends on the way in which the cut-off is introduced
' (see/ /) A= —(2+4)ppm . The im‘portantlrole'played by the form.
factors in the electromagnetic vertex of the proton’ for the . first t1me'
was stressed by Z,Zemach

In.the paperse by C.Iddings .and P.Platzman'*. and by C.ldd-
' inds/ 8/ the corrections to the formula (1) arising as an effect of
the proton form factors were studled m detail, In. the applica-Q
tion of the dlspers1on relations for the amphtude v.C.s., on the pro-

ton was also suggested The final result may be presented 1n the

Pl

form )
AE, =AF+AEMS +AEMS ‘ )
. . - N s : - 2
AE! oA Al~‘~‘-32,5[)pm (2
- ——'lfi-=vA'-ln—-—+Sz+Sa o .
SRR S b M (1ppm =10~°)

S, “and S, belng the contributions from the cut_of the ampli~
tude v.C.s. on the proton mod1f1ed by the 1nclus1on of a term pro—
: por‘tlonal to p? - the square of the proton anomalous magnetlc
moment (Seel, formulae (1.83), (1.84)) The contmbutlon comlng
. fr'om the region of strongly v1r'tua1 photons in the diagram (fig.1d)
was estimated by J.Bjorkeng,- who used a method developed by

himself,



g Finally, in the paper by IDrell and I.S_x.,ll.llivan,2 the ‘relativistic
‘yand' non-relativistic models«for the behaviour of the imagihary part
, of the: V.C s, amplitude in the low energy region of the. cut were
i studled in detail, '
- The relatively high polarizability of the nucleon mdxcates that

. _the contributions to the hyperfine splitting from higher inetrmediate

. states in the amplitude of v.C.,s. cannot be, .in-general, small as

B compared with the nucleon contmbutlon. This fact always . stimulated
‘var1ous attempts to take ‘into account- also . other (bes1des the onhe-
H‘i‘ngc‘:leon) intermediate states, The COl:ltI‘lbuthl’lS from these states to
2 the quantities - of the t.ype S 2‘ and Saf proved to be surprisingly- -
f";ks'n.lall as compared with expected effect,
i - From our point of view. this, result is not accidental neither it
~"'_'is caused by the shortcomings of the models, It nearly reflects the
" characteristic features of the problem related, in our op1mon, to the
fact that the main contrxbuhon to the two—photon contr1butlons under
consideration comes from photons of relatively small values of
”-":--k <« Mi o, k= 2_ 2 is the photon mass),
- Roughly speaking: the presence of two-photon and one-elec-
”,',\trc'm propagators in the corresponding integrals- (note the’ smallnees
of the electron mass -m/e /My =107° ) sharply increases the

. contribution from the region' of small k? contributing at the same

,:‘t1me with a’ factor k at |k %> « , thus even for relatively weak -
‘f/;‘restr1ct1ons on the rate of decrease of v.C.s. amplitude (while - k?
~,,f'inlcreases) the region of strongly virtual photons gives only a small
.."edntribution (- 10%) as compared with the reg.ion of small values
;.‘c‘)/f .k'é X, ’l‘alking into account the fact that the region of small va-

'x/ This is an. essential difference between the problem of hyper-
fine splitting and that of the mass- differences of the proton and
‘‘neutron since , in latter case, the "absence" of ‘the electron pro-
- pagator and of the’ second ‘photon propagator results in the fact
that the main contribution comes from the region of "1ntermed1ate"
- -and. large values of k? (if only the integral converges), -
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lues'of k 2 in. the integral S_3 . is suppressed ‘and that the mo- -

dification of the cut (s'_eel, formulae (1.84), (1.85)) results also in "
suppressmn of the reglon of small- k% —in the integral S, .we
conclude in accordance with the above-mentloned argumentsv that
§, and 'S, should be small." -
‘We stress that the divergences appearmg in the. expres51ons

(1’) and (2') do not allow us, in fact, to ascrlbe any physical sense
to A0 and - A,l . E‘urthermore, such a method of calculations does’, o
not permit to determine the relative values -of the different contri-
. butions - the one nucleon cohtribution, the ‘cuts etc;, thus handi- "

capihg. one .to 'get a clear picture of the characteristic features of

the problem. . )

Our first goal therefore is the derlvatlon of the approprlate
formulae free from the above-mentioned -disadvantages and admlttmg
a simple physical_' interpretation. This subject is tack_led’iri,- p_art I :

of our paper,

_In part I the formulae obtained in part I are analyzed ‘and ‘
the terms S, and’ §; are estimated, The contributions from the.
N:a- resonance and the behavxour of the 1magmary part. of viCis.
amphtude in the high energetic region of the  cut are’ studled‘ in

detail.

As a general scheme for the study of - the bound states ener

gy levels the quas1potent1a1 method of ALogunov and. A’I‘avkhe-v
hdze10 is adopted For the first time the - qua51potent1a1 equatlon

for the system of two particles 'of. spm 1/2 was, apphed to hyper—
fine sphttmg by R}:"‘austov11 This -method. (because of the three-

.dlmenslonal character of the equatlon) has some advantages as com-_
pared with the Bethe-Salpeter equation and con51derably fac111tates

12
all the calculations for the hydrogen—hke systems .
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2 Qua51potent1a1 Equatlon for the_ Bound State of Two

Partlcles .
Consu:{er the scattermg amphtude for two particles with mas-
" ses m and M off the mass shell in the center of mass system
'(c.m.s) (see fig.2) «
As it was shown in paper/ 1 . the qua51potent1a1 equatxon for the
bound  state of. two spm 1/2 partlcles has the form -

(E-yp24m? = \/p +I\12)‘I’ quV(p,q Eyv(q), (1)

(277)

has two spinor indices.

where the wave function v ()
is determined by a Lippman-

The qdasipotential operator 'V

.- Schwinger type equation for-the scattering .amplitude )

: : i : -1
‘ T+=V+VGOT+ or V=T+(1+G0T+)v o (2)
. Where ' '
T, (0§ E)= 0 (p) T, (=) THGE, e=e’=0)u (D u (<) @
( .u are Difac spinors for states with positive, energy and norm

. 112 .
u*u=1 ).



. @0%e-0)

=28(-0)F@) - (@
E—\/52+m2-\/[—;2A+ M? N ‘

_Multiplication in the equation (2) is ‘to .bé understood” in .the opera- .

tor: sense, namely as iht'egrétion over the 3-dimensional momentum

volume [d§ /(2 7)° - | ' | ,
In the nontelativistic limit p2<< mz'—,’M2' edu'atioh (1) reduces

to the usual Schrodinger equation

>

) p2 > — l > > -v.E e R . (5)
(W- ——) ()= ——rdd V(p,G; E) ¥ (d), |
2 m* o (217)
where W-E—-m-M i m*=mM/m+M .

~ Expanding (2) into a perturbation series we obtain

(2) C(2) (4] (4 (2) . (2 .
Vio=T S, VUeT =T 6T (6)
: ™~ ;
etc.

Extracting from V? the Coulomb potential (without form factor)

=




(2) - ’
V7i=v +AV Loy (p,q) =~ = » (7)
o . c . 2 3
: (p—-1q)
(2) (4) .
. and considering AV  and V as perturbations, we obtain a

. correction to the\r(;oulomb energy levels
. ) m*g?2 ]
W, =E -mM=-—2—, n=1,2,...)
e e e . 2ﬂ2 . I .

" in the form

(a2 (4) (2) 1 (2)
~AE =<n]AV [n>4<n|V U |n>+ 2 <n{AV |m>—=——<m|AV |n>,(g)
> Lo . ’ m#n —E
B . n m
- where' the brackets <... loilosi> denote matrix elements with the

© wave - functions . of the equation (1) and wﬂ;h the- Coulomb potential,

Since the relatlwstlc correchons are of the order p */m% g2 (in. the
2

= fhydrogen atom P a? m? ) the known solutions. of the equation

o (5) can serve as a sufﬁc1ent1y good for -our purpose approximati-

‘on - for the wave functions, F‘or the ground state the wave functions

- 'are of the form




where Wi are the two component Pauli spinors

. E-m-M-p¥/2m , w |
¥(p) #- ¥ (0)=¥ () +0(>. (10
' E-yp?+m?—yp?+M? - '

The next term in the expansion ¥ (p) ~is of the order -d(az) and
is unessential for our considerations. ‘ _

In the last summand of the formula (8) the sun‘i over the' in-
termediate states of the bound state car; Vbe replaéed by a sum
over the states of free particles since such a substitution does not
worsen the accuracy of the whole apf)roximation. Aftér this 6pera—

tion formula (8) can be written in the form .

B (2) (4) (2) (2)
AE_=<AV >u<V >e<AV G AV >, (8a)

Now, substituting the expression V% from (6 ) into (8a) we obtain
e, (2) (4) (2) (2) :
AE=<AV >4<T ' 5ocv 6 AV >-<AV7 G v >5-<v G v _>. (12)
. ) ] c 0 0 c c 0 ¢

Let us now evaluate the duasipoténtial '(it is‘ covenient to use

. the photon propagator in Coulomb gauge) RN
' , k k
D, (k) === D, (k) == —— (5 ~—4-1)
o0 k2 Y k2vie M k?
D =D =0 (i,i=1,2,3), 5
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" where a par'titioh into - the longitudinal (Coulomb) and transversal parts
- is carried out, '

: -Dlagram "a" of flg.l ylelds (spmors polarlzatlon indices are

‘ dropped)

L {2)

:T

+

:3)=c? 3, (3)u,(=B) {7 0P (k) D (K)+ I (k) D, (k) lo (Du (D),

“where . the electromégnetic vertex of the proton is

, .
I (k)=y [ (k)= £—[y ,» 1k [ (k (13)
, (k) Y, (%) o S RLY (k9

f”(kz) being the usual Dirac and Pauli form factors with the

normalization | (0) =1 (0) =1 -, p — the anomalous mé.gnetic

moment of the proton w=17 .

Performmg in (12) expansion in p%/m?, p¥M* and m/M
"vand retammg only that part of the qua51potent1a1 which gives the
-‘hyperfme splitting of the levels we get -

(p,q) T“ (k%) + uf(kz)l————![k (JE) (ko )(ka )1—

“4mM -
., o > : (14:
‘—21(pxq)az* } )

o Thus, in the lowest order the splitting of the S -level of the hyd-

rogen equals

11



AE(:: =<AV:?); >= 2“. &é> f 44y (P)[f ( S*“fz(kz)]q’ (@) -
s s l» 2 ¢
oo 3mM (2,,) e

B R X IE RO

3mM ‘ ' ' (15)
G da e LD
s f—e —— ¥ (p) [ _ ——-11¥ (q) |
Cm)y (@2m) L+
where |
., dp 177 . m* )’ -
0 v @), 1s,0f - g
¢ 2 %) ' i

The first summand in (15) givés the well known Fermi formula, whe-
reas the second one determinés the corrections due to the electro; |
magnetlc structure of the proton, Since k? in (15) is small the se-
cond summand in fact is of the same order as the two photon di-

. agrams, To make the relation W1th the two photon diagrams more

explicit we utilize the approxxmate expressmn for the wave fun- -
/ > ™

~ction” ¥_(p) from formula (15) ‘
¥ ()= (012 8(E)+F(E) v (P)+0 (a1 w, W, - (19)

12



X ,which can be obtained by the expansion of the Coulomb wave fun-
" iction' of the § state of ¥ _(p) [ see (9} in powers of . ¢
and by- the utilization of the equation (1) with the Coulomb potential,
“Formula (17) (holding when the appropriate operator acting on ¥ () |
<has no singularities at E=‘0 ). is an expansion of'thye Coulomb ' lad~
:f der, wherfe every subsequent term inciudes an additional exchange
of one longitudinal .photon and the "static propagator" F([;) .. Sub-
 stituting (17) equation (15) takes the form | ‘

“(2) 2na ‘ - dl? ( “)rpd fk %)

AE = A+p)<3 3 >1¢ (0)12 1142 v (k)F(k)[——-———m(ls)
his "3mM ¥ 2 c (2”_) 1+ u . B

o:The companson of the second summand in (18) with the diagram of
i”fig.3 clarifies physical sense, Here (fig. 3) @ means that F(p)

' ‘jplays the role of the propagator, - - = - is a longitudinal photon, '
fdand YOS is a tranversal one. g |

' - Let us consider now the corrections to- the Fermi formula
related to the two photon dlagrams (fig.1b,” cd) By the evaluation
.;:of these corrections, in accordance with the remarks preceeding
formula (9) one can put p =q4=0 and E=m+M in the correspond-
ing expressions for‘ the quasipotential,

; : We shall not be dealmg with diagrams 1b and 1c, Just note

; that fig.lc in the appropnate order does not contribute and the role
"“_:of fig., 1b reduces just to the descrlptlon of the anomalous moment

/11/

k;“of the electron , Le. it gives a common factor (1+a/2#) in
. the formula (18).

e The corrections in energy from the d1agram 1d together with
:‘ a. term of the second order of the perturbation theory (see formu.—

la (11)) has the form (the last summand in (11) does not contrlbute)

- 13



o e (- co
aES -1p O1 x<,Ti4y)>‘2<VcFAVHB>* , a9 -

his

where the matnx elements are now ‘taken over spmor‘ 1nd1ces only. v
Here sz. corresponds to the dlag,r'am 2d at p q 0 and ' »

E=m+M " 'and.the second summand-can be written as-

. B d-’
<v FAV(Z’ >o_2ne <& &>
hts 3va bz (271)

v(k)F(k)[f(k Yeul ()1 (20

and corresponds to the diagramb 3a,

Adding egs. (18) and (20) we’ obtain

> -

(4)
o @ >+< T A
12 2y

(21)

his

B AR =1g (O 2ma (10,0014
m.

kg

e (4)<d G >f_‘11‘_..v (K)F ()1 =AE 4+ E

3}mM (217)

Now the magnitude of the ‘h"ywperfiné splittix}l;é,‘af the triplet and sin- 8

glet -§ levels is ' in

AE, =ECS)-E(’S )-All+s], ' (22)

his

where ' ‘ ) Cos

14 .
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Ao Sra L)L) 15 O F (29)

F

. v:.{l " ‘ : 3mM

is the Fermi splitting

R . e o0 = dk
o5 -5 = —2f M &K NUON () -B(L 4 f —— ] (20)
O (D) g RO e kW,

o) 1w (o) [4¥g:r o ' .
N =—4—SP(C . 2 0")/2 ys),“]l -‘“—"—. 2(1 ' B (25)

(k) -~ and C (k) are the amphtudes of the virtual scatter-
mg on the proton and electron (sees) whlch now will be the
subject of our study.  Since the éffects of the bound . state in the
‘T\tw0 photon aiagramé can be neglected we can carry out a fully

i é:ovariant, desqription of the Compton scgttéring.

3 Amplltude of Vlr'tual Forward Compton Scattering

(p)

The amplltudes C .and C correspond to the followmg

dlagrams (figs. 4a and 4b)

’ . 1 . 1 ) ‘ ; .
C =7 T;T\_—Y+Y —_——Y - (26)
ad "p+k m p—k—mv"#

15



From (25) and (26) we obtain’

g o) '
N, 2_1;..4T——€"""'z k +0(am’), v=k (7?7)
then c\;l‘;’ can b(ya"pre‘s,ented in the form (see®*l ) -
| C,Z’ ﬁ(k k,-k’, )A"'+—l%l—[4u2gﬂuszpﬂp;—ﬁkp#kufb;k#)1 B+

l . ” oA v 2
‘+W1Mu[y# ,yV]—PV.[jy#,k]fFP#[yv ,k]§Hn+ -M—aik [y#,yvlv
_ku[y#’k]*’k#[}’uykllﬂz. . ‘ -

The invariant ampli’tude‘sv A, B H V H , are functions of k® and v

- with crossing symmetry in v . We have from (25) and (26)

<2

. ' K2/MY) o, L
N UONT (k) == 2878 akes 28 (1200432 H (K5 0 1.
4 Hv k*-4m’* l - ’ ( 29)

Carrying out now in the integral (24) the chk rotation (sees) k, -»lk
and substituting (29) we obtain for 8,

2 "‘
5 " 2 i k [(2k2+kz)H‘(_k2,ik0‘)'- |

2y ,17(1+u) M m k4 (k4+ 4m2‘k2 o ' : : (30)

2,2 2 . .
S3KPKSH (- KPik,) ]

16
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AN o : o : : S
(m(30) we integrate over the 4-dimensional Euclidean ‘space), In

spherical coordinates ‘ \

4

Cre o fdik = 4n[ k dk ]‘ d¢>sm é, k —kcos¢>l

Using a dispersmn relation for H1 , in v for k2<4m2 and se-

parating explicitly the one nucleon contribution

o cut - M 2 o . .2 v . .
H e’ gt ol M g vkl Y S LR IR
. 1.2 1,2 1'2 - k M2 . W2 11 vhe .2 B T
- =4 Tpaed Y

< where

N ‘1 2
RY ()L £, () U (e 061
b (k=L (Mm —m2-k?), (32
» ) ! 2M 4 T .
N “ 1 : i ) .
R () = T LT, ()

-

.we write formula (30) in the form (seel)

5 =86 +A ' . (33

2y N cut ’

where SN is the one nucleon pole .contribution, A _, is a con-

‘t'ribution from the cuts .of the amplitudes HL and Hz‘
A (x)+pl ( ).

1+u

b6 () 1 W), 6,5

P

.17



T s 7/2 P S 9 2 o . 2,
() - k3 fi d¢ sin2¢ (f (<k?) 2240082 '+#f2(—k2) cos® ¢ 1
22 ° k2»+4m2(:0$ 2 ! cosz¢+(k2/4M2) cos 4 +(k 2/4M.2)
‘ ‘. _.(35)

Our final expression of the correctlon to the Ferml sphttmg

has thus the form

8=5 —>'o‘° (6 -5° )+A (36)
2y stat N stat cut S
5 =50 =20 SF dk [G (=k*)H(k)=X (D)} (37)
N stat 2 N .
n'M 0 k - . . -

Mmoot 2 oAk K ot (k) 3K (K ik )
17(1”+p.)M ’77'»“2 ) k4 k +4m kz 0 . e
all+OM - #? o

The derivation of formulae (36)-(38) is the main purpose of

this paper, An analyst of these expressions and  the RS
‘ 13/
results of numeric8l calculations are presented in the other paper/ ,/,

We thank BV.Strummskl, D.V,Shirkow , AN.Tavkhehdze for

—~

» helpful discussions.

‘ “~
x6/ The linear divergence. in 8N arises because we have neglec- :
ted the effects of bound states. The latter would result in an effec- ;
tive cut off at |k? |<¢12m2 . In the expression (24) one can, in ge-_
neral (up to the terms of higher .orders), tend” W -0 ' and consi-"
der integration in k? to zero obtaining thus the finite expressmn(B?)

18
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