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1. Introduction 

Pham, Froissart, Lascoux and Fotiad/
1
-

4
/ have proposed to 

;;tudy analytical properties of Feynman integrals by mefhods of ho - · 

mology theory. All the resources of traditional approach, i.e. explicit 

analytical continuation, tracing of moving singularities, calculations 

of. the intersections of singular manifolds etc., become powerless. 

when the number of variables increases. The new approach, r~plac

ing tedious analytical calculations by in~estigation' of topological 

features of the comple~ent of singular manifolds, is almost insensi.:... 

tive' to the 'number 'of variables and has many other advantages be.:.. 

· sides. 

A detailed· account of homological techniques can be .found in 
' . /1/ . ' . /5/ 

the books by Phc~.m . and Hwa and Teplitz • The original . papers . 

by French authors are inserted in the latter as appendices. 

Since eve'n elementary notions of homology theory are yet . 

· · · considered by physicists to be rather exotic and are not widely 

known;. we shall formulate the basic definitions and . enumerate the 

facts which· are necessary for understanding of what follows. By · 

doing so,· we shall neglect the rigour required for methematical 
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works and as far as possible .shall restrict ourselves to visual , 

con~iderations, 

Let us consider a convex n -dimensional polyhedron /).n.' 

· and provide it with an orientation c , The latter means that the 

. set of its vertices is · ordered in a certain Wl y, The orientation of 

any. of its (n -1) -dimensional faces will be chosen in agreement 

with c , · For that we shall delete . out from the ordered {by l ) 

set of vertices of /). n, · all the vertices that do not belong to the 

face in hand, The remainder of vertices will give for this face the 

orientation induced by c {i.e, "synchronized" with c ).· By tran-· 

sition from oriented polyhedron /). n to the sum of all its (n -1) -

dimensional faces with the induced orientation will be referred to 

as we "take a boundary" and denote it by a 
An element of n -dimenS.onal chain a will . be defined as a 

convex n -dimensional oriented polyhedron /). n , A finite· s~m of 

such elements taken with integer coefficients will be calle,d an n 

dimensional chain y 
k . 

y = ~ n a 
1=1 I 

;,. 

A boundary of a chain o( y) will be defined as 

It 

. k 

a(y)"' ~n,a(a,), 
I ::1 

may be proved that for . every chain a 

a 2 a=0. .. ~ --
A chain with zero boundary is called a cycle C 

a c = o • ::...., 
A chair. A may happen to be a boundary of some (n +1)-dimen-

sional chain B : 
. A=aB • 

Then · chain A · is called an exact chain. 'Exact chain always has 

zero boundary: 

' ..... 
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.and therefore is a cycle, 

The n -dimensional cycles (for brevity, n -cycles) may be 

multiplied by integers .and add.ed. They cons_titute an abelian group 

Z n (a ·group of n - cycles). The set of exact chains forms in Z n 

a subgroup' 8 n ca!J~d the subgroup 'of boundaries. 

Taking th·e quotient:~of t~e group· of cycles Zn by subgroup 

of boundaries 8/ , il ·is- possible to introduce into the set of n 

cycles equivalence relation. The factor group 

H n = zn I 8 n 

is called the n · -th homology group {of the space in question). If 

the space is K -dimensional, then n runs. from 0 to K 
We. shall be interested in the relative homology gro~ps, The 

latter means that dividing the cycles into the classes, we shall con

sider to be equivalent (homologous) not only the cycles differing by . ' . 

a boundary of a chain (that is of dimension higher by ~nity), but 

also the cycles which difference belongs to some special kind of 

manifolds (i.e. the Landau surfaces in our case). 

Besides the boundary operator ~ . which diminishes the di .-

mension of the chain by 1 , we shall use also the so-called co-

boundary operator a·· .. that increases the dimension of a chain byl. 

The action of a . can. be imagined as follows. 

If a is a one-dimensioncil chain (an oriented line), then a 
. brings in correspondence with it the surface of circular cylinder 

which axis coincides with a and orientation in every cross· section 

makes . with the orie'ntation of a the right screw. Operator a . 
. enables us to simplify consider~bly the evaluation of homology 

groups (using the Fr,oissard decomposition theorem). 

5 
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The notions introduced above turn to be quite natural for 

qualitative description of the properties of integrals of the functions 
j • 

of many complex variables and, in particular, for classification of 

Feynman integrals. 

In general, . Feynman integrals constitute a ne;w class .of 

special functions of ·many variables which theory has not been yet 

·developed. The topological methods enable us to clarify, some · ge

neral properties of such functions. 

Here we shall be interested in the singularities of the integ~ 

ral.' More exactly, we shall care for -the singularities .of the integ

rand that may become the singularities. of the integral. 

As it is known, the singular manifolds must clutch the integ:... 

ration chain ("pinch") and some of the· cycles (the so-called "va:... . 

nishing" cycles) must refract into the point to make such a possi

bility real. All the· information about the singularities of· the· integ-:

ral we shall elicit from· the study of the intersection of the integra-. 

tion chain with vanishing cycles in terms of the so-called· Kro -

necker indices (intersection indices); 

Let M 1 and 1\1 2 be two oriented manifolds of dimension~ k' 

and e respectively in N -dimensional space (for simplicity we shall 

consider it to be Euclidean). Let M 1 and M 2 intersect only in the 

finite number of points. The dimensions k and e satisfy the 

equation k + e ,. N • ·In every point of intersection · M 1 and M 
2

. are . 
-.... -

supposed to be in general position, i.e~ the hyperpJanes tangent 

in the point of intersection do not intersect in an-?' point more. If 

M I and M 2 are one-dimensional curves on a' plane, then the :ie:... 

neral position means that in point of intersection the tangents {and 

therefore the normals) are not collinear. 

·-.·~.-::-
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The standard "synchronized" N ;...hedrals are said to he gi

ven in all points of the space . if it is possible to pass from one 

of thein to another by parallel shift. and by homogeneous linear trans

formatio~ ·with positive determinant. 

Let us consider the subneighbourhoods U 1 and U
2 

of the 

intersection point 0 which belong to M 1 and M 2 respectively. Let 

I V I . be a collection of k linearl_y independent vectors - v I' v2' ... ' k. -.___. . 

which are tangent' to M 1 in 0. This coll.ection is supposed to define , 

in U 1 the orientation .synhronized .with, the given one (both M 1 and i 

M 2 are oriented). Further,· let I vk+l , • :, v N be a collection of ' 

f linearly independent vectors. which are tangent to M 2 in the 

point 0 and let this collection also define in u2 the orientation ag

reed with the given one. 

Since M1 , and M2 are in general position in the point 0, 

the union of the collections 

I v I ' v 2 I •• ' v k ' v k+l ' ' •• ' v N I 

gives the basis in the .whole space. If this basis is "synchronized"' 

with the standard basis in the point O, then the· Kronecker index K£" 

in the point 0 is + ~ otherwise K f is - e. If M I ~mq M 2 do not 

intersect in the given point, · then K f is defi':ed to be 0. 

The Kronecker index of the full intersection i.e. the total set 

·of the finite number of intersection points is the sum of the indices; 

of all its points. 

Knowing the Kron.ecker indices "of the intersection of integra-' 

· tion chain with the vanishing cycles and usihg the Picard-Lefschetz 

theorem, we can learn what happens with the integration chain when. 

we circle· round this or that singular manifold. 



Such is the general scheme of , the work which is. reported 

below •. The picture drawn by us is , of ·course·, considerably· sim~ 

lified and do not claim for any serious introductiori to the homology 

theory. Our aim was only to help reader which is anfamiliar with 

the homology theory. 

II. The Reduction . of the Integral to the Standard Form 

We study the analytical properties of the pentagon graph by 

methods of homology theory. 

Let us consider the integral corresponding to Feynman graph 

drawn on fig.:t. 

Fig.1 

We shall adhere to the following notations: 

Pt =external momenta. 

P= (Pod)), P ~ (ip- 0 ,p), 

q -internal momentum, 

m 1- internal masses, 

. l .... 
~ ...... 
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I 
a ,.· I p , i "" 1 ,2, ,. , s 

1 e=<l "! 

The collection of parameters (a 1 , m
1 

) ""t constitutes a sub

set T in 25-dimensionai complex space C 
25 

As it is k~'oi:vn, . the Feynman integral can be brought to the 

form 

I (t)"" J 
1 

3 I oo 1 
d q J dq 0 -A~-

-Ioo U Q 
j=<l j E 

(1) 

Turning the co.ntour of integration as usually we have 

(2) 

Here the integratior1 is. carried out .over the real four-dimensional 

space, 'I'he form (2) is convenient for. analytical investigation but 

is .not of standard type which is necessary for application of the 

· required theorems, 

The integral 

.w (t) 
I( t) .. J --'---

. r-~·S 1 (t) 

is said to be of standard type (or of standard form) if a) for 

· ¥-t E T (sign ¥- means "every") the equations S 1 (t, x) .. o 
define in "" -dimensional complex manifold X 

lytical subsets analytically depending upon 

the compact ana-

b) w (t) is a re-

gular external n -form on X which is holomorphic with respect 

to t E T (it is now an accustomed way of denoting the elementary 
( 
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volume); c) f' c X - U S ( t ) is a compact n -dimensional 
I I 

cycle; d) X is compact and the manifolds 8
1 
(t,x)d) are in ge-

neral position when t E T 

In order to bring the integral (2) in question to standard form, 

we carry out the folf.owing consequence of operations. First, using 

the mapping x E R 4 ... :X= ( x, 1) E R 5 we imbed th~ R4 into. the 

R0 
- I 0 I (the real five-dimensional space with· deleted origin)~ 

Further, we put in correspondence with every X'" R4 its inverse 

image under stereographical projection 

:X= - 2( x, 1) 

X
2

+1 

and pass to the sphere x 2+(x
0
-1)2 =1· inR 5 

• The integration 

d~main (a cycle) becomes by this a compact (sr;>here!), Finally, 

completing the R o by the point deleted before, we carry out the 

inclusion R 
5 

... C 
5 

... C Po (the complex projective , s -dimensional 

space). The equation of the sphere in homogeneous coordinates 

in C P
5 

is x 
2 

+ x 
2

5 = x 
2

6 , (The c~ntre of the sphere is sit~a-
ted at the origin). After this , as it is easy to see, all the require-

. ments for the integral of the standard form are fulfilled~· The a~' 

biant space of X 4 
is the closure I4 of the space I (complex 

-4 
become the 8 1 = X Pl , 4-dimensional sphere), The surfaces Q l 

where P / is an affine 4-plane in C o and - 4. 
Pl is a corres.-

ponding projective plane in CP 5 . ~ 

The integral (2) is transformed as· following 
. . ......... 

I (t)= f 
3 

Re I 4 

w4•(X5+Xa) 

5 -
ll PH 
j=l 

(3) 

,.;'; 
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where 

.• 

pj q"' iij q I + pj q 2 + p J ·q3 + P. q 4 + pj q 5 + iij q 6 
·t 2 3 .. 1 4 5 6 

4 
w' 
X 

5 

X = ( it , X 5 , X 6 ) the homogeneous coordinates in C P. 

p == [ 2 a l , a : + m l
2 

+ i c - 1 , i ( a~ + m ~ + i c + 1) ]. 
( . 

III. The Landau Surfaces 

(4) 

{5) 

(6) 

(7) 

{8) 

The function given. by the integral {3) has singularities on 

the manifolds defined by the Landau. equations 

I a 
I 

! .. : 

0, k""l., ... ,.6,. 
(9) 

11 



implying the manifolds S 1 are in riongeneral position, i.e. 

dct ( p · p- ) = 0 .• 
j k 

(10) 

Here (pl • Pk ) is the scalar product of 6-vectors, Taking their 

explicit form, we find that 

1 (- - [ 2 2 2 ] - p • p )=- m +m +(a -a ) . 2 j k j k j k (11) 

The manifolds defined by these equatio~s will be denoted further 

by L ( t ) • Remark that L ( t ) can be represented as , 

(12) L(t) = Lf-1 (t), 
(.) ,...,y ,...,y 

where L {3 ar:e some of the minors of determinant (10), {3 C(1,2,3,4,5) 

and codimension y in our case is 1. 

It .is easy to give the explicit form of some minors in our 

case, 

L1 L2 La L4 L 5 .;Jt -+ m~m 22 m 32 mfmf=0 (13) 

. (14) 
2 2 

L _1J .;J t .... (a J - a 1 ) + ( m l ± m 1 ) = 0 

(15) 
ljk . 

L .;J t .... dct M = 0, 
ljk . dctf3M = II iil iJ k II.J,k~ f3 . ... 

L ;I t -+ S 2 S 2 -4m 2 S S ( S' S. ) · 
1234 23 34 23 34 23+ 34 + 

....... 

(16) 

+2m
2

S
23

S
34 

8
15 

-3m 4 S
2 

+10m 4 S S +6m 6 S -3m 8 ,o 
u. 23 34 15 

.·; _;; 
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If S.l~ =in 
2 

' then the latter equation changes into the equa-

tion of hyperbola (the singularity of the square graph). 

'6 ~ 4 
+ 2m ~ 8 ll+t8 -1+21+4 -2m 

1,.1 , __ _ 
~ ( 2 ' ' 2 

1,.1 
8 

11+1 
8 

1+1 1+2 + 
8 

1+1 1+2 S II+ I )-

4 ~ 
-2m I, s s ·- ~··· -· s

1
+

3 1,. I 11+1 I+ I I +2 8 
1+1 1+2 8 1+2 1+3 + 

(17) 

5 5 2 
~ 8 2 82 - m2~ 82 +m 8 s + 

I= I II+ I I+ II +2 I,. I · II+ I I+ I I +2 1+2 I +3 

~ 

+ 2m 2 ~ s 8 
I+ I 1+2 8 

1+2 8 1+3 - 8
12 8 23 8 34 8 45 8 51 I,. I II+ I 1+3 1+4 

. (If the. value of any index is more than 5, then it must be taken 

modulo 5). 

As usual 8 lk .. - ( + p I ' + pk ) • 

(Due to the complexity of the general expression the equa

tions of the hyper.Surfaces -· L 1234 and L12345 are given here 

for the case of .equal. external and internal masse?). 

IV. Homology Groups 

In order to study the analytical properties of our graph it 

is necessary. to evaluate the- homology groups of the' complement · 
5 . 

X 
I= I 

P 1 , i.f. to enumerate the independent cycles of the 

13 



corresponding dimensions and to· establish the relations between 

them. 

Let us use for this purpose the Froissart theorem (decompo

sition theorem):· 

0 .:. 

H ( ~ 
q 

0 

where Hq 

4 

~ ), (18) 
5 - " 4 4 

p )=H (~- p 
j q j 

l=1 j=1 

I.BI ~ ,B 
+ 8 Hq-I,B~ P 

,B c I 1,2,3,4 I . 
) = 

is a compact q -dimensional homology group 

f3p = P,1 

infinity and 

. P 1 ,B • In our case P 5 is the 4-plane at the 

q = 4, It is known that if q.= p, 0 , then H ~ ( ~ P ) = Z • 
0 0 

H
0 
(~ )=Zx Z · , The homology group' in all other cases is 

• p 

zero. (Here ~ is p -dimensional sphere; Z as usual , means 

free Abelian group of the integers with respect to addition). 

Knowing this, we get by Froissart theorem: 

H:(~4- 4 
l=1 

+ "(1) H " ( p 
u 3 1 

4 
~ P ) .. H

0

(l 4
) 

j 4 
+ 

(2) " 
+8 H 3 (P2 

4 (4) 0 

~) +8 H 3 (P 4 14) + C3> H " ( p 
8 3 3 

~ 4) + 

+-8 <t> 8(2) H: ( 12p ~4) 8(1)8(3)H"( I~ ~4) 8(1)8(4ir"(14P ~4) 
. + 2 + . 2 (19) + 

(2) 
8 8 (3) H" ( 23 p 

+ 2 
~4) ·+·B(2)8 (4H

2
o (24p ·.:£4) + . 8(3)g4>H~fp ~4) + 

., 
(1) (2) (3) 0 123 . 

+88 8H( P 
1 

4 

~ ) + 

·-·~ . 

14 

' .~~~ 
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.. 

'i 
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(0 {2) (4) 0 123 4 (I) (3) (4) c 134 
+O {j {j Ht( p .~)+0 {j {j HI( p 

4 
~ ) + 

· .. ·' (2) (3) (4) 0. 124 4 (1) (2) (3) {4) 1234 4 
+o· o ·o H 1 ( P·~) +o o o o H ( P ~ )= 

l5 
+ Z +Z xZ 

( . p 
4 

~ ) + "'I o 
u H 

2 

4 

= + z (20) 

( ~4 
4 c 4 I c I 4 Ho p ) = H2 ( ~. ) + {j HI ( p I ) + 2 j. 

l=l 

lj lj 4 
. '6 

+ {j H oo ( p I ) + z 
(21) 

4 
0 . 4 o 4 • .,1 He ( I 

H ( .~ - P ) = H 
1 

( ~ ) + u 
0 

P 
1 j =1 J 

4 

I
4 

) = + Z , (22) 

4 
0 . 4 4 

II 
0 

( ~ - Pl ) .. II~ ( I ) = Z , 
J=l 

(23) 

i.e. 

' 0 - 4 
II ( I 

q 

5 

l=1 
(24) 

respectively for q = 0, 1,2,3,4. 

In the formulas . {19)-(23) given above we took into considera

tion the dimension of {:3 P I 4 which is 4- {:3 
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j. 

... 
' .. 

Let 
... 
e 

a 

,· 

be the generators oL the group 

c 4 
4 

H 4 ( ~ :- l=t pl ), aC {1,2,3,41 •l · 

The vanishing cycles e, a will be- of interest for us, too. (The 

detailed account of the method. of construCtion of e, a is given 

in/?/). With the generators of the homology group they" are connec

ted by the relation 

e =oaaae 
a a 

Below we shall need the four-dimensional c:ycles 

only. 

4 ... r = Re ~ 'e I ' 
... 
eli 

... 
'e Ilk 

... 
, e 1234 

V. The Picard-Lefschetz Theorem 

(2~) 

Using the traditional approach to the investigation of the ana

lytical properties of the Feynman graphs, it is rather -difficult to 

establish which of the singularities belongs to this or that sheet 

of the Rimann surface. The homological method enables us to solve 

such a _problem easily. 

rem 

-.." <> 

The answer· is given by· the following Picard-Lefschetz theo-

r'==r +ne. 
a 

---.. 

(26) 

which shows the variation of the integration cycle under the circling 

in the positive ·sense round the singular manifold La 

',..-:; 
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Here 
<f-a+ l)cf -a+2) 

n = (-), 

For one-loop graphs f = 4, ~ 

K I ( r , e 
a 

) . 

.The main role in formula (26) is played by the Kronecker 

indices, Their values for the pentagon graph are given in Table 1. _ 

Since the explicit expressions for I 4 and -P l are known, · the 

eva1uation of the KJ's is not very difficult, , 

KI el ·-:- ; ... ell 
ellk 

.. 
e 1234 e12345 

r 1 1 1 1 1 .... 
el 0 1 1 1 1 ... 
ell 0 -2 -1 -1 -1 ... 
e Ilk 0 0 0 - 1 - 1 ... 
e 123 4 0 0 0 +2' + 1 

(In principle we could apply the ready formulas by E.Cartan/6/. 

See also/
76. L~t us' add some remarks to clarify the physical con

tents of our· results. We shall take in turn the Landau .surfaces and 

look after. the .variation of .contour under the circling round them. 

To begin with, let 

we get 

... r ... r + el 

Consequently,· L 1 

the_ L Ilk . ). 

us take L : Cit:cling round it 1,2, .. ' k times, 

... ... ... ... r + e +e .... ~ .... r + ke 
I I (27) 

has the logarithmic singularity (the same for 

Cir~ling round L u , we shall see another picture. After 

the double circling we shall. return to the original contour, i,e. 
I 

17 
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r ... ... ... ... ... r +elf ... r~ +ell +e lj-;·2elj r. (28) 

This me;a~ that L tl 

singularity. 

(as L 
1234 

too) contains the square-root· 

Since the dimension· of the ·integration cycle (equ~l to 4) is 

by 1 less than the number of propagators (which is five) and the 

variation of the contour under the circling round L 12346 is equal 

to zero though the Kronecker index is nonzero, we can draw a 

cor}ch.ision that the si..trface L 12345 possesses the pole.· singu-

'larity. 

VI. The Relations Between the Absorptive Parts 

The homological method enables us to derive the relations bet

. ween the absorptive parts of amplitude with similar simplici_ty. I<eally, 

the surface P 
5 
~s selected (considered to be at the infinity). 

That is why we did_ not put . any ·attention to the relative. cycles 

which ends belong to P 5 

by replacing a C I 1,2,3,41 

• They. can be taken into consideration 

by {3 c I o, 1, 2; 3, 4 I 

wri_te index 0 i~tead of index 5), i.e. by replacing 

For this let us introduce the dual basis I ae I 

~ 

::r-:;.-

r e = e 'o 

e=e•ol-e,o 

lk e = e , -e; 
Olk lk 

Ilk e = e 'Ilk -e,Oilk 

1234e =e, -e,ot234 
1234 

18 
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ea 

... 
by e{J 

(29) 
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Then 

-+ 

e a 
(30) 

·The transition matrix -+ / a 
e> can be easily evaluated accord-<ef3 

ing to (29) and to Table 1, It turns to be 

-.r__ 
I lk Ilk 1234 

·e e e e e 

-+ 

eo o- 1 1'' -1 .-1 
-+ 
e 01 0 - 2 -1 1 1 .. 
e Olk 0 0 0 1 1 (31) ... 
e OIJk 0 0 0 :..2 -1 

' -+ 

e01234 0 0 0 0 0 

and contains all the information about the relations between absorp-
... 
elk • ... of the basis correspond tive parts, The .elements . e ... 1 

to the graphs in which the -th propagator, the i -th and the k -th 

propagators etc, are replaced by. 8
4 

-functions. Therefore, to every.-.... -

. of the developments 

... 
+ e 1234 

-+ ... 
e = ~ e 

Olk lkj 

... -+ 
(for example, e 

012 
= e

123 

-+ 
+e 

124 (32) 

there correspond a certain relation betwe~n the graphs, i.e. a re-

.. lation between abs,orptive partS, For example, the latter development 

means that 

19 
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Fig.2 

The wavy line ·corresponds to the particle on the mass shell, i.e. 
- 4 . 

to the o - functton, 

V. Summary 

Let us formulate briefly the results of our work. First, we have 

derived the equations of the Landau surfaces and, using the simple 

algebraic operations, established the type of the singularities (the 

formulas (27) and (28)) of the integral, Second, .we have evaluated 

the homology group H: ( i 4 
-

5 p ) and found the number of 
j=l j . ..., 

independent contours, i.e. the number of functions defined by the 

given Feyriman integral (the number in question turns to ·be ·equal 

to 16), Third, having 'found the four types of relations between the 

integration cycles (contours) (formula (32)), we have got the relati-
' . 

ons between the. absorptive parts of the. amplitude. ., 1 

20 
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