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Introductx on

’l‘here is a number of no-go theorems restrxctmg the pos51bx11ty
: of obtamlng, mass spectrum by the combmatlon of relatl\nstlc lnvarxan-
ce with' mtrmslc degrees of freedom, In partlcular, accordmg to-
O’Ralfeartalgh’s theorem/1/ under certaln weak. condltlons there exists
no enlargement of the Pomcare group to a flnlte order Lie group ir-
reduc1ble representatlons of which contain more than one mass. We
can. work, however, in a Hllbert space. con51st1ng of a contmuous
direct sum of irreducible spaces with definite masses and in some
way . selectlng out certain mass and spm values we can obtain a

spectrum, Selection of deflnlte irreducible components characterlzmg

the Poincaré group can ‘be performed by . requlrmg the ulfllment of

an infinite component wave equation or that of a certam non-Lle
algebralc commutatlon relation/ 2/, in most cases, spectra “obtained -
in this way fit the ‘experimental data not too well, though recently
“a linear’ mass-spin spectrum has been obtained by the a1d of a six
order equatlon ct. /4. ‘ PR ; i

. A representatlon of a covarlant equatlon can Be found ‘by :
i group—theoretlcal methods Wthh proved very useful for, Majorana
equation as well/3/ Operators entermg a covariant equatlon are irre-

duclble tensors and thus they can be ‘determined up to a reduced




matrix element by the use of the Wigner-Eckart theorem,’ If however'
the 1r'redu01b1e tensor 1tself is a generator of the group considered,

matrlx elements are completely determined. Therefore if we enlarge

the Poincaré group by the generators playing a part in the equati-

on and we close the Lie algebra.in some way we arrive at an ex—

plicit representatlon of the equation, For the Majorana equatlon/3/ PR

for instance, we can close the Lle-algebra by requiring [F T,l= -|a
(where crl“, are the generators of the spin part ‘of the Lorentz group)
Then F and g, generate the 0(3,2) group which leads to the

Majorana representation,

In the following we shall consider 'a second order infinite com- e

‘ponent equation which is a natural generalization of the Majorana:

equation, Enlarging the Poincaré group /by the generators of the

equation and closing the algebra we get a group which is the semi-":"

'dif‘ect product of the Poincaré group’ and the " U(3 ,1) group. - A r'ep-\

resehtation of F -s of the Majorana ‘equation generates a repre- i

B bsentatlon of the second ordet equation in consideration but - the - con-v S

“verse is not true. In particular the representation for *, of.

eq. (1)) ‘satisfying together with ¥ the U(3,1) algebra genetar'es.a

a representation’ of the Majorana equatlon ‘only in the trivial case"k‘
r" = 5# " that is, if eq. (1) and the Majorana equation de ener'ate 0
g
,to the Klem—Gordon and Dirac equatlons respectwely. ’ Lt

The Equatlon

Cons1der the followmg equatldn o R

" p, 7, =k w(p)=0 ~

( #,v = 0,1,2,3, metric goo. =—g“ %—g22=—g33 =1 ) ‘where 'T./l‘

mixés the components of ¥  while p  leaves unaltered U"lder the‘,

Lorentz trfan-sfo‘f'm‘ati'on‘L Y, ulp) tr‘ansfor'ms as » L .
o TP aDL (L), T
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Infinitesimal generators- of the representation T, are

- d - )
B&_'(W‘a v. P"~ap#)*'°w' AR

‘J ﬁu —~s obey the familiar ‘com‘mutation relations -of the Lorentz group

{ Jaﬁ ’J#V ]=i(Jm;gB# +JBI1 gay‘;f]a".gﬁ.y "Jﬁy,ga“ )
P

. The same commutators hold for " . In the following it will be
~ convenient to WOrk with the mxxed generators a, that satisfy”
[o® B’U =|(a ﬁ+a" g™ gﬁy— UHBS V‘-q’(yg&'ga").‘ (3)

By eq. (2) we get the condmon of relat1v1st1c invariance of the eq (1),

namely:

R

6 i 1ois sh ol 5 Y gl I TR N
[ goky 1=itr®, g lgd%, + 17, 8% By 8T 8) ()

' For a given representatlon of the Lorentz group solutlons of (4)

yield all the possible second order ‘equations of type (1). We shall .
.not consider the problem in this general form instead we enlarge
. the Pomcare group with the generators ré B In order to obtam

a closed Lie algebra we have to prescribe the ‘commutator:  of " gS-.

It is natural to require the fulfilment of the following reldtxons

& p PR Y o g @ o8 §H _g@ g Y
{r A V=i(o /35 L, F O ﬁgV’yg o® 8 g=° yg’ Eg, ).

(5)

- Assuming the generators’ ot .t# , to be canonically éo‘njugated

to real parameters we conclude that egs. (3), (4),(5) constitute the -
Lie algebra of.the U(3,1) group. For unitary representatlonsop
" and TF,; " are both Hermitean. Consider the transformations U leav-
ing invariant the bilinear form z°%z° —z!*z'~2%2%-2%z22% | For U  we
obtain L
: L, :
U'gl-g . (6
In terms,bf-the iﬁ)finitesim'al generators X (6) reads: ,
o gX e X L . . (7 ,.



. e : . . 0 1 o
~and. thus generators -~ X 4. ;X' - are Hermltean while' X° 1y x! 0
anti;Hermitean. { ik = 1 23) For a basis canomcally conjugated'
to real parameters we have two types of generators sahsfymg eqf?),

those with pure Lmaglnary elements

TP - SN )
(O’Ll,) ‘3~l(g,,, g5 8 5 )
, | , .
and those,witn redl elementsA . ,
ST B L, @ v . o o ’»
(+ ) g=g gvﬁ+§ /38 e | (9) S

Generators (8) and (9) belonc to real parameters and obey the com-"
mutators '( 3), (4) ,(5) that proves that (3) (4) (J) are the commutatlon’ »

relations ‘of the U(3.1) group. '
It w111 be convenient to use Weyl ba51s introducing

/(LL-——(r +|a{ll,). T . (10)

Inverse formulas.read -

o WBoa ok :
’.a‘v-_-l(g}mg A B—/\ ()
g ® , : (11)
AT o g"ﬁl\“ﬁm - o ‘ 13)
"From (8) (9) we obtain the 4x4 representatlon of )t# -5 that will b,e'~ N

denpted by A p

(A" POV o ,
87 o~ (12

Since we Have introduced’ linear combinations with compléx coeffici-.

ents parameters belonging to AF v Wwill not be real but instead ‘we
. . ]( ‘
have that parameters of )\l and A and similarly those of '\ 1_“
and A'y  (ifk,i,k = 1, 2 ,3) are. complex .conjugated.:to ‘each- other ,

- while parameters of A## (no sum) are real, Condition of the unlta-

rity for A¥ y =5 reads



.

< g4 0 + otk T ! .0 I . . e Fos ~ ot
S U L U S L B (13)

'~U‘siné’ (3), (4), (5 Wew get the commutators for the Weyl basis |

~;A[,j,/8‘/\#i’] e A“B-af‘/gf,. R ¢ Y

Tower Representation and Mass Spectrum
The Poincaré group P repreSentgd by .generaftors P#' ,J#V has
been completed by generators r# y and thus the - total algébré ob-

tained is the semi-direct sum of the Poincaré and UB,1)  algebras

S=P QO L(3,1).

This can be equiVélentiy éxpfess‘eci as
s-P"@ L (3,1)
.‘where PLS'is the "orbital" V.Poini:ar,é group generated by p PR L w
- cand L(@3,1) is the U(3,1) algebra of the spin part generated by ot
and t*,  or by )\#u/ .
Mass oparator-p? ' is cleérly an'invariant operator while ‘the
Pauli-Lubanski spin operator fails to commute with ¥ , . So an irre-

«duc1b1e repr‘esentatlon contams one mass and several spin values

“in complete accor'dance w1th O'Raifeartaigh’s - theorem,

For labelling the states we can choose: diagonal P p as well,
€3,1)

'F‘urther'more we can give four Ca51m1r operators C of the L(3,1)
'algebra, three ' Casimir operators of L(3) algebra C, s the spin
walue s? and its 3. component- s3 T Thus fmally states ‘are la-

ey @D 2 G . : .
belled' p? ,p,l ’C# €y ,s3 > .

-In the followmg we: shall buxlt up the tower representatlon of
" the. L(3,1) algebra/3/ For. . thls reason consider a column built up

from creation and anmhllatlon operators (a, ,b+! ,b+2 ,b+3 Y= ¢ #



and its ad]o“"t ¢ ~(ay b b,b.) | Defining & =¢*g we shall
requnre fulfilment of the relatlons : : G

[¢#,$V]=5Fu. :

‘,Eq. \15) is equlvalent to the usual Bose-type commutators [a O,a 1= 1,
[b, b7 128, ,la,,b, 1=0 . The advantage of the use .of this operators

lies .in the fact that sandwxchmg the 4x4.dimensional generators by,'»k'f
¢ and ¢ we obtain generators satisfying Hermiticity requlrements

and thus a ﬁmte dimensional non—umtary representatlon can be' trans-

formed to a certain class of unitary representatlons. We' shall work;??f’
in A B v basis 4x4 representatlon of which has been found m eq (12)

< . .
N . .o

Casimir operators of the U(3 1) group are C, =X =\

CoVan Y PEENCEOR

. (3,0 K . 2 63, x VK a 3 ;
R T CE T B N PUNP AP AP EY Y CRSE ) ) ‘(17),‘,;}

States transformmc according to irreducible represen’tatlons ‘can be’”,fl

W'bullt up in the following way

"‘na’,nln.,na ‘ R 0000

g s e (&} a(b)‘(b*)"?(ha>3¢ (18)“;];
'\,nan In,!n,! :
Since A ~a}a, -b' b, -3 = N-3 (N —n “R, Ry =N EN, +n3 )

therefore according to (17) 1rreduc1b1e mfm1te dimensional represen-;

tations are characten?ed by A or by, N and thus irreducible spa S

ces are characten/ed bv a fxxed dlt't'erence of numbers of 2 and )

‘quanta a ' o R S
Ry N.'na 5nb, . . (19)




Reductlon Uu(3,1) > U(3) x U(1)y " .is obtained fixing n .: since -all: the
(3) (3) (3)

“ Ca51m1r operators of U3y Cl , C2°, C43 -are unambiguof.lsly
determlned by n, . In the followmg we shall consider representa-‘
‘ t.lOl’lS of U(3,1) ' with posmve N “"gince i :N=0,-1 -2,.... values are -
1rf'e1evant from physical point. of view. Denotlng by S Po) irredu-~
cible spaces with definite n, and n, values the U(3) xU(1)"
Vcontent for different values of N. ';is‘
S‘N==1 s“°’®s (znes(az) @
| (20)

SN-2~ S L2 O)GS 3,1) @S (4 2) @ .4.
SN=‘$ S (3,0)@S 4,1) @S 5,2 @ .'.
etc,

' E‘urther reductlon of the subspaces labelled by ny, can be made
‘with respect to the 0(3) - subgroup of U@) generated by o' i,k=123).

" In the rest frame ‘the mvamant operator labelhng the 0(3) subspaces

. constitues the spin value. As it is seen’from (18). we -have U(3)

representatlon spanned by . symmetrnc tensors w1th n ,' “indices 1 ,n,
indices 2, ‘na, mdlces 3 S 0(3) invariant spaces are ‘those wnth

.zero traces. Therefore we get the reductlon

n'_b . s=n . a‘=/n‘b—2 s=n —‘4 . o P o e . (21)

gsnl. .

" Consider now equation (1) in the rest frame p =(m,0,0,0)

(2 3\2-3 wip=o - ()

The algebra 2 con51dered has two invariant’ oparators P 'and N
,‘__Reducmg it with respect ‘to the Poincaré group we ‘get qne ‘mass -
m? = x®/2n% " and ‘Several spin’ \alues (eq. (20) (212)). In order to

obtam mass-Spln spectrum ‘we consider a reduc1b1e representatlon .
m,N
which is a contmuous direct sum of 1rreduc1b1e spaces 5 .

9

3.



“Reducing it with respect to P eq, (22) selects out certain m

and
s values
o N ’ v‘ {m,N) N PPN m,N'"b ! m,N.nb,g :
§ =/ dmS. afgdm 3O S  =[gdm zezes Y

C . ' b . o 0
' : ' ) o (23)

o « ] . ] mNnbs ,nb,N "I;,‘s

=@ dn 2@ E@ (M= —amiee—)S§ '-2@ 505
o V2(N+n ;) _ ‘

Summarizing the results "of egs. (20) (21) (23) the followmg
table is obtained

My
M | 5 | N4 | N=2 | N=3 |--- '
o (.o | 4z | wa | e |-
Ll v LYe | e | e e
2 | o2 | g T | o |ov v
3 1,3 | AN | 1ig Wz |- -
4 ' 0,24 "X‘A/",Td' Mz | Al | ..

/The spectrum is degenerate in the sense that for a given mass
value there are several values of spin,

Finally we discuss a formal relation to. the three dzmensnonalj\ :
harmonic oscillator, The existence

of such’ a connec’uon is not’
Surprising since U(3,1)

is the spectrum generating group: of the:
oscillator, The first order Casimir operator cof the U(3,1)

.:v.igrou-p .is
(eq. (17))

i

10




i (:‘i,l). I"‘ + ¥ : + +
e mafa g b, mby by —byb, —3=R

P2
It is. related to the I—Iamlltoman of the oc11fator by
H _aoa —(A+ -2—) Ao ~(A +—)
It is worth to mention that while the eigenvalues of - H are
. the mass spectrum of the 1nf1n1te component

“determmed by, - /\
rward connectxon with (?to) which led

equatlon has ‘had- a stralghtfo
to .an undesired - tendency of the mass—-spm spectrum.
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