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Introduction 

There. is a number of no-go theorems restricting the possibility 

of obtaining mass spectrum by· the combination of relativistic invaricim­

ce with. intrinsic degrees of freedom. In. particular; according ·to· 

O'Raifeartaigh~75 theorem/1/ under certain. weak conditions there ~xists 
no. enlargement. of the Poincare group to a finite order Lie group ir­

reducible representations of which contain more than one mass. We 

can work, however, in a Hilbert space consisting of a continuous 

dir:ect sum of irreduc:ible spaces with definite mas~es and. in some 

way. selecting out certain mass and spin values we can obtain a 

spectrum. Selection of definite irreducible components c.haracterizing . .·' .·.~'I . .. , 

the Poincare group can be performed by .requiring the\fcilfilment· Qf ~ · 
an infinite component wave equation or that of a certain non-Lie 

algebraic commutation relatiori 21. In most ca~es, speCtra obtained 

in this wa'! fit the · experimental data not too wep, though recently 

·a linear mass-spin spectrum has been. obtained by the aid of a six 

order equation cf)4f. . .. 
A representation of a covariant equation can .be .found 1py 

. group-;theoretical methods which pr:oved very useful .for,.Major:a~a 
equation .as wen/3/. Operators :entering a covariant equation are irre­

ducible tensors and thus they can i::.e determined up to a reduced 
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matrix element by the use of the Wigner-Eckart theorem.' If,· however,. 

the' irreducible tensor itself is ·a generator of the group considered, 

matrix elemen~s are completely determined, Therefore if we enlarge 

the Poincare group by the generators playing a part in the equati­

on and we close the Lie algebra in some way we arrive at an ex­

plicit representation of the equation, For the Majorana equation/3/,­

for instance, we can close the Lie-algebra by requiring [ r p.•. r vl"'-ia!LV 

(where a p.v are the generators of the spin part of the Lorentz group). 

Then r p.. and aJL'V generate the 0(3,2) group which leads to the 
Majorana represe~tation, 

In the following we shall consider a second order infinite com.:. 

ponent equation which is a natural generalizaqon of the Majorana 

equation, Enlarging the Poincare group by the generators of 'the . . . 
equation and closing the algebra we get a group which is the. se"!1i-

direct product of the 

resentation of r p.. - s 

Poincare gro~p' and the · U ( 3 .,1) group,· A rep-· 

of the Majorana eq.uation generates a repre-

sentation of the second ordei~ eq~tation in c-:>nsideration but· the ·con­

v~rse is not true, In particular the representation for r Jlv . ( cf, · 

eq, ( 1)) 'satisfying together with af" v the U( 3, 1) algebra genetares •. 

a representation of the Majorana equation only in the trhrial case: 

f v"' oil v that is, if eq. (1) and the Majorana equation degenerate 

to the Klein-Gordon and Dirac equations respectively, ' ·' 

The Equation 

Consider thE:.· following equation 

( pv p r p.. ·- K 
2 

) ¢' ( p ) = 0 
p.. v . . ..... . _(1) 

( , 00 ll 21! 33 1 ) · JL Jl• v "' 0,1,2,3, metnc g . =- g =-g =<-g "' · ,·where .r ·v 
mixes' the components of rp while p leaves unaltered, ·Under the 

Lorentz transformation · L . ¢ (p) transforms ·as 
I 

·' -',1 .' 
TL¢(p)=<D(L)¢(,L p). ,-; 

,,. f (~' 
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Infinitesimal generators of the representation T L are 

J , i (p _a_- p ~) + a = L +a 
#!".- . ~-' apv. v ap ~-' tw w ~-'''· 

J IJ.V -s obey the familiar commutation relations of the Lorentz group 

[ Ja{3 ,JflV ]=i(Javgf31-' +Jf31L gav-JaJL g{3v-:Jf3v~ )• 

4 
The same commutators ho.ld for a fiJI • In the following it will be 

convenient to Work with the mixed generators all v that satisfy 

By eq, (2) we get the condition of relativistic invariance of the eq.(l), 

namely: 

[r a ,8 a 1-'~ J = i( r a v 81-' {3 -r 1-' {3 8a ,. + rY v gUll g {3y -r; ,gYil gvf3 ·~ • ( 4). 

For a given representation of the Lorentz group solutions of (4) 

yield all the possible second order equations of type (1). V'/e shall 

. not consider the problem in this general . form instead we enlarge 

the Po~ncare group with the g~nerators ,a {3 • In o.rder to o~tain 
a closed Lie algebra we have to prescribe the commutator of r (:rs .• 

It is natural to require the fulfilment of the fo!lowing relations 

As!=uming the· generators a 1-' v • r 1-' v to be canonically conj~gated 
to real parameters we conclude that eqs. (3), ( 4), (5) constitute the 

Lie algebra of. the U ( 3, 1) group. For unitary representations a~-' v 

and rfL ~ are both Hermitean. Consider the transformations U 

inli invariant the bilinear form·Z0*z0 -z 1 *zl-z:l!<z 2-z~z 3 • For U 

. obtain ' + . 
U gU = g , 

In terms. of the infinitesimal generators X (6) reads: 
; 

gX +g =X .. 
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· . 0 I 0 I 
and thus generators X · 0 , · X · k are Hermitean while X 1 ·, X 

0
' 

anti.:.Hermitean, ( i ; k = 1,2,3). For a basis canonically conjugated . 

to real parameters we have two types of generators ;;atisfying eq.(7), 

those with pure imaginary elements. 

( IL ; )a • ( Jla' 0 J1 Oa ) 
. C1 ~· {3"' I g ' gll{3 - /3 IJ 

and those with real elements. 

Jl· a , ( ,Jlz/ {3= gpa gvf3 + o {3 o v 

(8) 

•• 

(9) 

Generators { 8) and ( 9) belong to real parameters and obey the com­

mutators ·( 3) (4) (5) that proves that (3) {4) (5) are the commutation 
I . I · 1 I , . · 

relations · af the U( 3. 1) group. 

It will be convenient to use Weyl basis introducing 

f v"' i ( r J1 11 + i a 11 "). (10) 

Inverse formulas. read 

J1 pf3·a J1 
a =i(g g "-{3-X . v !.11 v 

J1 Jlf3 a J1 
r =g ·g ,\ {3+.\ .· v · rn 11 

(11) 

·From ~( 8), ( 9) we obtain the 4x4 representation o~ .\11 
11 

- s that will bE:) 
denpted by f:.. J1 11 , . 

. . . ( t v )a {3 ... ot" {3 ou v 

(p) ·'"" 
Since we nave iritroduce'd. linear combinations with. complex coeffici-. 

ents parameter"? belonging to ,\!'- v will not be real but instead we 
I k 0 

have that parameters of .\ k and .\ 1 and similarly those of .\ 1 

and ,\ 
1 

0 {i fk, i, k = 1,2,3) are complex conjugateddo .each other 

while parameters of ,\ J1 11 (no sum) are real. Condition of the unita-

rity for >...Jl v - s reads 
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..... . . . ., ·~·. . 
(-

'0 + . 0 I+ 'k -
,\ o "" ,\ 0 • ,\ k "' ,\ 1 ' 

, I+ · 0 
1\ 0 ,_,\ ,i 

· ;c J; 

Using (3 ), (4), (5) we get the commutators for the Weyl basis 

·- ~ .. -· 
Tower Representation and Mass _ Spectrum 

The Poincare group P represent~d by generators P IL ,J f.lV _has 

been completed by generators r f.l 11 and thus the total algebra ob­

tained is the semi-direct sum of the· Poincare and U(3,1) algebras 

~= P (/:) L(3,1). 

'!'his can be equivalently expreSSf=!d as 

~=PLQ L(3,1) 
. 1 

where pL is the ·"orbital" Poincare group generated byp f.l' I Lf.lll 
s 

. _and L(3, 1) is the U(3,1) algebra of the spin part generated by aJL ~· 

and rll v or by ,\f.l II 

Mass oparator. p 2 is clearly an invariant operator while the 

Pauli-Lubanski spin operator. fails to commute with ,J-L 11 , So an irre­

ducible representation contains one mass and several spin values 

in complete ac~ordance _with O'Raifeartaigh's · theorem. 

For labelling the states we can choose. dictgonal P f.l as well. 
' ' (3,11 

Furthermore .we •can give four Casimir operators C Jl of the L(3, 1) 

algebra, three· Casimir operators of L(3) algebr~ c?' , the spl.n 

value s 2 and its 3. component Sa • Thus finally states '<:l,re ia-
'' ' ! 2' c<a,.ocral 2 

belled: , P. , P f.l 1, .-. 1 ' 8 'sa > 
. In the following we shall ·built up the tower representation of 

the. L( 3, 1) algeb~a/3/, For this reason consider a column built up 

( + + + IL 
ao 'b t ,b 2 ' b a ) '~ ¢ from creation and annihilation operators 
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and its adjoint cp ~ =(~: b 1 b 2 b 
3 

require fulfilment of the rel<;ttions 

Defining ~ =cp + g we shall 

[ cp fl • cJ v ] ,,. ff v· 
-(is) 

Eq. \15) is equivalent to the usual Bose-type commutators [a 0,a~]=~ 
( bl 'b r ] =0 lk ' (a 0 ' b I ],. 0 • The advantage of the use .of this _operators 

lies in the fact that sandwiching the 4x4. dimensional generators_ by 

¢ and ¢ we obtain generators satisfying Hermiticity requir~mi:mtS 
and thus a finite dimensional non-unitary representation ca'n be trans­

formed. to a' certhin class of unitary representations. We shall work 

in 1\ ll v basis 4x4 representation ~f which has been found in eq.(12) .• ·._ 

i\fl =cp- i\fl v¢ = ¢ 
v 

.-~..ll 
v't' • 

Casimir op_erators of the U ( 3, 1) group are 

Cf3,0 "jl v 
-
2 

=A i\ ,., 1\ (1\ + 3), 
v j1 

{3,1) ,11 E! i\ 
C 1 "'" fl 

C~3,!)_,/1 ,11 ,K -'(' 3)2 C(3,.l) ,/1 ,V ,K ,a '(' 3 )3 
3 -· 1

' 11 " K 1\ j1 - " I\ + ' 4 = " V 1\ K 1\ a " j1 = " 1\ + ' 

(16) 

I 

(17)',. 

States trarysforming according to irreducible representatiorys can be 

built up in the following way 

na; n1 n ~n 3 
1/J ---,..---- (a~ )na(b~)n~_(b:)"2 (b: )nal/JO;OOO • (18) 

n In I I I 
V a' 1'"2'"3' 

.... 
~ + . . 

Since.\ .. a 0 a 0 -b 1 b 1 . -3"' \'1-:-3 (N "'"a-nb ,nb~n 1 +n 2 +n 3 ) 

therefore ac,cording to __ (17) irreducibl~ infinite dimensional repre~en...; 

tations are characterized by .\ or by N and thus irreducible spa­

ces are characterized bv· a fixed difference of m.tmbers of a and b 
·quanta .!''.": 

N,.., n a-, "b· (19) 
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Reduction U ( 3, 1) J U( 3) x U ( 1) is obtained fixing n ·b . since all the 

'casimir operators of U(3) I c ~a) C~3' I c{!) are unambiguously 

determined by nb , In the folloWing we shall consider representa • 

tions. of U( 3, 1) ' with positive N · since ·: N =0 ;-1, -2, ... \· values are 
(n ,nb).·, 

irfelevant from physical point. of view. Denoting by S "' irredu-

cible spaces with definite n.. and n b values the U(3) x U(l)' 

content for different values of N is . 

etc, 

S -N=.1 = S (1,0) (i)S (2,1) (!)S (3,2) E) .•. 

gN=2-;,;g.(2,0)€)S (3,1) Cl)S (1,2) E) ••• 

s N=3 ·= s (3,0)GJS (4,1) es (5,2) (F) .... 

(20) 

Further reduction of the subspaces labelled by nb can be made 

with respect to the 0(3) .' ~ubgroup of U(3) · 'gen~rated by a'l i,k=1,2,3). 

In the rest fram'e :the· invariant operator .labeiling the :0(3) SJ-tbspaces 

constitues the spin value, As. it is seen ·from (18) we ·have U(3) 

representation spanned by .syrrini.etric tensors with n 1· indices 1 1 n2 

indices 2 , n 
3 

indices 3 , .· 0 ( 3) invariant spaces are ·those with 

zero traces. Therefore we get the redL!ction: 

e==nb-4 # 

+ ... + 
(2:1.) 

Consider now equation (1) in the rest frame p =(rn,O,O,O) 

. 2 0 2 ( (2m ).. 0 -K )t{l p)=O (22) 

The' algebra .I considered has two inVariant oparators P 
2 

· and N , 

Reducing 'it with respect to the Poincare group we' get qne mass 

.. rn 2 = K 2 /2n'~ : 'cihd several spin values (eci: (20) (21)). In order to 

obtain mass-spin spectrum . we consider ac reducible representation . . . S m,N 
which is a continuous direct sum of irreducible spaces 
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. Reducing~ it with respect to P 

s valueS:' 

'; 

eq. (22) selects out certairi m 
. .• \ 

.. 
N 

s •:f0 
' j , (m,N) m,N,nb · m,N,nb,s 

dmS •J@·dm I(t)s =f(t)dmiGIQS 
nb n b a 

·and 

(23) 

, mN nba m N ,n b ,s 

.=f(t)dm I@ I€) l>(m- K )S -I0ICi)s·N'"b• · : 
nb . s ..J 2(N +n b) "b " 

Summarizing. the results of eqs. (20)
1 

(21) 
1 
(23) the following 

table. is obtained 

,.,.,,,. 
n~o ~ N:~ N:t N=3 • I# ... 

... 

0 , .·o Vn f /v.:i J.f-16. ... 
·1 -i '4 {.;rt t{-.(i; V.fi" • ' t 

2. 0,2. -1/.J6 .f/.[f ·i/ffo .. " . 
3 ~.3 A/{f ·1/tfia -lkfi .. ~. 

'1 0,2.,1.f' ' <f/iiO' ~/.rii A/.JAit ••• -

... ·'\ 
··.•.· 

.. / 

,The spectrum is degenerate in the sense that~' for a given mass 

value there are several ~alues of spin. 

Finally we discuss a formal relation to the three. dimensional 

harmonic oscillator. 'I'he existence of su~h a connection is not 

surprising since U( 3,1) . is the spectrum generating group of the· 

oscillator. The first order Casimir operator of the U( 3, 1) group. is 
• .. • . ···,I< 

(eq. (17)) 
,, 
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It is. related to the Hamiltonian of the ociltator. by 
3 . 0 3 

H =a+ a -(A+ "tr" )= Ao -(A+-) • 
0 0 . ~ ·. 2 

It is worth to mention that while the eigenvalues of H are 
0 • • ; . 

determined by, __ :\ 
0 

the mass spectrum of the infinite component 
0 -1 

equation has had a straightforward connection with (X 0) which led 
' .. ..; 

to .an undesired -tendency of the tp.~ss-spin spectrum. 
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