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1. ~troduotion 

The Regge behavi.Our of the scatteri.ng amplitudes was 

di.soovered fi.rst 1.n ~uantum mechanics but was applied 

just after for the deso~ption ·of high energy scattering. 

The termi.nolog;y and ;S.deas of •reggism greatly influence the 

theory and the desor:S.Ption of exper1.111en t of the elementary 

particle physics. But the bases of .the trauplantation of the 

Regge ideas 1.nto qua.tltum field theor;r were only a oertai.n 

analogy and models not so convincing, from our poi.nt 

of view. High energy experiment does not allow us also 

to 1118.k:e an unambiguOUS oonolusion that the situation iS 

described only by the Regge poles. The outs of the 

Mandelstam type due to double exchange of Regge poles do 

not clear up the picture too. Nevertheles~all this 

does not stop the flOW of papers on the modernization of 

details of the classical Regge pole scheme. 

In the situation of the ki.nd it is especially 

important, to understand what quantum field.theory points 

to. However we do not see an:r other possib111ty than 

a direct summation o! perturbation theory in the 

asymptotioal region. The first work along these lines 

dealt with summation of senior orders of leadi.ng poles 

of the ladder graphs which resulted 1n the movi.ng pole /I,2/ 
/'J 4/" 

for the 'f"- ladd•r and 1n the standing out ' for the 

Y'¥ one. ~t the question is how this result will be affeo-:-J 

ted by other graphs •nd the junior orders of the leading fo~ 
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(at J =-:I in y-1- theory and j ..-o in JPf.. theory) 

in perturbation theory, which may be also important for 

not too small coupling constant. We have succeeded in 

solving this problem for the classical mesodynamics and 
11).3 y 

for T- and :f- theories. 

The final result of the summation is especially simple 

and beautiful for the negative signature scattering 

amplitude of nonidentical particles in Y'~ theory and 
f 

for amplitudes in )'J- theory. It has the form 

rr;tJ~(to(wui: Brt;j~ro + ;?rtJ 
(1) 

The 

where all orders of leading singularity are collected 

only in the t-independent function 1A.f (.J) and the 

functions B,C and R are series in the coupling constant 

each term of which being regular in the neighbourhood 

of this singularity. This expression shows for both 

theories a moving Regge-poles when '/wfjJ - 8 (t}-=-o. 

main difference between the theories is the form of WC/). 

For 'f3- theory w(;)= /(/+.I} so the amplitude 

F ( f, t) can have only a moving pole when Rei>-1 
( For the ladder graph this is just the result of Polking-

/2/ T horn ). he situation is more complicated for the case 

of yt theory • we have succeeded in finding 7.-</"(j) 
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oza17 assumillg a :ti.Dite T&lue of the bare obarge. ne tuno­

tiou kif;) has 1u this oaae a square-root brauohpoiut of 

the tne reTealed by Sawr./31. so, the upl.itude 1u addi­

tion to the moving pole poasesaes a standing branchpoint. 

(87 the "&7' this 18 not astonishing because of au allalos;r 

of .Y'f theory with the potential '/r~ for Sll&ll.r). 

The oase of aesod7D8111os 

o(,./ = J i!'Jf f'-.< j, y¥ {2) 

differs from the sillple .ff theor;r onl7 b7 the utr1x 

obaracter of the funotions entering (l) (of the third or 

the second rank depeDd1ng on G-paritT) aDd trans~onation 

of the right -.tr1x C{ t) but the character of the auner is 

the same: the mcrv1ng pole aDd the standing branohpoiut. 

lor the a-.nt we oau onlT guess whioh of the s1Dgular1t1-

es is a lea41ng one for i ~ o because the tunot1ons eater­

tag the geDtral expressiou are f01Uid aa a series. It ,-•e•• 

to us that the at&Dding branch poiut, instead of the •Taoua 
I 

pole • P all4 the aOTi.q pole• as P haTe to g1Te 'better dis-

oriptiou of exper1aeut tball the usual pure pole aodel. Ia 

~ 'fiBT• eaoh ot these aiugularities haTe the propertiea 

which deteraille the aucceee of the llegge~esoriptiou: it is 

un1Tersal, i.e. the saae for the elastic ( 717i , nl? aD4 

nn ) aDd quaaielaat1o -pl.itudes, and the factoriaat1oa 

tbe or• holds for the residues. 
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To obt~in these results we give the necessary 

information about the leading singularity of the Feynman 

graphs ( Sec. 2). Then we deduce formula (l) and give the 

scheme for oalculating {j{i), C Ct) and 'k!(Jj for 

Y't theory ( Sec. J) and y;j- theory ( Sec. 4). sec­

tion 5 is devoted to the asymptotic of the amplitude in an 

external particle mass off the mass shell. We find out 

there that for )'! theory the amplitude is not rapidly 

vanishing when the mass goes to infinity. Some res\lts 

for the mesodynamios in the approximation of week coupling 

are given in Sec. 6. Finally in section 7 we discuss 

the results obtained. 

2. ~ing Sil!S.~tli!!.~f Graplu! 

For the consideration of this problem the Mellin 

transform of the amplitude with positive and negative 

sigaature is especially suitable; 

5"4;-

f :!(s,i) = __!_, ~. (.s)
1

:!. {-.s) J 
11il j~'J 7r 
· .., . Jin 7i 

II ... ,QJO J 

p:t (J,l) 

r(J+:t) 
(J) 

c Fz (;; t) / rfi~:t) has the same leading singulari -

ties as the partial waTe amplitude). 

i 
~ 
~~P, 

P, r .s-
Fig.l 
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Earlier we have shown 15 / that the most right 

singularity of any graph in yt theory is the set 

· of poles of different orders at the point j=O. The maximal 

order of the poles is determined by the number of 

two-particle divisions in t - channel which break the 

graph into kernels, i.e. structures without two-particle 

divisions. This connection with topology is more distinct 

for Feynman parametrization of propagators in the 

exponential form. 

The singularities at j=O are generated by integration 

over the region where ~ - parameters corresponding to the 

kernels and the connected union of kernels are 

simultaneously small. ( We will say that such a kernel or 
II union of kernels are "in ·' asymptotical regime or simply 

II in asymptotic"). They are the only source of singularities 

at j=O. Just this fact reduces the problem of summation 

to the ladder-type graphs. 
I 

The more kernels and their unions are in asymptotical 

regime the higher the order of the pole. But only those 

unions are to be taken into account whioh either have no common 

lines or are entirely contained inside one another. 

Divergent parts ( which are not the kernels or unions) 

increase the order of the pole only when they are into 

an asymptotical object. The asymptotical regime, i.e. the 

simultaneous vanishing of some parameters o( means 

graphically the contraction of the corresponding lines. 
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For the kernel or union of kernels it means the contrac­

tion of this object into a point • So, the coefficient 

for the pole which corresponds to the given set of the 

objects in asymptotics appears to be the product 

of factors determined by these objects ( independent of t ) 
and t - dependent contribution of a weakly connected graph 

which is obtained after contraction of these objects into 

the points. Such a weakly connected graph consists of the 

components of the type of Fig. 2 and is a product of the 

contribution denoted by Cn (t)( Fig.2a) and 13n (t) ( Fig.2b). 

Each of them is regularized ( subtracted) so that it has 

no singularity at j=O. The prescription for calculation of 

the functions ,6, 00 .,,[ Cn can be obtained without 

difficulty from general expressions of paper/51. They are 

given in the work/lS/. When j=O they coincide with the 

usual Feynman rules. 

r>?, 

G2> 
c.J 4 (t-) 

Here we write down only the simplest ones: 

~ . 

C,(t):.(· /3
0
(t):: /?/) }tx!fm,+{t-x)~-.X(t-xJt}~~j, (J) 

0 

8 

. 
. 

, 
I 

1·--~ ··--

Where m, I /?7.t are the masses of virtual particles 

( Fig. 1c). 

f 
J1 ~-tl.2!L2L~!!!B. Si.Y,!!~ill.!!...!!l _ _!- The~!l, 

Account of all possibilities of the asymptotioal 

regime of the kernels and unions of them gives us all 

singularities at J=O. This can be done for any n-kernel 

graph as follows. Let the most left of the oontraoted 

kernels have a number k~ :t: and the most right one the 

number n- .e .• Then, the noncontraoted 11 ends 11 of the 

graph form Cc (-t) and Ce (t) and the middle part we 

denote by X .... r/t) 

! 
Ce C~ Fig.J 

The contribution of the graph Fn is of the form 

Fn(J,l)= ~ CK(t) X~(/i) Ce(t)~ R~ {-t~. (4) 
~n-.. ~:1? 

where J?n is a nonsingular at j=O residue of F,..., 
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and (, {t) = d by definition. The part corresponding to 

X fit) can be in asymptotical regime as a whole. 
1'1 I 

The corresponding contribution is denoted as 

which is a· of-independent polynomial of I/ j 
diffarent kernels and unions inside of Wn 

w;. {J) 

because 

can 

be in asymptotics too. In addition, the contribution of 

Xn has some other possibilities, when the union of the first 

r.: kernels is in asymptotics ( the contribution ~ (JJ ) 

the next r kernels are noncontracted { 8,.. {~ J) 
and the residual n-K- r- kernels give again contribution 

X 17-k-r (/I} ( r•j. Lf J. 

/ 

Xe ; 
/" r r / 

4. 
So 

x,., (;,l) = Ztf;,(./) + z w:; (/} B,.. (t) X~ f./i) 

The formulas (4) (5) are valid for any graph with a given 

number of kernels what permits us to sum it over all 

possible sorts of kernels and to obtain as a result 

(5) 

the recurrent relations. The following summation of it over 

the number n up to infinity results in the equations 

F (;,'f.)= C~{-t} X (.J;t) + I? (t) 

X (J,t) = W(j) (1 + 8 (t) )X-(J,-1) 
(6) 

vthich immediately give the expression (1). 

IO 

\ 

i 

;il~· 

tt. 

The functions B,C and R 1n this equation are the 

sums of quanti ties 1.3 .. (t), C., {t) 
1 

!?., { t) over all 

sorts of kernels and over the number of them. Eaoh term of 

this sum is regular for l?cj > - ~ 
sum we discuss it in Sec.?. 

but. as for the whole 

All singularities at j=O are collected in the function 

'W {j) • But to find this function we need one more 

assumption about the results of summation of inner diver­

gences, i.e. in fact about the form of the bare charge. 

There are many people who believe that zero /are charge 

h _. h (1- CJ h ~ S') -~ is a characteristic feature 

of field theory. The idea about W(J) in this case can 

give the first term, which possesses the essential 

singularity at j=O of the type Ywrf; """ e..rj> (- ah;j·} 

But this belief is based only on the properties of the 

first few terms of divergent asymptotica.l series. 

Obviously, it is not enough. The rough estimation of n-th 
r 

term af the series allows us to sum it in a certain sense 

The result gives the bases to believe that the renormali­

zation of the charge and the wave function is finite 

( 11 the :fhite bare charge"). This reduces the problem of 

finding 1A5' (/) to the sceleton kernels only 

( i.e. to the kernels without internal divergent parts 

like "fish", "open" and "closed" envelope and so on). 

The leading singularity of any of such kernels is a simple 

pole at j=O what reduces the whole problem to the simple 

ladde/61. 
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The expression for 1J,., f;) differs from that for ;:;; 

by independence of t and masses. So, the expression of the 

type (4) (5) can also be written;the independent of t 

numbers r,., c,. and rf,., entering there instead 
I 

of R"' I cl< and ,8'< ( lo := Co = i ). Besides, the 
-1 

quantity / 7 
(/} ZV: (J) enters the left-hand side of the 

expression of the type (4), i.e. the singularity due to 

the asymptotio~.l regime of the graph as a whole is picked 

out. This possibility to be excluded from the right 

hand side of the expression. It gives 

;(/) Z<J.. (;) = r;; + .6 C.., X"' {/J C.: - W, (.Jj 
~c.,.,..+fJ.~-, 

X,.(/)= W.., (/) + 2: -w:. (/) /,... Xe (J) , 

k-tr+t'•n 

(7) 

The summation of these relations over all sorts of kernels 

and the number of it leads to the system 

I 
r(fJ W"(/J = r- + c.z .x'f./J- WUJ (8) 

_.K(/) = W(./J t- Wf.iJ ~X(/) 

with the solution 

!2 

l 

f 

I 
wt.l.J = ~~ ( ~r- c./!+ :1 + YruJ + k) 

k = v/f,.. + c.t-~ -r~J )-<_ Yczl',_, 7 

( The sign of the square-root is choosen from the corres­

pondence with perturbation theory). 

(9) 

In the limit of weak coupling r .. ,...- h ~ and I= c ""~ 
' 

-.,_!. _I_ t ~ I ( ~ 1-V(JJ .z :f + r(/Jr + (;- r /OJ)- :. ) 

which gives the branchpoints of 

. I 
}-::::-- + ?·r-:­r(/J- --<vr +r 

4. S~lliUf Lead~..2.!,~!!,::!!!_!!_1n 

'f_3- Theor;y: 

'! ~- theor7 has no graphs vanishing not sla,rer 
-I+£ 

than S 
1 

i.e.· any graph is regular when Rej > -:f 

Let us consider the negative signature amplitude of 

scattering of nonidentical particles. For this amplitude 

the only singular at j=-1 graphs will be those which 

contain , at least, one "step" i.e. the kernel with one 

line ( Fig. 5) 

~ 
Fig.5 

IJ 



The s~gularities at j=-1 are due to asymptotical regime 

of some of those steps. There are no other sources of 

singularities at this point. All the reasonings which 

have led to Eq. (6) and expression (1) are the same. How­

ever, unlike '!"- theory, here the unions of 

kernels do not work and U(j) is a contribution of 

one step only, so 

14"(./}:::. w,r/)=h.lrf/+t)· 
(11) 

The expression for the terms of series for Bro and C(t} 

are also little different, each of them be~g regular now 

when R~1 · >-Z , for example 

I - -J-.l 
/30 (i)= rr.J+-1) jotxjtn,~X-1-n?/(t-x)-X{/-x)t] • 

" 
So, negative signature amplitude in this theory can have 

only moving poles. ( For the positive signature a 

set of condensing to j=-1 poles is added). 

5. Asynret.2ll£.~ .. J:a..~~~L~Ill!. 

(12) 

This scholastic, at first sight, problem beoames recently 

of great importance, in connection with the cuts due to 

exchange by two virtual reggions/7- 9 1. The modern method 

of finding such cuts assumes the reggion contribution to 

be rapidly vanishing with growth of the masses of external 

!4 

particles. OtherwiSe the existence of outs is problematic. 

Our method15 /allows us, without any difficulty, 

to obtain some indication to whether this assumption is 

probable in field theory. For this purpose 

region where f/= Jlf'<>> t, rn,2 R~ and $::: 

( a, -t Q~""' 1. ) (Fig. I.). In the 

we consider the 

a, .H.?, u-= a. 1'1-f. 

'f 3
- theory 

only the Born term does not depend on }tt~the others 
A.A-< graphs vanishing at least not slower than ~ 1 

The situation in y:'!. theory is quite different. 

the behaviour of scattering amplitude for large ~~ 

is here determined by the asymptotioal regime of the 

kernel and the unions of kernels in t - channel adjacent to 

the external line f:t. • To sum up all this contribution 

it is necessary to repeat all the reasonings of Sec. J 

starting from the Mellin transformation of 1'-'f variable 

to v variable ( instead of j ) • 

The leading singularity of any graph will be inr this 

case the pole!:a at I) =0 due to asymptotical regime of the 

abovementioned kernels and unions of kernels. The account 

of all such possibilities gives us all singularities at V =0• 

Consider first the graph with fl kernels in t-channel. All 

these possibilities are taken into account by the 

following procedure. Let the union of first K kernels 

be in asymptotics ( i.e. be contracted into the point). The 

noncontracted right end of the graph forms the function 

I5 



clf-lc (t) which is semilinear our· functions C,_,.. (-t) 

The contribution of the contracted union is denote by 

1.lic ( v) (Fig. 6) 

~ 

P. If 
~.,, n c (-t} ,_,., 

Fig.6 

In other words the contribution of the graph 

the form 

Fn has 

,., -
F, (v,'- J = On tt; + Z 11; tvJ c,.,_l<: (t) (D) 

k•t 

C (t) and 0., {t) are regular when 
IC· 

/?e 11 > -i. where 

The summation of this relation over the all sorts of 

kernels and over n gives us by analog with ( 6) 

F (v,t) = ~(t) + ?JtJJJ c (tJ 

For finding tf(aJ) we need again the hypothesis about the 

form of the bare charge. The :lbli.te bare charge reduces again 

the problem to the soeleton graphs only and allows us to 

write down equations of type (7). Let the union of first 

1 kernels inside ~ be contracted. They give us zJe ,..... 
again. The rema1 n1 ng non-contracted k- e kernels form C K..-f. 

I6 
, 

so that 

I 
rrv; v; (vJ = E ?Fe(,;) ck-~ +fk 

{<k 

(14) 

( C:~ and 9-< are regular when l?e lJ > - -:f. ) • The 

summation of (14) over all sorts of kernels and over 

the number of them gives a simple equation with the 

solution 

Fr~t)== {)ft}-t-

This means 

f'J 

F '"'"' 1'-1 < c when 
l 

H~C><) 

(15) 

(16) 

"' /.Z In the approximation of weak coupling 0< c "' h and the 

amplitude increases in contrast to Y' 3
- theory.(By the 

way,we note that the zero bare charge could give a 

decrease of the type C(tJ/ f!n.Nz ) 

This result is valid also for /'1\;;. S w.th an unessential 

modification. The consideration of (1) shows us that 

for S >>.fl-:f.z >> rnz t P < the flf- dependence 
~ J ' 

disappears in any theory. This is in accordance with 
i14/ 

the result of paper • 

So, the hypotheses about the rapid vanishing of the 

scattering amplitude with the external mass increase is 

justified for f/ 3
- theory in accordance with the result of the 

paper18 f. As for Y"'- theory, which is more close to the 
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mesodJD&8ics by its character, the conclusion of the kind is 

at least doubtfull. (The simple ladder, in particular, giTe 
lh~ 

the growth U ). 

2!_~!..[!a_1urea of Uesodpmmios 

In mesodynamios the asJmptotic of graphs for the positiTe 

signature amplitudes with integer angular momentum in t-chan­

nel is determined by the same topological elements as in y t 
-theory i.e. by the kernels and unions of kernels. After the 

normalization to the firstBorn term the leading singularity 

of any such graph appears to be at j=O (as in the case of 

)PY -theory). This allows to repeat the reasoning of Sec.J, 

but now it is more complicated because of interlacing of the am­

plitudes far nit-
1 

nn- and nn-acatterings. So, the algeb­

raic equations (6),(8) turns into two systems of equation which 

corresponds to positiTe and negatiTe G-parity in t-ohannel. The 

solution and inTestigation of these systems will be the subject 

of separate paperf101. Here we restrict ourself only by some 

general features of the result. 

The formula (1), as it was metioned already, has a matrix 

character entering there functions are of the form 

~w"""' j ~v o ) a8•11j 8Rv, j ~7) (l?) . I ff) • 

wC-tJ(j) = ) '-1511V J Wvv' 0 ' !3 = J_l3r~ Bvv; Bvr I 

0 0 0 €'-I 187fT B B(-1-) 
TT I VT, 7"7 

( ~A 0 ) tv'Yi; == o w:: /3A7) 
1.3(-/ 

TT I 

(18) 8 (-~ (8AA 
87A 

ra 

where (+) a:ad (-) means G-parity, indeoies V,T,.A, and 7r de­

notes the standart structures of two-nucleon state aDd two­

pion state. The matrix C has more complicated nonquadrat1o 

form. It does not influences the character of singularities of 

the amplitudes, so we does not write it down. In the approxi­

mation of week coupling C•l, Bxv = 8,7 = 0, BT/1; is the for­

mer expression (J) and, for instance, 
I . 

8vv:::: /Y./) jdx {fmll-x(t-x)lj-;-:1' + . 

o- t -J-L/ (19) 
f Jj;nz- x(t-xJjj {n-t- x(l-x)tj J . 

The functions vJ" (i) can be also found here in the assumption 

of the finite bare charge. In the 11JDit of week coupling each 

of them contains the same standing branch points at j1e :!J',! h 
This corresponds to our earlier result/ll/ from the sua.ation 

of senior orders of singularities at J•O. It is not difioult 

to check the Talidit7 of the factorization theorem for the re­

sidues at the pole and for the branch points: 1;,71 ~ = r;.! . 

lL,.:q,:lzs2u.!s1_ga 

We haTe to discuss now the meaning of the results obtained. 

The main result is the representation for the aaPJ,itude (1), the 

first term of which absorbs all the singularities of perturba­

tion theort at JaO for ~ -theort and mesodynamics aDd at 

j-1 for f 3 
-thear7 (all logarithmic terms). We haTe there 

some singular function W'{j) and for B,C, and R there are per.­

turbation expansions the singularitt of each term in j-plane 

being shifted b7 unit7 to the left 

19 



of the leading one. It is natural to ask whether after 

summation thnse singularities can turn into the leading 

ones or be located near the leading one. As we already 

saw in the weak coupling approximation the singularity goes 

away from zero at a distance of order of h . There is no 

reason to think that the singularity resulting from j•-1. 

will move much more rapidly. That is why we believe that 

the expression (1), picks out the leading singularity of 

the amplitude at least for not too large coupling 

constant. This shows what the quantum mechanical Regge 

poles transform to in field theory. Whenthe coupling 

constant increases the singularities shift to the right and 

the singularity due to j=-1 can reach the singularity 

due to j=Q 

The :results of refs./7- 9/ mean in this language that when 

the latter reaches the point J 0 the former comes to 

the point 2},. -1. 1 i.e. when jo = l they overlap. The 

paper19/is devoted to the modernization of the Regge-pole 

picture for this case. But the investigation of the mass 

asymptotics ( Sec. 5) shows that the assumption made 

1n these papers is essentially based on the properties of 

'f3- theory which can not be transferred to tfY- theory 

and mesodynamics. In this sense the mentioned results 

seem to be unconvincing. 

Interlacing of channels in mesodynamics brings 

some complication in the representation of the type (l) 

without any changes of prinaple ( see (17) ). We have 

20 

succeeded so far in obtaining this representation only for 

the amplitudes with in'bger spin in t - channel and positive 

signature. One of the interesting properties of meso­

dynamics in this case is the factorization of amplitudes 

fJrtr fs,i) fm1 {s,l)"" fu! (s,i). The investigation of 

graphs shows112 /that this property has more general 

character and takes place for quasielastic scattering as well. 

The processes with isospin I= :Z in t- channel have 

no nucleon-antinucleon intermediate states and for this 

case the simple representation (1) is valld. 

The suppresion of these processes in comparison with 

vacuum one (I= 0) could be explained by the smallness 

of the coupling constant h • The singularities of W r i) 
can be correctly reproduced by the summation of senior 

logarithr./111 but as we have seen the amplitude F(.~;t) 
possesses in addition the moving pole. In spite of the fact 

that the fol1!1 of 1Af(i) is determined by the hypothesis 

on the bare charge,none of them (zero bare charge or finite 

bare charge) can lead to a polynomial form of 1 / w ( i ) 

As a result the amplitudes (l) and (17) have both the 

moving pole and standing singularities carried by vU(i ). 

The hypothesis about the finite bare charge,which seems 

to us more likely
1
leads to the square root branch point. 

In the approximation of weak coupling and t- 0 the lea­

ding singularity is the branch point. It is difficult to say 

now what happens when the coupling constant grows. We 

2I 



believe that the standing branchpoint is a more 

suitable candidate for the Pomeranchuk1 s singularity 

1) and the moving pole for j)'. 

The amplitudes with negative signature are 

complicated by the accumulation of poles of the type 

of ref./iJ/ .• ( The spinor structure shifts the point 

of accumulation from j=-1 to j=O). However, the results of 

investigation of the asymptotics 1n this case/5/ allows 

us to hope to consider such amplitudes as well. 

Unfortunately, we. can not say the same about the 

amplitudes with termioD trajectories, where the three­

-particle divisions are also important. 

22 
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