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1. Introduction

The Regge behavioWr of the scattering amplitudes was
discovered first in guantum mechanios but was applied
Jjust after for the dosonption" of high energy scatt'e_r:l.ng.
The terminology and 1deas of reggism greatly influence the
theory and the desoription of experiment of the elementary
partiocle ‘physios. But the bases of the tramsplantation of the
Regge ideas into quantum field theory were only a certain
analogy and models not so oonvinocing, from our point
of view, High energy experiment does not allow us also
to make an unambiguous oonolusion that the situation is
desoribed om by the Regge poles, The cuts of the
Mandelstam type due to double exchange of Regge poles do
not clear up the ploture too, Nevertheless all this
does not stop the flow of papers on the modernization of
details of the classical Regge pole scheme,

In the situatiop of the kind it is especially
important, to understand what quantum field.theory points
to. However we do not see any other possibility than
a direct summation of perturbation theory in the
asymptotiocal region. The first work along these lines
dealt with summation of senlor orders of 1eé.d:l.ng poles
of the ladder graphs Which resulted in the moving pole /152/
for the }“’- ladder and in the standing out/3'4/gfor the

¥ one. Byt the question is how this result will be affec-)
ted by other graphs snd the junior orders of the leading pof



(at /=-7 1n

rt theory)
in perturbation theory, which may be also important for

}P*’—- theory and /—'0 in

not too small ooupling constant., We have succeeded in
solving this problem for the classical mesodynamics and
for P2 ana  #Z theories.

The final result of the summatlon is especially simple
and beautiful for the negative signature soattering
¥2 theory and
for amplitudes in )oftheory. It has the form

amplitude of nonidentioal partioles in

F =Yg 5({// ) s RCE ()

where all orders of leading singularity are collected
only in the t—independent function 2J (/) and the
functions B,C and R are series in the ooupling constant
each term of whioh belng regular in the neighbourhood

of this singularity. This expression shows for both
theories a moving Regge-poles when Vw(/'j - B #/-0, mhe

main difference between the theories is the form of wW<(/ ),

For }03~ theory usy)= /"(s+Z/ so the amplitude
FOr, ¢)

( For the ladder graph this 1s just the result of Polking-
/2/)

can have only a moving pole when Kes>-7

horn « The situation is more complicated for the case
of )ﬂ— theory . We have succeeded in finding 1w ()
4

only assuming a finite value of the bare oharge. The funo-~
tion 1w/(;) has in this case a square-root branohpoint of
the type revealed by Sawyer’>. S0, the amplitude in addi-
tion to the moving pole possesses a standing bdbranohpoint,
(By the way, this is not astonishing beocause of an analogy
of }04 theory with the potential ‘/~° for small ‘r).

The ocase of mescdynamios

Lint = g Gy ¥y 457 &)
differs from the simple }’ ¢ theory only by the matrix
oharacter of the funotions entering (1) (of the third or
the second rank depending on G-parity) and transfionation
of the right matrix C(t) but the oharaoter of the answer is
the same: the moving pole and the standing branchpoint.

For the moment we oan only guess which of the singulariti-~
es is a leading omne for f~0 because the funotions enter-
ing the general expression are found as a series, It _seems
to us that the standing branch point, instead of tho"nomn
pole” P and the moving pole® as P’hnvc to give bdetter dis-
oription of experiment than the usual pure pole model., In
any way, each of these singularities have the properties
which determine the suocoess of the Regge-desoription: it 1is
universal, i.e. the same for the elastio ( #% , 7~ and
777 ) and quasielastic amplitudes, and the faotorisation

theorem holds for the residues.




To obtalin these results we glve the necessary
information about the leading singularity of the Feynman
graphs ( Sec. 2). Then we deduoe formula (1) and gilve the
scheme for oaloulating J(¢), C(¢) and (/) for

Wi theory ( Seo. 3) and #%- theory ( Seoc. 4). Sec—
tion 5 is devoted to the asymptotio of the amplitude in an
external particle mass off the mass shell., We f£ind out
there that for - )’ﬁ theory the amplitude is not rapldly
vanishing when the mass goes to infinity. Some resdts
for the mesodynamiocs in the approximation of week coupling
are given in Seo, 6. Finally in Seotlon 7 we discuss
the results obtalned.

2. Leading Singularities of Graphs

For the oonsideration of this problem the Mellin
transform of the amplitude with positive and negative
signature 18 especlally suitable;
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Earlier we have shown that the most right

singularity of any graph in y’ﬁ theory 1s the set

"0of poles of different orders at the point j=0., The maximal
order of the poles is determined by the number of
two-particle divisions in t — channel which break the
graph into kernels, i.e. structures without two-partiole
divisions. Thils connection with topology 1s more distinct
for Feynman parametrization of propagators in the
exponential form.

The singularities at j=0 are generated by integration
over the reglon where o - parameters corresponding to the
kernels and the connected union of kernels are
simultaneously small. ( We will say that such a kernel or
unlon of kernels are in ' asymptotical regime"or Simply
LAn asymptotic’). They are the only source of singularities

at j=0., Just this fact reduces the problem of summation
to the ladder-type graphs.

The more kernels and their unions are in asympt&tical
regime the higher the order of the pole. But only those
unions. are to be taken into account which either have no common

lines or are entirely contained inside one another.
Divergent parts { which are not the kernels or unions)
increase the order of the pole only when they are into

an asymptotical object. The asymptotical regime, i,e. the
simultaneous vanishing of some parameters means

graphically the contraction of the corresponding lines.



For the kernel or union of kernels it means the contrac-
tion of this.ObJect into a point . So, the coefficient

for the pole which corresponds to the given set of the
objects in asymptotics appears to be the product

of factors determined by these objects ( independent of f )
and t - dependent contribution of a weakly connected graph
which is obtained after contraction of these objects into

the points. Such a weakly connected graph conslsts of the
components of the type of Fig. 2 and 1s a product of the
contribution denoted by (, @/ Fig.2a) and B, (¢) ( Fig.2b).
Each of them is regularized ( subtracted) so that it has

no singularity at j=0. The prescription for calculation of
the functions 6" awof (,, can be obtained without
difficulty from general expressions of paper/5/. They are
given in the work/ls/. When Jj=0 they coincide with the

usual Feynman rules.,

Here we write down only the simplest ones:

1 .
Cle)t; Bole)= 117 Joi ffom e topncnrd]2f |

1
‘4

where /77, , " are the masses of virtual particles

( Figo 10) .

' #
3, Summation of Leading Singularities in }”—-Theoz_vl

Acocount of all possibilities of the a.symp‘totioa.l
regime of the kernels and unions of them gives us all
singularities at j=0. This oan be done for any n-kernel
graph as foliows. Let the most left of the contracted
kernels have a number A+Z and the most right one the
number 7-€ . . Then, the noncontracted “ends® of the

graph form Cx (¢) anda (. (¢/ and the middle part we

denote by Xr_ (/ Z‘}

Cw Fig.3

The contridbution of the graph /‘:, is of the form

)2 C.ee) X (L) Co(€)+ R (E).

Ktrelzp .

where /?n is a nonsingular at j=0 residue of Fn




and (:, (¢ =_ 4 by definition. The part corresponding to
X, /jl'{/ can be in asymptotical regime as a whole.

The corresponding contribution 1s denoted as us;, (j)

which 1s a +<-independent polynomial of '/J' because

diffearent kernels and unions inside of U, can

be in asymptotics too. In addition, the contribution of

Xn has some other possibilities, when the union of the first
K  kernels is in asymptotics ( the contribution 2% ¢, ) )
the next »r kernels are noncontracted (/3,- ¢) /

and the residual #-4-/"  kernels give again contribution

X’I-k-h/-/,‘d/ //‘;4/

So

X )= )+ D s ) B (VX Gl) (s

The formulas (4) (5) are valid for any graph with a given
number of kernels what permits us to sum it over all
possible sorts of kernels and to obtain as a result
the recurrent relations. The following summation of it over

the number /7 up to infinity results in the equations
Flri)= c%<) X))+ R(E]

X/ = wi) (1+8(2)) X i 2)

which immediately give the expression (1).

(6
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The functions B,C and R inthis equation are the
sums of quantities B3,.(¢J, C,(¢), KA. {(¢/) over an1
sorts of kernels and over the number of them. Each term of
this sum is regular for ﬁc‘/ >-4 but as for the whole
sum we discuss it in Sec.7.

A1l singularities at jJ=0 are collected in the function
W(/) . But to £ind this function we need one more
assumption about the results of summation of inner diver-
gences, i.e. in fact about the form of the bare charge.
There are many people who believe that zero fare oharge
h=h(1-ah ﬁ,d”/ -1 is a characteristic feature
of field theory. The idea about 2J(y/) in this oase can
give the first term, which possesses the essential
singularity at j=0 of the type /Mf(j'/ ~ exp (- aé/f} .

But this ©belief is based only on the properties of the
first few terms of divergent asymptotical series.,
Obviously, it is not enough. The rough estimation}pf n-th
term of the seriles allows us to sum it in a certain sense
The result gives the bases to believe that the renormali-
zation of the charge and the wave functlon is finite

( ¥ the fnite bare charge“). This reduces the problem of
finding W (/) to the sceleton kernels only

{ i.e. to the kernels without internal divergent parts
like "fish", "open" and "closed" envelope and so on).

The leading singularity of any of such kernels is a simple
pole at j=0 what reduces the whole problem to the simple

la.dder/6 /.

I1



The expression for W, /// aiffers from that for A,
by independence of t and masses. Sp, the expression of the
type (4) (5) can also be written the independent of t
numbers , (f,, and {x entering there instead
of Ku, C, and B. (Z: €. =7 ), Besides, the
quantity /—’-(1/)2‘&(/'/ enters the left-hand side of the
expression of the type (4), i.e. the singularity due to
the asymptotical regime of the graph as a whole is picked
out. This possibility to be excluded from the right

hand side of the expression. It gives

—I : - .
I Z():,//)= ’;*ZC,,X,‘(//CC-W,,(J/
” el @

Xyl = Woli) S ag. () b Xe (1)

kf"f{,n

]

The summation of these relations over all sorts of kernels

and the number of it leads to the system

/ i i )
FO_)MOJ: o+ C2X{.//~W(j/ (8)

XG) = W) wis)ExG)

with the solution

I2
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-W-'z/_):»?—”‘ ({/"‘- C'z-‘i-o y/ﬂ(j’/* /\"/ (9)

-7

K=Vl rcne o 2 e,

( The sign of the square-root is choosen from the corres—
pondence with perturbation theory).
In the limit of weak coupling r=, ~ 4% and &=c<4

/ / / —
wgy‘,z‘/f“/‘v?/j,-“ ///‘:7"7/;/2— < )

which gives the branchpoints of

. / .
xr — = 22
Jx Vr+r

4, Summation of Leading Singulariiies in
\p3 Theory

}”3— theoiy has no graphs vanlshing not slower
than S.HE, i.e. any graph 1s regular when kej' > ~f
\Let us consider the negative signature amplitude of
scattering of nonidentical particles. For this a.mplifude
the only singular at j=-1 graphs will be those which

contain , at least, one "step®™ i1.e. the kernel with one

jzanzy

Fign5

line ( Fig. 5)
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The singularities at Jj=~1 are due to asymptotical regime
of some of those steps. There are no other sources of
singularities at this point. All the reasonings which
have led to Eq. (6) and expression (1) are the same., How-
ever, unlike }"4'- theory, here the unions of
kernels do not work and W) 18 a contribution ;f

one step only, so

. (1)
WU)= W)= b2/ (1)

The expression for the terms of series for /3(¢) and C(¢)
are also little different, eaoh of them being regular now
when A’cj' >-2Z » for example

’ R
/30 (t) = /—,(_/*47) /Dlx/ryllz,\’, n;z(/.x/-x(/—-xjf]‘:z (12)

So, negative signature amplitude in this theory can have
only moving poles. ( For the positive signature a
set of condensing to J=-1 poles is added).

5. Asymptotics in the External Mass

This scholastic, at first sight, problem becames recently
of great importance, in connection with the cuts due to

exchange by two virtual reggions/7'9/

+ The modern method
of finding such cuts assumes the reggion contribution to

be rapidly vanishing with growth of the masses of external

I4

particles. OtherwiSe the existence of cuts is problematic.
Our method/5/;llows usy without any difficulty,
to obtain some indication to whether this assumption is
probable in field theory. Forithis purpose we consider the
reglon where /32=/'12>> (rm?p? and S=q /'12/ L= a 17t
( G, +a~1 ) (Fig. 1). In the Y3 theory

only the Born term does not depend on /yf,the others
graphs vanishing at least not slower than j@fﬁz

The situation in Y% theory is quite different.
the behaviour of scattering amplitude for large /sz
is here determined by the asymptotical regime of the
kernel and the unions of kernels in t -~ channel adjacent to
the external line /£, . To sum up all this contribution
it 1s necessary to repeat all the reasonings of Sec. 3
starting from the Mellin transformation of /71 variable
to V varlable ( instead of j ).

The leading singularity of any graph will be in this
case the poles at VU =0 due to asymptotical regime of the
abovementioned kernels and unions of kernels. The account
of all such possibilities gives us all singularities at p =0.
Consider first the graph with /7 kernels in f-channel. All
these possibilitles are taken into account by the
following procedure, Let the union of first 4 kernels
be in asymptotics ( i.e. be contracted into the point). The
noncontracted right end of the graph forms the function

I5




5;.« (¢) which is semilinear our funoctions (.. (¢/ .
The contribution of the oontracted union is denote by

Ve (V) (Fig. 6)

N
E

In other words the contridbution of the graph

the form

B t)= Q)+ S T, ) 2

kay

[od
where Ck (¢) and 0,,(” are regular when Ae V>-1
The summation of this relation over the all sorts of
kernels and over /7 gives us by analogy with (6)

FWi)= Q) +uw)C(t)

For finding U (V) we need again the hypothesis about the
form of the bare charge. The fnite bare charge reduces again
the problem to the sceleton graphs only and allows us to

write down equations of type (7). Let the union of first

1 kernels inside VU, be contracted. They give us 2)2.~
again. The remaining non-contracted «-£ kernels form CK.~C

16

so that

{
Ty Y ) =2 Uy (0) E e +5., (14)
<k
( & and 9. are regular when Ae V>-Z ), The

summation of (14) over all sorts of kernels and over

the number of them gives a simple equation with the .

solution

This means

IS8

fdd

rw ~

2’
/‘7 when

Floi)= Qtrw SS9

) (15).

A7 oo (16)

In the approximation of weak coupling O<C ~ /72 and the

amplitude increases in contrast to $”3 - thebry.(By the

way,we note that the zero bare charge could give a

deorease of the type

E(f//en_f'jz) i

This result is valid also for /‘12>>-S wkih an unessential

modification. The oonsideration of (1) shows us that
for S>>/4%>> m*L, /?2
disappears 1n any theory. This is in accordance with

14/

/
the result of paper .

the /Y- dependence

So, the hypotheses about the rapid vanishing of the

scattering amplitude with the external mass increase 1s

justified for

paper

fsy

As for

ya—theory in accordance with the resultof the

V"—- theory, which is more close to the

I7




mesodynamios by its character, the oonclusion of the kind is
at least doubtfull. (The simple ladder, in partioular, give
2

h
the growth Il'? ).

5s Some Features of Mesodynamics

In mesodynamios the asymptotic of graphs for the positive
signature amplitudes with integer angular momentum in t-chan-
nel is determined by the same topological elements as in }Of
-theory i.e. by the kernels and unions of kernels. After the
normalization to the firstBorn term the leading singularity
of any suoh graph appears to be at J=0 (as in the oase of

y”? ~theary). This allows to repeat the reasoning of Sec.3,
but now it is more oomplioated because of interlacing of the am-
plitudes far 7/-, 7/ - and 77 -goatterings. So, the algeb-
raio equations (6),(8) turns into two systems of equation whioh
oorresponds to positive and negative G-parity in t—obhannel. The
solution and investigation of these systems will be the subject
of separate paperllo/. Here we restrict ourself only by some
general features of the result.

The formula (1), as it was metioned already, has a matrix

charaoter entering there functions are of the form

.Wnr, jlhfwv’ o ‘ ’ iﬁ',/'ﬂii’, / By, an
W)= [ J¥av, Wyy, O , B /By, By Byr 7
o o W J B, 6"7, 877 ’

- (02,) | gL (B B )
O wil) 8 82/,

r

where (+) amd (=) means G-parity, indecies V,T,A, and 7 de-
notes the standart struotures of two-nuoleon state and two-
pion state. The matrix C has more complicated nonquadratioc
form. It does not influences the character of singularities of
the amplitudes, so we does not write it down. In the approxi-
mation of week coupling C=1, By, = B,,= 0  Sarr 1is the for-

mer expression (3) and, for instance,

BVV A /dx f[m*-xﬁ—x/{/y—{ +
° 374/ (19)

" //;n’-x(/-*J;/ﬁ”{"’ﬂ"/?/ /

The funotions }///) oan be also found here in the assumption
of the finite bare charge. In the limit of week ooupling sach
of them oontains the same standing branoh points at \/':::_* g +4
This oorresponds to our earlier result/ 1/ from the summation
of senior orders of singularities at J=0, It is not difioult

to cheok the validity of the facotorization theorem for the re-—
sidues at the pole and for the branch points: /,, /p,= /‘;f

Z. Disgussion

We have to disouss now the meaning of the results obtained.
The main result is the representation for the amplitude (1), the
first term of whioh absorbs all the singularities of perturba-
tion theory at J=0 for W—theory and mesodynamiocs and at
=1 for }03 ~theory (all logarithmic terms). We have there
some singular funotion hf(// and for B,C, and R there are pere
turbation expansions the singularity of each term in j-plane
being shifted by unity to the left

I9




of the leading one. It 4s natural to ask whether after
summation thrnse singularities can turn into the leading
ones or be located near the leading one. As we already
saw 1in theweﬁk ooupling approximation the singularity goes
away from zero at a distance of order of /7 « There is no
reason to think that the singularity resulting from J=-1.
will move much more rapidly. That is why we believe that
the expression (1), picks out the leading singularity of
the amplitude at least for not too large coupling
constant. Thils shows what the quantum mechanical Regge
poles transform to in field theory. When the coupling
' constant increases the singularities shift to the right and
the singularity due to J=-1 can reach the singularity
due to j=Q
The results of refs.lv'q{mean in this language that when
the latter reaches the point jo the former comes to
the point 2/, -4 , 4i.e. when Jo= 1 they overlap. The
paper/g/is devoted to the modernization of the Regge-pole
picture for this oase. But the investigation of the mass
asymptotics ( Seo. 5) shows that the assumption made
in these papers is essentially based on the properties of
y).%_ theory which can not be transferred to gﬂﬁ theory
and mesodynamics. In this sense the mentioned results
seéem to be unocnvincing.
Interlacing of ohannels in mesodynamics brings
some complioation in the representation of the type (1)
without any changes of prindple ( see (17) ). ¥e have

20

succeeded so far in obtaining this representation only for
the amplitudes with intger spin in t - channel and positive
signature. One of the interesting properties of meso- ‘

dynamics in this case is the factorization of amplitudes

7[,,,, (s2) /»m(f,‘{/: fwf (s¢/ . The investigation of
12/

graphs shows that this property has more general

character and takes place for quasielastic scattering as well.
The processes with isospin J =< 4n t- channel have

no nucleon-antinucleon intermediate states and for this

case the simple representation (1) is vald.

The suppresion of these processes in comparison with

vacuum one (I= 0) could be explained by the smallness

of the coupling constant h . The singularities of uf(J]

can be correctly reproduced by the summation of senior

logarithn’ 11/

but as we have seen the amplitude F(i¢)
possesses 1n addition the moving pole. In spite of the fact
that the form of W(J ) 1is determined by the hypothesis
on the bare charge, none of them ( zero bare charge or finite
bare charge) can lead to a polynomial form of '//VV—(f ).
As a result the amplitudes (1) and (17) have both the
moving pole and standing singularities carried by wiey),
The hypothesis about the finite bare charge, which seems
to us more likely,leads to the square root branch point.

In the approximation of weak coupling and t~0 the lea~-
ding singularity is the branch point. It is difficult to say

now what happens when the coupling constant grows. We

21




belleve that the standing branchpoilnt is a more
suitable candidate for the Pomeranchuk's singularity
j) and the moving pole for fD,.

The amplitudes with negative signature are
complicated by the aocumulation of poles of the type
of ref./ij/'. ( The spinor structure shifts the point
of accumulation from j=-1 to j=0), However, the results of
investigation of the asymptotlcs in this oase/5,'allows
us to hope to consider such amplitudes as well.
Unfortunately, we can not say the same about the
amplitudes with fermion trajectories, where the three-

~partlole divisions are also important.
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