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’I‘he investigation of the possible theories with interacting
fields is qua].ly made in terms of the Lagrangian formalism, This
for;rlé.lism, as is well known, treats arbitrary Lagrangian functions
from which by variation methods, one obtains the fundamental equa-
tions and conser\afion laws, In this manner one has searched for
the possible theories including interaction vector, s‘pinor and scalar
fields in the approximation of the dimensionless coupling constants,
All internal symmetry groups which allow the interactions has been
. found.

There is another than Lagrangian formalism which glves the
possnblhty to build directly invariant equatlons for the fields. In the
case of the nomnt_eractmg fields which transform linearly under the
Lorentz group, this formalism, as the Lagrangian one, is applied
often independently, However, if we introduce interaction for a few
éxceptions it is difficult to construct the necessary equations, Be-
sides, if we have fhe equations of motion to find the conservation

laws we must use the Lagrangian too, The situation becomes more



complicated if the interacting fields' transform nonlinearly, if we
want, under some internal symmetry group G . In the last years
there are good many models like that discussed here/ 2_5/.

In the present paper We consider the construction of the in-
variant equations for interacting fields, transforming linearly under
the ﬂorentz group and\ nonlinearly under the group of internal sym-'
metry G . Besides, it turned out to be possible to obtain all
conservation laws which follow from invariance of the equations
under action of the group G . -

In the first section we quailify any essential and common
. properties of the nonlinear irreducible representations. Although
the fundamental results connected with nonlinear realizations of a
glven‘contlnuous group are known many years ago (see for
example/ 7/) m this section we 1ntroduce some new quantities .
wlfucn are not applied usually in the general theory and which have
turned out to be very useful. In this section we accept th,e nota-
tion employed in: 8l . The transformatlon properties of the investi-
gated quantltles are estimated in terms of the commutators/ /. We
‘think that thls is more transparent than the application of global
transformat.lon.

In the second section one constructs the above mentioned
equations and conservation laws. ‘

In apptication one illustrates the general theory on the case

of the chiral group SU(?) xSU(é).

1. Properties of the Nonlinear Realizations of the Lie Group

We sha11 consider the case when the semisimple compact
f -parameter Lie group G is given. Let its structure constants

be C#a:, . Then the metric tensor is given by
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™ wp ve | (1.1)

(Here and further the Greek indices run from 1 to f , the sum-
mation is éssumed over repeating lower and upper indices).
We shall suppose that in the N -dimensional space X ,
acts any ii‘redl;cible nonlinear fepresentation F‘(g #,xk ) of the
group G with generator functions M}: (xx) . They satisfy the

following commutation relations

. N I‘L ’
M IM,
[ mf M1 = —L Mk ME-ch” mP (1.2)
1 Jdx ax k P
k k
(here and further indices i, j,..,8,t run over 1,..N )The irre-
ducibility of the representation means that f >N and the rank of
||M}: |l equals N . Taking into account this fact, there exist
f =N solutions N#a (x k) of the system

p v
g, M, CN-0,

"(1.3)
where the rank of the [IN 5“ equals f~N . (Here and further
a,b...g . run over N+1,...f ). With the help of the M*
and N# we may define a matrix
" .
RY - | Wi vah (1.9)
v N‘a‘ v>N+1

It is easy to see that R is nondegenerate,



Let now -enumerate some properties of the nonlinear repre-

sentations.

a. The symmetric matrices [|H, Il  and |[[h,, |l  with matrix

elements

are nondegenerate. Indeed, we consider these equations

H . =0.

For all solutions of these equations hold also

H r'rk =0.
ik

Hence, using the positive definiteness of the g#
. v
Moo
Hence, r'. =0 . Similarly this may be proved for |lh,, ||

The inverse matrices, i.e.

5 b
[ [ » h hbc ='80

H'" H
k
are deroted as H fk and h*® , correspondingly.
b, The symmetric matrices |1 ¥ || and || 1 |
ments

1k . By ab
oR MEM, o - NAN]

_satisfy identically the following equalities

(1.5)

(1.6)

with ele- |,

(.7)



HOVg =Hl“"

\ II ' '
po : _ (1.8)
HP 1y ov :
H [_I =0 » 1.9
g (1.9)
. - ¥ a%esn” (1.10)

Besides we have
I
I,l.p g
gpan RV=3VIMI
g 1 "r%-s N ' - (11D
gpa v .

Va a
All written above equalities may be verified directly, In parti-
cular jt follows from them »
g
n* . ot

=& - S (L.12)

w
If substituting here II#* and I from (1.7) we obtain the

normalization condition for the gena‘atbr—functions

I L TR Tt A (P (1.13)
ILI
If we introduce a matrix ||U _, || with matrix elements
i} MPH® g L<N
° PH : )
u, = v (1.14)
P, ba . . ..
No h'g on v :N+1 ,



by vertue of (1,13) we obtain

. #. p. #
R U, =28, (1.15)
ie. JU¥ || is inverse to [|R L |
-V 7 (2%
c. The following identities are valid
PO, :
Crp No Ny M= 0. , (1.16)

One may obtain them by multiplying the both sides of (1.2) by

g up g . NP N7 using (1.3).

d, The quantities

PO N@ 3
d =C anNb' Nu h h (1.17)

v

are the structure constants of ény group §-’(x) . the algebra of
which is isomorphic to some subalgebra S = of G . The first
part of this assertion may be proved evaluatmg directly Jacoby
identity for the d':’b . To prove the second one let us consider

the quantities
) v
o p o A7 (1.18)

In consequence of the nondegeneracy of the R.and U it is clear

. v .
that 0 l& are the structure constants of the algebra of a group

G’(x) isomorphic to the G ., Immediately, one verifies that
ab ab '
0 . = d_

i.e, that we want to. prove.



e, The quantities

= C MP N mey bk p=b ‘
1 pow 1 b » (1.19)

are generators of a linear representation of 5(x) in an N ~dimen-
sional space. This is proved by direct calculation of the commu~

tation relations

_ ol
[A"A° 1% =A",

b, ak ab . ok

b,k . '
Ag - Ay Ag =a_ A" . (1.20)

From the two latter sections it follows -that there exists a subgroub

5 of G which has a linear representationjn N _dimensional
space X , Hence th? nonlinear representation, itself, can be chosen
so that it ’becomes linear on subgroﬁps. This means that a part of
the generator functions corresponding to the subgroup S ‘is chosen
to be linear- functions of X . In this case it is always possible to
do 8’(0)=S, i.e. to choose the structure constants of G with
separated subgroup S , Although this choice has certaiﬁ'physical

meaning we shall not restrict ourselves to this assumption,

f. To formulate the transformation properties of the quantities
which we have introduced above, we define a linear representation
Te of G on the space of the almost everywhere differentiable

functions by

) T f(x)T, =f(F (g”',x).
& ; (1.22)

The form of the left-hand side allows one to find immediately com-

mutation of ‘the 1

the formula

with the transforming quantities according to



ot

[ v

frrel=-( . )g =0 "’ (1.22)
[ ® .

where f° is a transformed f . In particular, using (1.21), the

following relations can be found

@ k o9f )

(1" f(x)l==-M_ T "(1.23)
[l“xl]=— M‘: (x) (1..24)
: am #

[l“dx|]=— ,axl dx _ . . (1.25)

n

The last one can be obtained using Section e and differentiating

with respect to x .
g. The quantity fa"'b (x) defined by the equation
Y ant

" dx

n

| . ‘ |
£ CEY N L (NS =0 (1.26)

M

satisfies also identically the equation

poat M AL e b Mo mb  pd 0

n J x 9x +fa fc -fa fc +C @ fa =0. » (1.27)

n

M

To prove this assertion it is sufficient to remark that according
to (1.23) and (1.26) we have -
ENY ] =-MH ONy cHN® (N Y (1.28)
[l N a = - n ax -2 @ a + a b.* ) 3

n

10



Now if we write a Jaéoby identity for the [I AI* N l; n using
the corresponding identity for the C&’ V\:re obtain (1.27) for £4° | _
It is not difficult to see that equality (1.27) is the very Jacoby iden-
fity for a‘ny‘ double commutator [1¥ [1%,11, where v, are defi-

ned by

i _ .
[lv“]ff“ Yo (1.29)

So, the identity (1.27) is a necessary and sufficient condition for

the existence of quantities like a v,

h, The matrices [[H, [I,IIH™ I, N |, l1h |l satisfy the

following commutation relation with generators of the representation

aMft IM*
(FH, 1 -=- H, - X H
itk Jx ] nk 9x in (1.30)
p
amb | OIMn  tn
[II"'Hlk ] L H k . H 3 (1 31)
6)(! dx k *
U TN B {ol DA el I o (1.32)
ftpoab 1 _ _epa pOo b ca )
[1F R 1=l n™ -7 ; (1.33)

_fc# * are functions introduced in (1.26). These equalities

where
were obtained by direct evaluation usiﬁg the definitions of the
Hy, ,h,, and also the transformation properties of M} and

N # .

11



The commutators of I1F with ihverse matrices can be writ-
-ten applying the well known method for finding the transformation
low of the inverse matrix if the transformation low for a given one
is known, ' ‘
Anocther consequence, from the last section is the assertion
that '
N

1k

ds? =H dx, dx,

dsZ=h*v v L (1.34)
2 . a b

are invariants of the group G . In particular the first one deter-

mines the Riemmanian metric in the space X , The Christoffel

symbols in this case are

=2 M P(H : —).
E g8, ) 9%, (1.35)

Besides the covariant derivative of the metric tensor Hu is equal
to zero
N My

fn , '
H, = p -r'H ~-T H =0 (1.36)
Xe

i. The matrices ¥ and [ satisfy the following com-

mutation relations with 1#

[1 07 1=CF T, cH, 1P o (1.37)

Fn P1-cR o™ Lo g (1.38)
w w .

12



"U‘sing' only the definition of U7 and trans'fomlafi-‘on‘pr‘ope'fties of
M p and 'N” it is easy to establish the first one. The se-

. cond is obtained from (1. 37) inserting 17 g - 1/,

jo In the space spanned by v, acts a representation of the

subgroup S equivalent to the .adjoint one, In.fact the operétors

w Vo ' (1.39)

are generators of some group isomorphic t& S . In fact

[s*s”1 =d®s°. | (1.40)

~

L . . Hea .
- To find this commutator the following(identities for fu obtained

from definitions (1.26) and from orthogonality of the M¥{ and.N}:;

Py (/4 p, do
g F2 NG =Co NONE NP e

8 (7 NS NE RO=Ch NENY (1.22)

were used, Now if one multiplies the both sides of (1.29) by

g NY h®* and sums over p one obtains
b v .db 0 ‘
[S Va ]=gw Nd h fa Vo ‘ (1.42)

and from (141) one has

b ob .
[8 v, 1=d7 v,  (1.49)

This is just what we wanted to prove,

13



k. Now we shall consider a system of differential’ equations
for M{‘ " and N i‘ ~ which are equivalent to (1.2).
Multiplying both sides of (L.2) by MP u™ and summing

over v we obtain

QMF am IM® :
oML _pgim OML e MP g e CF MO MP ™.
T port O 17 M (1.48)
Similarly from (1.26) it follows
oNl PNE M ct N?mP ™. - (1.45)
3 x ==1la b n gpo"‘ pw a n . : d
i

The last equation may be obtained also from (1.2) multiplying by N
and using (1.3). By simple calculations the equalities (1.44) and
(1.45) are reduced to the form

IMHK & byl ‘
= A Mh +A TNE . (1.46)
k|
JdNE . bk n
: SFONE LAY o ME
X ‘ (1.47)
where
A _rMioCc MPMC M@HTH™.

14



. Consider the system

ayl

Ik X | ’
_____ax = l"’ y,+ Al A ,
]
a g n
Bt Y R Nt S (1.48)

axj a b

From the results of the last section it follows that the system has
f ~linearly independent solutions (it is over determined) for the

desired - functions. As that kind of solution one may choose

B oMK yEaNE,
Y M: Y. N, (1.49)

' Then the complete solution of the investigated system has the form

- ac yH '
yl _c[,l.yq. ! yn c[,l.ya ¢ (1.50)

In general as f ~linearly independent solutions we may take

Bo ot M B_ckENY

yl"CuMl#’ yo=C N, " (1.51)
where Cﬁ is a nondegenerate matrix, But the covariance of
these solutions holds only if Cf _ beloﬁgs to the adjoint represen-

tation of the group G , So the covariant set of linearly independent

solutions of (1.49) is unique up to the trivial equivalence,

15



2, Invariant Equations

The properties of the nonlinear representations of the group
G considered above allow one to build up the invariant equa-
tions for the fields transforming according to a given representa-
tion, Strictly speaking we shall assume that a set of fields x 1(§A)
(sa are ~oordinates in the Minkowsky space-time, AB,... =0,1,
2,3) transforming nonlineé.rly according to equality (1.24) is given.
To assure the Lorentz covariance 6f' the above mentioned  relati-
ons it is sufficient to suppose that the Lozentz group and group G
are taken in a direct product. "

We also assume that in addition to x; a set of arbitrary
fields ¢ e 1S given, They transform under arbitrary but fixed re -
presehtation of the Lozentz group and g;roup G ., In general the
commutation relations with the generators of G -group can be written
as . o

ity 1= 6P,
a. a B (2.7)

SR S T (2.2)

where l/;a is a contravériént tb Y e _F‘i‘om the above written
equalities it follows that ¥, ¥ % is an invariant of G group. The
functions ¢a#’ﬁ identically éatisfy eql,}atipn (1.2%).

Now wé show that with the help of k x, and ¢ e itis
always possible to construct quantities of the type u, ,v, i.e,
which transform according to f‘ox:mulae

. om :

u

ox. 7 (2.3)

n

[1# “1] = -

16



K pb
[1 Va] =fa S S . . (2.4)
This construction allows us to investigate only u, and v _
instead of x; ,¢, and their derivatives . As we shall see
further, the quantities of the kind of wu i and v, are not un-

- ambiguously defined if Xy and ¥/, are known, Arbitrarity in the choice of

u; and v, corresbonds to that of a Lagrangian function in
theory with "Lagrangians", Besides (2.3) and (2.4) we write down

the transformation properties of the covariant quantities

u! =H* u , v* =habvb ‘ (2.5)
IME
§ S . L (2.6)
dax | «
a . b .
[IFV ]=—f’;av . (2.7)
The possibility .of constructing u, and v a follows from some
complementary assertions.
1. If there are known u; and v, then
.ak ' ’
A t Ya Ui
ho AR (2.8) -
ab 1 uu k '
are again quantities like u; and v,k , cor‘respondingly. (The proof
follows from direct calculations).
2, Comparing (1.22) and (2.7) we remark that
Ix, i ’
ds, - 97 x 1 (2-9)

17



is of the kind of u, (for the moment we are not interested in

the Lorentz structure),

3. If the fields b M transforming linearly under adjoint rep-

resentation of G are given, then
CoMH
lll SMI b I

VastbI[. . ) .

This is pf'oved by direct calculations using the equality

e
Aifb 1=C" b .

4, Thus, as in the above sections .it may be shown that if

¢! and n/:; transform with respect to (2,1) then

g, Now' ol P g
1s of the kind of v, again. A quantity of the type of u, which
does not content derivatives of the fields is not always nonvanish-
ing and we do not write it in general,
The four items formulated above allow (if the fields x, and
ya are known) to construct all possible qQantities such as u 14.
and ‘v, . If moreover we want to include derivatives of any order
of these fields, we must indicate a method to build up the differen-
tial expreésions transforming themselves like uy and v, , Itis ndt

difficult to verify that

A kn - A A . kn LA '
du, +T uka X, 07u;, + Ay ou, 97X, - (2.10)
are quantities of the sort of . Similarly

b "
IN, + F: vy d Axn (2.11)

18



Do ‘ . : . kn ;(n
is ‘a quantity of the type of Vv, , In these equalities o A,

- and F:’b have been introduced in the above paragraph (see (1.35)
" (L.46) and (1.47)) This is already enough to construct arbitrary u,
and Vv, , However, this ‘construction can be simplified 'remarking
that the expression

n,8

d l/’a +L al/'Ba Xq ' (2.12)

transforms as ¢ , if:
a

L n.B=.g anl ¢aV.B H mn.

a

(2.13)

- Therefore (2.12) can be considered ?og;ether with l/la when
we apply the procedure described in the item (4). We shall call
the second expression in (2,10) and (2.11), (2.12) invariant deri-
vatives of the quantities uL LY, l/la, correspondigly. One may
find the simplest equations if we let to vanish the enumerated above
c&deriﬁtiws. Howevér, we shall drop out the equation which ari-
. ses according to this ~procedulre from (2,12) because if v, is
build up by the prescription of the fourth item then the vanishing '
of (2.11) leads to the simultaneous vanishing of (2,12) too,

In that case however it is easy to check that in general a
conservation law corresponding to this equations does not exist
because the curvature tensor obtained from the affine ' connections

Ay is not vanishing identically, a ‘
- To clarify the above said let us suppose that there exxst
JA(ul,va) so that A .
J =0 (2.14)

19



If we want a covariance of the equality it is necessary to express
ary, in terms of the covariant quantities. This is possible
to do if the equations for u, and Vv , admit integrating multipli-

s .
ers, If 2, is one of them which corresponds to the equation for

u, then it turns out that a, must satisfy the following sys-
tem :
gm aalk ¢
=A l: a fx .
ax n . (2‘ 15) v

It has a nontrivial solution only if the corresponding curvature
tensor equals zero, So this treatment is not suitable to apply in.
construction of the equations always admitting conservation laws.
Now the way in which the invariant equations should be construc-
ted is clear. Indeed, we shall complete above written co-derivatives
for v, and v, so that they always admit integrating multipliers,

The most general expressions of that kind are

PAu‘AsaAu'A+Aknulank+A1:V Aan X (2.16)
A A a k,a b A ak o oaaA
P VAEa vA+Fb VA d xk +Anu Aa xk' . (2'17)

As we noted before u; and v, have any Lorentz structure and
to write the above expressions we need that u, and v, have
at least one vector index A (which we write down ), The quanti-
ties paA ul PAVZ depend explicitly only on the first deri-
vatives, but as it is easy to see, in fact, the order of the deriva~
tives is not restricted because Uu and Vv, themselves can be
build up with the help of arbitrary order derivatives of the fields
x1 and ¢, . The both expressions (2.16) and (2.17) can be

united if we introduce:

20



Vn v=a >_N+1 (2.18)

“then instead of (2.16) and (2.12) we have

A k,V

WAz b Wh 9%y . (2,19

P*wh=0

) k, kf kb .
where 2 ; is- expressed by A; ,F. , Au,k .

The main property of (2.19) is the following
' u A _ A § : v ..
REPAWY =" (R, W,) (2.20)

i.e. the matrix (1.4) is an integrating multiplier for PP WX . If

' we take as an equation of motion

PAW A0 (2.21)
then

a"1k-0 (2.22)
and hence JK = R#V W, -M# uA+N# v 'is a conserving quan~
tity cofresponding to (2.21). It is clear that a current JK trans-

forms under adjoint representation of the group G ;| As we - noted
. before, the matrix R#y is nondegenerate and therefore 'if ‘we
“have a given current JF then from it uy and v, as well as
the equations of notion could be found uniquely, This situation is
very interesting but it is not a constraint in the theory. The fields
x , are in some. sense privileged because in fact only their equa-
tions are determined exactly if the current is given, while the

5
equation for x/:a themselves is not unique., This is a consequence

21



of the bilinear structure of u, and v, built from ¥, and ¥
To equation (2.21) there corresponds a set 'of equations for !,ba R
Let us clarify this by an example, If we choose u ; and v},

in 'the form

xi

oy
uA=ankH

VAA=gIJ:VNbF. ¢'aV'B "DB 0 A¢a

(2.23)
then it is not difficult to see that the last term in (2,17) identically
varushes, hence
P*v®= 9%(g NH ¢"-/3¢ 0 ¢% h") 4
b B A :
_ (2.24)

+F'§'"(ngo¢ B""BO"" R)atx, =0« 7

Now if we write in detail (2,24) we remark that all ¥, satisfying
equations KB
A ’ A
0,07, +0,L, (,bBa xk-_-Aa (2.25)

satisfy (2.24) too (Here A a is an arbitrary quantity of the type
of ¢ _ ). In fact substituting (2.25) in (2.24) we conclude that
A, . is not definite unambiguously).

We shall illustrate this situation once more on the example
considered in the Application, .

Thus to a given current there corresponds only one equation
for x,(s,) and one set of equations for ¥, fixed by (2.19)
which‘can be cdrlside_red as a '"generating equation", ’

At the end of this paper we will draw our -attention to the

following fact, In general, the field theory constructed'by the fields

22



norﬂiriéarly transforming under the gi‘oup G is the theory of “in-
‘teraction between -x; and ¥, ., However if we omitted ¥,
;‘we would. obtain a theory only for the x; (taking ul—-a X4 ;v: =0 ),
but a resulting theory would never be noninteracting by the rea-
; son of.the remaining self-interaction, For the v, fields the situa-
tion is .ver'y different from the above mentioned one because if the
'fie_lds x; were absent then it would not be possible to construct
any equation for the fields ¥ . themselves. This bérticularity
singles out the fields x, as fundamental ones, responsible for
the. whole theory. - - .

The disadvantage of this theory consisits in that at present
we are able to choose as fundamental fields only scalar Lorentz
‘fields. Therefore it would be interesting to investigate the vprc.ablem
~of introduction of other Lorentz fields as fundamental ones,

In conclusmn the authors express their gratitude to Acad,
’Kh. Khristov and to Prof. V..Ogievetsky for their interest in this
’ work- and many useful discussions, The authors are also grateful
= td the participants of the Seminar on. the Theory of fields at the
Laboratory of Theoretical Physics (JINR,Dubna) for the discussions
of this work, ' ‘

Application

Let us illustrate the general theory on the example of the

o group SU(2) x SU(2) with generators Ty and X, commut-

ing as usual ' »
[T, Tgl=ie g T,
[TkxE]=iean X,
[X,Xgl=ice +fn T «

n

(A1)

23



Consider a three dimensional non-linear representation of this
[of |

group ‘in form

Th=—ie 2y u=ig3
1l
M = 1 1 3 ‘ (A.2)
Xk=i(—2'(1"z_ ?31k+z|zk);'ysi>3 . ‘
(Here indices i,k,f.. take values 1,2,3, Z;, =g 7y 5y where =,

f
are pion functions and g-_-_m_°
s

The metric tensor g equals

w_ckp o ~
g =CO CP=48#V

have dimeqsionality of length).’

Then it is not difficult to check that the quantities N’;  can be

chosen in the form ) -
' X’g=i(—12(l—z2)8’g+zlzg) po=ig3

NI-‘.Z = ’ l (A.s)
= 7 =i 3 .
T |c‘ann  /1,}1+
The transformation law of ¢ , has the form

[T|¢ ]=— iz-oll,b
. : (A)
[X,y ]=-—;-(zxo)|¢ .

By means of dii‘ect calculations one obtuins also all the remain-
ing quantities necessary for building up both the invariant equati -

ons and conservation laws

24



2,2 k0 okl

H ooh, =—(1s22)8 95 H*¥ on®= -
xl ) (1+ )2 e (14322

fm - fm 2

F’ =A = 1'+—z2v(zm812 + 2 ) ;T2 Bmf)

m,n 2

A y =--——_l’€

¢ l+z mh (A.5)

. 1 €anm I.l-=a$3

g o

l(zbmsna- znﬁma"'za('smn ); F’=-a’>3 .

it. follows' that quantities u and

From these expressions
transform uniformly, However P -invariance of the theory de-

axial vector,

v a
A
mands that V& be a vector and uj
The simplest choice of u!, and vl is the following
- .’ o
o by, vs0,V¥ 3,2,
A 1 +Z2 g2(1+z2)2.
" A6
1 Y yaor ¥ (A.6)
v A~ - 1+z2 .

If now we insert these expressions in the current
A a
sE i (mp wtAe NV
i is taken to assure hermicity of the current) we shall ob-

(here

tain
25



(A7)

-

1 3 1 -
b= b ya 1(OX2)= = (1-2%)y G -2 (Bd)y 1y .
1+2z ‘ 2 5

After some reconstruclion equations of motion are

oz 470" A9,70"7)

- J,2 z —-2im@ o =0
g1+z?)  g(l+z?)? t gi(l+z?)? PoTmen ¥
A = 2 | A > A -» (A.B)
9" (gy B¢)=—— Jy Iy (3 Zx3)=~ (Z5)9*F+ (30 ) 2}y |
’ 142 .

As we have remarked the second equation defines a set of equa-
tions for the fields ¥ . As an example of that sort of equati-

ons one can take the following

A 14 > -» -» 2. A> .
iy, 00 mp v = [(F x2)a " iy (3D -

= (b *3) y, ¥ +iby

A v
here b, and b are arbitrary vector and scalar fields,corres-

pondi gly;
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