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I 
f,. 

The investigation of the possible theories with interacting 

fields is usually made in terms of the Lagrangian formalism. This 

formalism, as is well known, treats arbitrary Lagrangian· functions 

from which by variation methods, one obtains the fundamental equa

tions and conservation laws. In this manner one has searched for 

the possible theories including interaction vector, spinor and scalar 

fields in the approximation of the dimensionless coupling constants. 

All internal symmetry groups which allow the interactions has been 

found. 

There is another than Lagrangian formalism which gives the 

possibility to build directly invariant equations for the fields. In the 

case of the nonint_eracting fields which transform linearly under the 

Lorentz group, this formalism, as the Lagrangian one, is applied 

often independently. However, . if we introduce interaction for a few 

exceptions it· is difficult to con.Struct the necessary equations. Be

sides, if we have the equations of motion to find the conservation 

laws we must use the Lagrangian too. The situation becomes more 
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complicated if the interacting fields, transform nonlinearly, if we 

want, under some internal symmetry group G • In the last years 

there are good many models like that discussed here/
2

-
5

/. 

In the· present paper we COnSider the construction of the in

variant equations for interacting fields, transforming linearly under 

the Lorentz group and nonlinearly under the group of internal sym-

metry G • Besides, it turned out to be possible to obtain all 

conservation laws which follow from invariance of the equations 

under action of the group G 

In the ·first section we quailify any essential and common 

properties of the nonlinear irreducible representations. Although 

the fundamental results connected' with nonlinear realizations of a 

given continuous group are known many years ago {see for 

example/6 , 7 /) in this section we introduce some new quantities 

which· are not applied usually in the general theory and which have 

turned out to be very useful, In this section we accept the nota

tion employed in /sf. The transformation properties of the investi~ 
gated quantities are estimated in te~ms of the commutators/

3
/. We 

Uink that this is more transparent than the applicatio~ of global 

transformation, 

In the second section one constructs the above mentioned 

equations and conservation laws. 

In application one illustrates the general theory on the case 

of the chiral group SU( 2) x SU( 2). 

1. Propert~es of the Nonlinear Realizations of the Lie Group 

We _shall consider the case wh~n the semisimple compact 

f -parameter. Lie group G is given. Let its structure constants 

be C p.~ • Then the metric terJ.sor is given by 
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(1.1) 

(Here and further the Greek indices run from 1 to f , the sum-

mation is assumed over repeating lower and upper indices). 

We shall suppose that in the N -dimensional space X 

acts any irreducible nonlinear representation F 
1 
(g p., xk of the 

group G with generator functions M~ ( xk ) • They satisfy the 

following commutation relations 

(1.2) 

(here and further indices i, j , .. , s, t run over 1, ... N ).The irre-

ducibility of the representation means that f ;;:. N and the rank of 

liM~ II equals N • Taking into account this fact, there exist 

f - N solutions N P." (x k) of the system 

p. v 
g M (x)N == 0, 

p.v I a . (1.3) 

where the rank of the II N ~ II equals f- N . (Here and further 

a , b • • • g run over N + 1, ... f ). With the help of the M f 
and Np.a we may define a matrix 

M p. v~N 
(1.4) R p. == 

I 

v Nfl v > N + 1 
a 

It is easy to see that R is nondegenerate. 
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Let now -enumerate some properties of the nonlinear· repre

sentations. 

a. The symmetric matrices II H lk II 
elements 

and II h ab II 

H -· fL v 
lk - g fLV M I M k ' 

h = NfLNV 
ab gJll' a b 

are nondegenerate~ Indeed, we consider these equations 

k 
H 

1
kr =0. 

For all solutions of these equations hold also 

H r 1 rk = 0 
lk • 

Hence, using the positive definiteness of the g 
fLV 

fL I l\1
1
r = 0 • 

with matrix 

(1.5) 

(1.6) 

I 
Hence, r . =0 • Similarly this may be proved for II h ab II 

The inverse matrices, i.e. 

I 
"lk "k e = a e ab h 

h be 
8 b 

c 

are dernted as H lk and h"b , correspondingly. 

b. The symmetric matrices II II fLv II and II ;' II with ele-

ments 

fLV lk fL v 
II = H M I Mk ' 

fLV ab fL v 
11 =h N,.Nb (1. 7) 

. satisfy identically the following equalities 
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nllP n av g = n fl" 
pu (1.8) 

(1.9) 

(1.10) 

Besides we have 

(1.11) 

All written above equalities may be verified directly. In parti

cular it follows from them 

flV flV flV n +II =g (1.12) 

If substituting here II flV and 
flV 

II from { 1. 7) we obtain the 

normalization condition for the generator-functions 

(1.13) 

fl• 
If we introduce a matrix II U • v II with matrix elements 

II• 
Mp Hkt 

k g 
Pfl 

(1.14) 
NP h ba 

b g Pfl 
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by vertue of (1.13) we obtain 

. ~· p• ~ 
R U - 8 •P •V - v (1.15) 

i.e. II u ~· 
•V 

II is inverse to IIR~~ II 

c. The following identities are· valid 

C Np N aM w= 0. 
paw a b I (1.16) 

One may obtain them by multiplying the both sides of (1.2) by 

g g N P N a 
~p va " b 

using (1.3). 

d. The quantities 

ab p a w ""' bb·' 
d = C N ,N b, N h h (1.17) 

c paw a c 

are the structure constants of any group S'(x) the algebra of 

which is isomorphic to some subalgebra S of G • The first 

part of this assertion may be proved evaluating directly Jacoby 

identity for the 

the quantities 

,d ab • To prove the second one let us consider 
c 

ofll' 
A 

pa ~ v w 
C U U R, 

w p a 11. 
(1.18) 

In consequence of the nondegeneracy of the R : and U it is clear 
~v that 0 A are the structure constants of the algebra of a group 

G '( x) isomorphic to the G • Immediately, one verifies that 

o"b = dab 
c c 

i.e. that we want to prove. 
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e. The quantities 

fl a,k C M p N u M w H bk h ab 
1 "' puw 1 b 

(1.19) 

are generators of a linear r,epresentation of S'(x) in an N -dimen-

sional space. This 

tation relations 

is proved by direct calculation of the commu-

... e b,k 

.= fl I fl e (1.20) 

From the two latter sections it follows -that there exists a subgroup 

s of G 

space X 

which has a linear representation in N -dimensionai 

Hence the nonlinear representation, itself, can be chosen . 
so that it becomes linear on subgroups. This means that a part of 

the generator functions corresponding to the subgroup S · is chosen 

to be linear functions of X • In this case it is always possible to 

do S '(0) = S, i.e. to choose the structure constants of G with 

separated subgroup S • Although this choice has certain physical 

meaning we shall not restrict ourselves to this assumption. 

f. To formulate the transformation properties of the quantities 

,_,Jhich we haye introduced above, we define a linear _representation 

T 8 of G on the space of the almost everywhere differentiable 

fundi ons by 

T g f (X) T g = f ( F ( g -I 'X )) • 

(1.21) 

The . form of the left-hand side allows one to find immediately com

mutation of the I f.L with the transforming quantities according to 

the formula 
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[I!Lfl=-( 
a£' 

agfL 
g =0 (1.22) 

fL 

where f' is a transformed f In particular, using (1.21)1 the 

following relations can be found 

[I fL f(x)] =- M~ ar 
a xk 

(1.23) 

[IlL x ] =- MIL (x} (1.24) 
I I 

. aM fL 
[I fL d X ] =- --1 dx n • (1.25) 

I . axn 

The last one can be obtained using Section e and differentiating 

with respect to x • 

g. The quantity f v,b (x) 
a 

defined by the equation 

I/ p. 
. aN... fLJ.I w v,b fL 

M -+C,_, N +f (x)Nb =0 
n a ~ a. .. 

xn 
(1.26) 

satisfies also identically the equation 

,\,b fL·b \ \ 
fL a f ,\ a fa. fL•o "•b "·c fL,b fLA Ul,b 

M --"'- - M -- + f f -f f + C f "'0. 
n a X n ax n a o a c Ul a. 

n 

(1.27) 

To prove this assertion it is sufficient to remark that according 

to (1.23) and (1.26) we have 

[IlL Nv] =-MIL aN~ .. C fLJ/N w +ffL'bN v 
a n a . Ul a.. a. b' 

X n 

(1.28) 
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Now if .we write a J9-coby identity for the [I A [I ll N ~ ]] using 

the correspo~ding identity for the C J:' we obtain (1.27) for f ~,b • 

It is not difficult to see that equality (1.27) is the very Jacoby iden

tity for any double commutator [ I 11 [ I vv a]] , where v ... ·· are defi-. 

ned by 

(1.29) 

So, the identity (1.27) is a necessary and sufficient condition- for 

the existence of quantities like. a v a 

satisfy the 

following commutation relation with generators of the represenj:ation 

[ 11 
. aMf · 

I H 1k] .. --H a X nk 
n 

ll 

H
nk a Mn In 

+--H 
ax k 

[ I /l h ab ] "' - f ll•"' hob - f ll•b h ca 
• 0 0 , 

(1.30) 

(1.31) 

(1.32) 

(1.33) 

where f 11 ';. 
0 

are functions introduced in (1.26). These equalities 

were obtained by direct evaluation using the definitions of the 

.H lk 'h ab 

N ll 
a 

and also the transformation properties of M f and 
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The commutators of I P. with inverse matrices can be 'VIIt'it-

ten applying the well known method for finding the transformation 

low of the inverse matrix if the ~ransformation low for a given one 

is known. 

Another consequence. from the last section is the assertion 

that 

d 
2 lk 

s 1 =H dx 1 dxk 

d 2 h"b s 2 = v v 
a b 

(1.34) 

are invariants of the group G • In particular the first one deter-

mines the Riemmanian metric in the space x • The Christoffel 

symbols in this case are 

aM0 

r tk 1 M P(H nt e Hnk 
0 a-g -- + 
L 2 pa n ax k 

a 
aMe 
ax, ). 

(1.35) 

Besides the covariant derivative of the metric tensor H tk is equal 

to zero 

,e 
Htk 

= ~H,k -reo H -reo H =o. 
a X I nk k In e 

(1.36) 

i. The matrices ll fill 

mutation relations with I P. 

and II fill. satisfy the following com-

[I p. ll pa ] "' C P.P . ll aw + C p.a ll pw 
, (J) (J) 

(1.37) 

[ I p. II fX' ] = C p.p II' aw + C pa II pw 
(J) (J) 

(1.38) 
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Using only the definition. of ll pu and transformation . properties of 

M P and · N P. it is easy to establish the first one. The se-
1 a 

cond is obtained from (1.37) inserting nfXT ""g fXT - II fXT • 

j. In the space spanned by v .. acts a rep:esentation of the 

subgroup S equivalent to the ,adjoint one. In. fact the operators 

a 11 ba v 
S = g Nr h I 

p.v b (1.39) 

are generators of some group isomorphic to S • In fact 

[S aS b] "' dab S c • 

" 

. . p.,a 
To find this commutator the following identities for f b 

from definitions (1.26) and from orthogonalio/ of the· M f 

g . f p, a N u N P. h cd"' C p. N P N u h da 
puo b d pu db 

(1.40) 

obtained 
p. 

and_ N a 

(1.41) 

were used. Now if one multiplies the both sides of (1.29) by 

and sums over p. one obtains 

] N V h .db f p.,o 
= gp.v d a V o 1 

and from ( 1. 41) one has 

[S b V ] "' d ob 
a a V c 

This is just what we vy-anted to prove. 

13 
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k. Now we shall 

for M t" and N ~ 

consider a system of differential. equations 

which are equivalent to (1.2). 

Multiplying both sides of (1.2) by M P H nl and s. umming n . 

over v we obtain 

aM ll a 
. I H lm aM, M ll M p ell M w M p H ml 
_, - k m gpa+ I m • 
axl axk pw 

(1.44) 

Similarly from (1.26) it follows 

aN~ .P,b ll a nl ell Nw Mp Hnl 
-"' - f ,. N b M n H g pa + pw a n ' 

a X I 

(1.45) 

The. last equation may be obtained also from (1.2) multiplying by N 

and using (1.3). By simple calculations the equalities (1.44) and 

( 1.45) are reduced to the form 

where 

aM~ ... AJkMil ~b'INil 
ax I k+ I b 

I 

aNt: FJ,bNil ~b,kHnl h Mil 
-- = a b + n ab k ' a x 1 

lk Jk 1 A 
1 

= [' · + - e M P M a M w H nk H ml 
I 2 ·{Xlfu n m I 

F Jtb 
a 

fp'bMa· Hnl 
a ngf» 
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r 
l 

Consider the system 

~ .. r lk Y + fl. b,l Y 
ax I I I b 

, 
I 

ayb Fl,b + A b,kH nl 
_.__,. Y u h baYk • ax I a b n 

(1.48) 

From the results of the last section it follows that the system has 

f -linearly independent solutions (it is over determined) for the 

desired functions. As that kind of solution one may choose 

(1.49) 

Then the complete solution of the investigated system has the form 

(1.50) 

In general as f - linearly independent solutions we may take 

Yll. C IL Mill ' I · II Y/l== c IL N II 
a II a ' . (1.51) 

where C ~ is a nondegenerate matrix. But the covariance of 

these solutions holds only if C ~ belongs to the adjoint represen

tation of the group G • So the covariant set of linearly 'independent 

solutions of (1.4!?) is unique up to the trivial equivalence. 
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2. Invariant Equations 

The properties of the nonlinear representations of the group 

G conside;:oed above allow one to build up the invariant equa-

tions for the fields transforming according to a given representa

tion. Strictly speaking we shall assume that a set of fields x ( 8 ) . I A 

( sA are -::oordinates in the Minkowsky space-time, A,B, •• = 0,1, 

2,3) transforming nonlinea.rly according to equality (1.24) is given. 

To assure the Lorentz cdvariance of the above mentioned relati

ons it is sufficient to suppose that the Lozentz group and group G 

are taken in a direct product. 

We also assume that in addition to x 1 a set of arbitrary 

fields ¢ a is given. They transform under arbitrary but fixed re-

presentation of the Lozentz group and group G • In general the 

commutation relations with the generators of G -group can be written 

as 

[Jil¢ ] 
a 

fL,f3 (X) t/J 
¢ a {3 (2.1) 

[Ill ¢a] =-rff'~(x)¢ 13, (2.2) 

where ¢ a is a contravariant to . ¢ • From the above written 
. a 

equalities it follows that ¢a ¢ a is an invari~nt of G group. The 

functions ¢ :·{3 identically satisfy equation (1.27). 

Now we show that with the help of x 1 and ¢a it is 

always possible to construct q,u~ntities of the type u 1 , v 11 i.e~ 

which transform according to formulae 

[ Jll ut] 
a Milk 

=--a un 
xn 

16 
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ll p.,b 
[I v a ] =fa . v b (2,4) 

This construction allows us to investigate only u 1 and v,. 

instead of x1 , 1/1 a and their derivatives 

further, the quantities of the kind of u 1 

, As we shall see 

are not un-

ambiguously defined if x, and tfla are known.· Arbitrarity in the choice of 

u 1 and v,. corresponds to that of a Lagrangian function in 

: theory with "Lagrangians", Besides (2,3) and (2.4) we write down 
I. 

the transformation properties of the covariant quantities 

aMP. 
[Ill u 1] = __ n .un 

a X I 

[I /l V a] = - f p.,a V b 
b 

(2,5) 

(2.6) 

(2.7) 

The possibility of constructing u 1 

complementary assertions. 

and v a follows from some 

1, If there are known u 1 and v a then 
, a,k 
/}.I Va U k 

h Ab,k I 
ab L1 I U U k 

(2,8) 

are again quantities like u 1 and v a 1 correspondingly, (The proof 

follows from direct calculations). 

2, Comparing (1.22) and (2,7) we remark that 

ax, 
-·- E aA XI as A 

17 
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is of the kind of u 1 

the Lorentz structure). 

(for the moment we are not interested in 

3. If the fields b ll transforming linearly under adjoint rep-

resentation of G are given, then 

u · .. M llb 
I I p. 

ll v ..... N,. b/I 

This is proved by direct calculations using . the equality 

[IIlb ] .. CP£tlb-
. v " v cu 

4. Thus, as in the above sections it may be shown that if 

ifi 1 and ifi 2 transform with respect to ( 2.1) then · 
a a 

g N P. ,1, I a A. v .(3 2 
p.v a'l' '~'a 1{1 {3 

.is of the kind of v a again. A quantity of the type of u 1 which 

does not content derivatives of the fields is not· always nonvan:ish

ing and we do not write it in general. 

The four items formulated above allow (if the fields x 1 and 

r.{l a are known) to· construct all possible quantities such as u 1 . 

and · v a • If moreover we want to include derivatives of any order 

of these fields, we must indicate a method to build up the differen

tial expre~sions transforming themselves like u 1 and v a • It is not 

difficult to verify that 

'A. kn A. 
aut +rl uk a xn 

A. _kn A. a u1 + A i u k a xn (2.10) 

are quantities of the sort of Ut • Similarly 
A n,b A 

a Va+Fa Vb a Xn (2.11) 

18 
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r kn A kn 
is ·a quantity of the type of v,.. .• In these equalities 1 1 

·and F :·b have .been introduced in the above paragraph (see (1.35) 

· (1.46) and (1.4!)), This is already. enough to construct arbitrary u 1 

and v a • However, this construction can be simplified remarking 

that the expression 

transforms as 1/1 , if= 
a 

L n,{:3 .,.· M ·ll ,1. v,(:3 H mn. 
a gpv m'~'a 

Therefore (2.12) can be considered together 

we apply. the procedure described in the item (4). 

the second expression in (2.10) and (2.11), (2,12) 

(2.12) 

(2,13) 

with 1/1 when a 
We shall call 

invariant deri-

vatives of t'1e quantities u 
1 

, v , 1/1 , correspondigly.. One may. 
a a 

find the simplest equations if we let to vanish the enumerated above 

co-derivatives. However, we shall drop out the equation. which ari-
• 

ses according to this procedure from (2.12) because if v,. is 

build up by the ·prescription of the fourth item then the vanishing 

of (2.11) leads to the simultaneous vanishing of (2.12) too. 

In that case however it is easy to check that in general a 

conservation law corresponding to this equations . does not exist 

because the curvature tensor obtained from the affine connections 
kf 

A 1 is not vanishing identically. 

To clarify the above said let us suppose that there exist 

J A (u I 'V a) so that 
A a J A =0. (2,14) . 
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If we want a covariance of the equality it is necessary to express 

a AJA in terms of .the covariant quantities. This is possible 

to do if the equations for u 1 and v a admit integrating multipli-
i 

ers. If a lk is one of them which <..orresponds to the equation for 

ul then it turns out that a lk must satisfy the following sys-

tern 
aalk A nf a o 
_,I Lk 

ax n (2.15) 

It has a nontrivial solution only if the corresponding curvature 

tensor equals zero. So this treatment is not suitable to appiy in 

construction of the equations always admitting conservation laws. 

Now the way in which the invariant equations should be construc

ted is dear. Indeed, we shall complete above written co-derivatives 

for u 1 and v a so that they always admit integrating multipliers. 

The most general expressions of that kind are 

P A I A I A kl n a A lk " a A 
U A;::; a U A+ n U A X k + /).a V A X k (2.16) 

P A a a A a F k,a b a A A a,k n a A 
VA=; VA+ b VA Xk +unU A Xk (2.17) 

As we noted before u 1 and v a have any Lorentz structure and 

to write the above expressions we need that u 1 and v a have 

at least one vector index A {which we write down ). The quanti-

ties pA u~ pA a 
t VA depend explicitly only on the first deri-

vatives, but as h is easy to see, in fact, the order of the deriva-

tives is not restricted because U I and va themselves can be 

build up with the help of arbitrary order derivatives .of the fields 

x 1 and tfla • The both expressions (2.16) and (2.17) can be 

united if we introduce 

20 

I 
r 



U I v =i< N 
v A 

WA = 
a 

VA v =za >_N + 1 (2.18) 

then instead of (2.16) and (2.12) we have 

(2.19) 

Z 
k,V • A kf Fk,b Aa,k 

where fl lS expressed by 1 , a , u 1 

The main property of (2.19) is the following 

(2.20) 

i.e. the matrix ( 1.4) is an integrating multiplier for . pA W ~ • If 

we take as an equation of . motion 

pAW ~=0 
(~.21) 

then 

(2.22) 

·is a conserving quan-

tity corresponding to (2.21). It is· clear that a current J f trans

forms under adjoint representation of the group G ~ As we noted 

before, the matrix R~~ is nondegenerate and therefore if we 

have a given current Jfl then from it u 1 and· v a as well as 
A 

the equations of notion could be found uniquely. This situation is 

very interesting but it is not a constraint in the theory. '!'he fields 

x 
1 

are in some sense privileged because in fact only their equa

tions are determined exactly· if the current is given, while the 
) 

equation for tjJ themselves is not unique. '!'his is a consequence 
a 
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of the bilinear structure· of u 1 and v.. built from ifla arid 1/J a~ 

To equation (2.21) there corresponds a set of equations for 1/J • 
a 

Let us clarify this by an example. If we choose 

in the form 

u I = a x H kl 
A A k 

v"' =g N ll ifJ v,{3 ·'· 0 ,,,a h ba 
A 'fLV b. a '1'{3 A'l' 

U I 
A and v~ 

(2.23) 

then it is not difficult to see that the last term in ( 2.17) identically 

vanishes, hence 

PAva= aA( Nil 
.A gfLV b 

ifJv~ 1/J {30 A 1/J a h ba ) + 
(2.24) 

+F~' .. (g NllifJv,{3¢{30 1/Jahcb)aAxk=O • 
fLV c a A 

Nciw if we write in detail (2.24) we remark that all t/1 a satisfying 

equations {3 
k, 

OAaAifla +0ALa ¢{3aAxk=Aa 
(2.25) 

satisfy (2.24) too (Here A a is an arbitrary quantity of the type 

of 1/J a ). In fact substituting (2.25) in (2.24) we conclude that 

A a , is not definite unambiguously). 

We shall illustrate this situation once more on the example 

considered in the Application • 

Thus to a given current there corresponds only one equation 

for x 1( s J and one set of equations for 1/J a fixed by· (2.19) 

which can be considered as a "generating equation". 

At the end of this paper we will draw our ·attention to the 

following fact. In general, the field theory constructed by the fields 

22 
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nonlinearly transforming under the group G is the ·theory of in-

teraction between · x 1 and t/1 a • However if we omitted t/1 a 

we would. obtain a theory only for the x1 (taking u~ =aAx 1 ; v~ =0 ), 

but a resulting theory would never be noninteracting by the rea

son of . the remaining self-interaction. For the t/1 a .fields the situa

tion is very different from the above mentioned one because if the 

fields x 1 were absent then it would not be possible to construct 

any equation for the fields t/1 a themselves. This particularity 

singles out the fields x 1 

the. whole theory. 

as fundamental ones, responsible for 

The disadvantage of this theory consisits in that at present 

we are able to choose as fundamental fields only scalar Lorentz 

fields. Therefore it would be interesting to investigate the problem 

of introduction of other Lorentz fields as fundamental ones. 

In conclusion the authors express their gratitude to Acad. 

Kh. Khristov and to Prof. V.I.Ogievetsky for their interest in this 

work and many useful discussions. The authors are also grateful 

to the participants of the Seminar on_ the Theory of fields at the 

Laboratory of Theoretical Physics (JINR, Dubna) for the discussions 

of this work. 

Application 

Let us illustrate the general theory on the example of the 

group SU ( 2) x SU ( 2) with generators T k and X k commut-

ing as usual 

[Tk Tel=i£kfn Tn 

[ T k X f ] = i £ kfn X n 

. [ X k X f ] = i £ kfn T n 
(A.l) 

• 
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Consider a· three dimensional non-linear representation of this 

group in form/9/ 

MJ.L= 
k -

I . 
T k =-I c lkf z e J.L =i:::;. 3 

I 1 2 
X k =- i ( - ( 1- z ) l) lk + z I z k ) ; J.L "' i > 3 

2 . 

(A.2) 

(Here indices i,k,L. take values 1,2,3, z 1 =g 17 1 , where 17 1 
f 

are pion functions and g = --
0 have dimensionality of length); 

m" . 
The metric tensor g /W equals 

/W "P va g = C r C = 4 8 Jl.V 
a p . 

Then. it is not difficult to check that the quantities 

chosen in the form 

NJ.L 
p 

X e=i(~(l-z 2 )l>le+Z lze) J.L =i-:;_3 

NIL e - I . T =- ic 
0 

z 
I Ln n 

J.L := i+ 3 

The transformation law of t/1 a has the form 

[ T I t/1 
1 

] =- -al t/1 
2 

[X 1¢ 1=--f(z xa)
1 

t/1 

can be 

(A.3) 

(A.4) 

By means of direct calculations one obtu.ins also all the remain

ing quantities necessary for building up both the invariant equati -

ons and conservation laws 
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FC.m ,;, ACm = _1_ ( Z 8 8 - Z 8mo ) 
l l 

1 
· ..2 m Jf + Z C mj j L 

m,n 
l'l c 

f n,m 
n 

+Z 

2 
=--,fm£n 

1+z 

i ( anm 

i ( Z m 8 na - Z n 8 rna -: Z a 8 mn ) ; /l "'_a> 3 # 

(A.5) 

From these expressions it follows that quantities u A and 

v ~ transform uniformly. However P -invariance of the theory de-

mands that v~ be a vector and 

The simplest choice of 

~ yAy5aii/J 

1 + z 2 

m 
UA axial vector. 

U I 
A 

and v! is the following 

2 2 2 
g (l+Z ) . 

(A.6) 

If now we insert .these expressions in the current 

(here i · is taken to assure hermicity of the current) we shall ob- ·· 

tain 
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(a Z X z) 
V:o- A 1- .... A 2 + rfi I( .... 1 ' .... 

g (l+z2)2 1+z2 YA axz )y5 -2(1+z 2)a 

- z( ;a .... ) I rfi 

1-z 2 .... ( z a z ) .... 
A = aAz + A z + 

A 2 2 2 
2g (l+z ) g2(1+z 2)2 

(A.7) 

1 - I .... .... 1 2 .... ... ....... 
1/J y A ( ax z)- - ( 1-z ) y a - z (a z) y I rfi • 

. 2 5 5 
+--'"""or" 

1+Z 

After some reconstruction equations of motion are 

o; 
g2(1 + z 2) 

A... '){a ... aAt) .... o 
4(za z) .... ..... Az ; -2imtlay

5 
rfi = --~· -·-=-a Az + 2 2 

f(l+Z 2) 2 g2(1+Z ) 

(A. B) 
A - -+ 2 .T. A -+ -> ...... A -+ -+ A -+ ... a (rfiy ar/J)=-- 'I'Y ly (a Z xa)- (za)a Z+ (aa z )zlrfi. 

5 · · 1 +Z 2 A 5 

As we have remarked the second equation defines a set of equa-

tions for the fields rfi • As an example. of that sort of equati-

ons one can take the following 

A 
i Y A a cpr/J -m r/J + 

y A -> -+ A-+ ..... A-> · 
- ( (a X Z) a Z -i y ( a a Z) ) r/J "" 

1 + z 2 5 

=(bA"t) y r/J +ibr/J 
A 1 

A 
here b 1 and b are arbitrary vector and scalar fields, cor res-

pondigly. 
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