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1. Introduction 

The hig!} energy scattering differential cross section has two 

. remarkable peculiarities: it decreases rapidly with the momentum 

transfer increase from zero 

da A yt __ , e 
dt 

, 0.:::;-t~0.5GeV 2 

(1,1) 

after that the cross section decrease with increasing momentum 

transfer become~ slower,· but as before it remains exponential, It has 

been shown in paper / 1/ that the cross section dependence on the 

momentum transfer close to the experimentally observed one 

· da -
__ , exp [-by- t ] 

dt (1,2) 

l"lear the diffraction peak can be obtained ~ the basis of· the quasi­

optical approach in quantum field theory /2/, su'pposing that the 

high energy' scattering. is described by a smooth potential of the 

form 

V(r}=g(r 2
) exp [-¢(r 2 

)] 
(1,3) 

in which the functions g( r 2 ) and ¢ ( r 2 ) ci:m contain the energy as 

a parameter: and do not turn into infinity· in any finite part of the 

complex r -plane, In this case the differential cross section depen-
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dence on the momentum transfer of Eq, (1.2) is explained simply by 

the penetration of the scattering particles ~._into the classically forbid­

den domain, However, it is necessary to add that the existence of 

the diffraction peak Eq. (1.1) 
1
at small momentum transfer is .also an 

essential feature of the scattering on the potentials (1.3), 

Thus the intrOduction of the potentials of Eq. (1.:» even purely 

phenomenslogical into field theory is a highly successful 'Step. 'I'he , 

fact th~t the diffraction peak is_ observed not only in the elastic 

scattering but in the exchange processes as well is also in favour 

of the introduction of such potentials, 'I'he exponential index y of 

the exchange processes such as the charge-exchange scattering 

is similar to that of the· elastic scattering and does not depend very 

much on· the exchanged quantum numbers. It is difficult to submit 

these facts to the generally accepted views about shadow nature 

of the diffraction peak and to the scattering picture on the· Yukawa 

potential when the angle distribution depends appreciably on the 

exchange quantum mass. 'I'he description of this scattering by the 

potentials of Eq. ( 1,3) allows to explain the regularities of these 

exchange processes, In paper.· /3/ where the nonrelatiVistic particl~ 
scattering 'on the potentials· of Eq. (1.3) was studied it was empha­

sized that these potentials could be described as potentials with a 

variable interaction radius. In fact ·if by analogy With the Yukawa 

potential the interaction radius is defined by the equation 

d cfx"l 
dr 

the inverse interaction radius (1.4) 

then the assumption about the quadratic dependence of the function 

¢ ( r ) upon r automatically provides nonconstahcy of the interac­

tion radius. We remind that in the case of the Yukawa potential 

the constancy of the interaction radius led to the poles in .the scat­

tering amplitude as a function of the momentum transfer and it cau­

sed the strong dependence of the differential cross. section on the 

exchang~ quantum mass. There are_ no such poles in the case of 

the potentials with the variable interaction radius. Now the scatter-
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transfer of Eq, (1,2) is explained simply by 

scattering particles Linto the classically forbid­

' it is necessary to add that- the existence of 

Eq. (1,1) ,at small momentum transfer is also an 
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1,3) allows. to explain the regularities of these 
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ing. · amplutude is an entire function of t and the effective interac­

tion radius is defined by the. momentum tran;:;fer, Thus the·. poten­

tials of Eq. · (1.3) lead to new universal sea ttering characterist!cs 

which differ considerably from the more usual Yukawa potential 

characteristics. In particular, now it is not so difficult to understand 

·the cauSe of the existence of the exchange scattering dif~raction 

peak which looks like the elastic scattering one, Now :th~ shape 

of- the differential cross section curve is defined mainly by the mo­

mentum transfer itself, In recent paper /4/ the high· energy scattering 

amplitude on the complex Gaussian potential was studied with the 

help of the quasipotential equation for i:he scattering amplitude in 

momentum space, The results obtained there are extremely close 

to the results of the analysis of the fast nonrelativistic particle 

scattering on the potential of Eq. (1,3) this analysis heaving been 

mad.e with the help of 'the Schrooin,ger · equation. It was shown in 

paper /5 / that this coincidence was not ·accidental ·and th.e phase 

shifts obtained on the basis of the exact quasipotential equati~n/2/ 
coincide in the first approximation with the phase shifts derived 

from the nonreiativistic Schrooinger equation with the same poten­

tial, According to these circumstances the Schrooinger equation is 

a convenient tool for the ,investigation of the s~ring amplitude 

even . in the high . energy region. 

In the present paper the method developed in .pape:t' 131 of 

the evaluation of the scattering amplitude is used for investigation 

of the spinless particle scattering on 1/2 spin particles, The. expres­

sions for the polarizations are obtained both in the small momentum 

transfer region and in the Orear one where the sea ttering differen- · 

tial cross sectio,n is described by Eq, (1.2), It is shown that at a 

small • scattering angle the method developed in ref, /3/ is equivalent 

·to thlf, widely- used , eikonal approximation in the scattering the9ryl6/, 
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2 •. Estimation <;>f the Scalar Particle Scattering 

Amplitude 

The possibility of representating the scattering phase shifts 

on the potential (1.3) in the Born integrai form 

2 
0 = - f X d X V ( X ) J ,\ (p X ) , A = f + 1/2 
c 0 

(2.1) 

··' and the possibility of estimating further the phase shift~ by !!leans 

of the saddle point method underlie the estimates carried out in 

ref./3/. Since in this case the phase shifts decrease t'apidly (more 

rapidly than the linear exponential) with increasing C (at Re ,\ > 0 ) , 

it is convenient to expand the exponential in the scattering amplitude 

partial wave expansion. 

1 210 c 
f(p,0)=--~(2C+1)(e -1)Pc (cosO) 

2ip 
(2.2) 

and to estimate the series by means. of the saddle point method. 

Thus the scattering amplitude is represented by the series 

1 oo (2i) n 
f(p, e)= --· ~ --A (p, e }, 

2ip n=l n! . n 
(2.3) 

where 

An ( p , e ) = c:O ( 2 C + 1.) o ~ P C ( cos 0 ) . (2.4) 

To estimate the phase shifts we use the approximation for the 

Bessel function 

J A (p x) = 

where 

1 • -=== e:xp [ px( shy -y ch y)], 

y2TT px S1 y 

A 
dty""Tx" 
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., 1In this case the integral in Eq. (1.2) is 

1 dx o>.. =---f --g(x) m 
2TTp shy 

in which one can consider shy 

functions of"x and 

and g(x 

F(x)=-sf>(x)+ 2px(shy-y 

Using the definition (2.6) it is easy to sh< 

and 

F'(x)=-¢'(x}+2p shy 

F"(x)=-¢"(x)- 2p 
2 

ch y --· 
x shy 

The condition F"'(x) =0 gives the function ] 

defined bv the eauations. 

¢'(x}=2pshy 

= .>.. 
ch y = px(>..) 

Th~ phase shifts themselves are appr!=>xir 

0£ g(x) y-:-- 2TT e:xp [ F(>..) 

2TTp sh y F "(x) 

where the function F ( A) is given by the • 

F(>..); F[x( >..) 1 =-¢(x) + 2p~(sh 'Y-r< 
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of the Scalar .Particle Scattering 

Amplitude 

of representa.ting the scattering phase shifts 

in the Born integral form 

00 2 
= - f X d X V ( X ) J .\ (p X ) , .\ = f + 1/2 

0 

(2.1) 

,.1 

of estimating further the phase shifts by ~!leans 

method underlie the estimates carried out in 

case the phase shifts decrease rapidly (more 

exponential) with increasing f (at Re .\ > 0 ) , 

the exponential in the scattering amplitude 

1 21 or 
-- ~ (2£ + 1)(e -1)Pe (cos 8) 

2ip 
(2.2) 

series by means. of the saddle point method. 

amplitude is represented by the series 

- _1_. ~ (2i)n An(p, e), 
- I 2ip n=l n. 

(2.3) 

)= £ (2£ +l)o: P 0 (cos6 ). 
£=0 . . L L (2.4) 

shifts we use the approximation· for the 

1 
-===exp [px(shy -y ch y)], 

y2rr px 'Eb r: 

.\ chy":' px-· 
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(2.5) 

(2.6) 
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; In this case the integral in Eq. ( 1.. 2) ds reduced to the integral 

8.\ =- -
1-J ~g( x) exp [ F(x )l ( ) 

2rrp shy 2.7 

in which one can consider shy and g(x) to be slowly ! variable 

functions of'x and 

F(x) =-cf>(x) + 2px(shy-y chy). 

Using the definition (2.6) it is easy to show that 

and 

F'(x)=-¢'(x)+2p shy 

F "(x)=-¢ "( x)- 2p 
2 

ch y 
xsh y 

(2.8) 

(2.9) 

·. 
(2.10) 

The condition F.'(x) =0 gives the function x(.\) which is unobviously 

defined bv the equations. 

¢'(x)=2psh r (2.11) 

"" . .\ 
chy=p~(.\) (2.12) 

Th~ phase shifts themselves are appr!Jximated in the ~allowing way 

or =- g(x) 
2rrpsh y 

2 . "' V- --"- exp [ F(.\)]; 
F "(~) 

.where the function F ( A) is given by the expression 

F(.\) =-F[x( .\) 1 =-cf>(x) + 2px(sh r-Y'chr ). 
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If we substitute' the expression for. the· phase shifts, Eq.(2.13), 

into the series in Eq~ (204) and replace the summation by the integ­

ration, the series. comes to the typical sadche point integrcil. To 

estima.te it one can use the asymptotic representation for the Legend~ 

re polynomial 

P e ( ros e ) = '>/ 
17 

A sin 8 

·"' 
Reexp(iAO-i!!...:..). 

4 

After that An ( p ,8) can be represented in the form 

(2.15) 

-2-- _ -1 77/4 

An (p, 8)=2 '>/ · I RefdA '>/A e exp(<I> (A}}x 
. n 

X Re (- g(~ ) · 
. 277p sh "" ..J­y. 

17 sin 8 

( "" --277· · -117/4 · ._ 
1 

g " ) 217 · 
-::-)+iRefdA..jAe exp(<I>n(A}}Jill(-~'>/- ,., )t 

F"(x ·) · ... 2npsliy F (x ) 

(2.16) 
The saddle point Ao for the integrals in Eq.(2.16) is defined from 

the equation 

¢~ (s 0 )=nF'(s0 )+iO=O 
(2.17) 

It follows from Eq. (2.14) that the point A 0 is unobviously given 

by the equation 

8 
"'(Ao.)=i -2 . y . n (2.18) 

However, it is more ccmvenient not to use this equation but to sub­

stitute the derived value y(Ao) into Eqs. (2.11) and (2.i2) and to 

express An (p, 8) as a function of x0 • In this case the value x 0 . 

is directly obtained from the equation 

"' 8 ¢ '(x )=2ip sin-
2n 

(2:19) 

and Eq. (2.12) serves for A0 definition 

8 

"' 8 . A = p X •. cos -. 
o --u . 2n 

It is. easy to snow that at the stationary 

equals 

<I>n (Ao )= -n [¢(xo)- xo¢) (xo) 1 

and Eq. ( 2.16) comes to 

"' 8 px 0 ros "2i1 ~ 
An(p,8}=2[-i n 1 

2 
exp[:._n .en(-

sin 8 ct>;: (Ao) 

-n (<j>(xo).:... xo¢'(x"'o))1, 

where 

"' 4n¢"(x 0 ) 

"' "' 2 2-x0 ¢." (x0 )+4p ch y 
<I>'~ (A o ) = -

We point out extremely obvious phys 

Squaring th~ 'both sides of this equation·, 

[ ..~. '("' >· 12 2 2 8 ., x 0 =- 4p sin -. 
2n 

There is a momentum transfer of the 

8 In in the right -hand . side of Eq. (2.24). ~ 

function '¢(x) is identified with the inversE 

may S'?-Y that the saddle point of the inte! 

value of the interaction radius so that the 

dius squared, equals the momentum transfe 

angle 8/n • Eq. (2.3) shows .that the wav 

the scattering amplitude on the potential o 

sented as a superposition of· the diverger 
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expression for. the· phase shifts, Eq.(2.13), 

(2.4) and replace the summation by the integ­

to the typical sadclle point integral. To 

representation for the Legend-

2 Re (. '(} . 1T . ) exp 1" -1-. 
4 

represented in the form 
_ -ITT/4 

--=---1 Re fd.\ y,\ e exp(~ (.\))x 
. n 

_ ... (2.15) 

-m/4 . . g(x > ~~ 
)+iRefd.\yAe exp(~(,\))flll'(-~y- )L 

·) n ... 2npsliy F"(x ) 

(2.16) 
for the integrals in Eq.{2.16) is defined from 

.. 
0 )=,nF'(s0 )+iO=O 

(2.17) 

14) that the point ,\ 0 is unobviously given 

e 
(Ao.)=i 2n. 

(2.18) 

not to use this equation but to sub­

Y(Ao) into Eqs. (2.11) and (2.i2) and to 

function of x0 • In this case the value x 0 .. 

the equation 

"' > . . e x =2Ip sm --
2n 

(2~19) 

for A0 definition 

8 

l ' 

I 

;, . \· 

I 
I 
t 

"' ,\ "'P"o 
0 

e 
cos--. 

· 2n (2.20) 

It is. easy to snow that at the stationary point ·the function ~n (,\) 

equals 

~n (,\o )= -n [¢ (xo)- xo•P' (~)] 
(2.21) 

and Eq. ( 2.16) comes to 

"' e PXo cos rn ~ 
An(p,0)=2[-i n ] 2 exp[~n £n(-

. e . ' 2 . F ;,( = ) p sm2n v " Xo . 
. . ) -

sin e ~ ;: (,\ 0) g(X'o) 
(2.22) 

- n ( <P ( ~)- ; 0 <P' ( x1))], 

where 

= 
4n¢"(x 0 ) 

~ ,~ ( ,\ 0 ) = -
"' "' 2 2-x

0
¢" (x0 )+4p ch Y(.\ 0 ) 

(2.23) 

We point out extremely obvious physical meaning of Eq. (2.19) 

Squaring the 'both sides of this equation we get' 

[ ,~.. , ( "' ). 12 2 2 e 
'~" x 0 =- 4p sin -. 

2n (2.:24) 

There is a momentum transfer of the scattering at the angle 

Ojn in the right-hand side of Eq. (2.24). Since the derivativeof the 

function '¢(x) is identified with the inverse interaction "radius, \c!,n~ 
may S<;l-Y that the saddle point of the integral in Eq. (2.16) r' fbtes a 

value of the interaction radius so that the inverse. interactio~ ra-:­

dius squared, equals the momentum transfer of the scattering· at· _th~. 
angle 0/n • Eq. (2.3) shows that the wave ·function which defines 

the scattering amplitude on the potential of Eq. (1.3). can be repre'"" 

sented as a superposition of· the divergent spherical -waves, each 
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of them appearing due to the . interaction at. the given distance from 

the origin, this . distance being defined by the scattering angle.· So 

the resulting wave can strongly depend on an angle at whicl) i~ 

is ·observed. Thus sharp change of the angle dependence of the 

scattering cr~ss section is a characteristic feature of the scattering 

of the potenti~ls of Eq. (1.3). 
Notice that the saddle point x goes to zero -with the scatte­

ring angle "decrease. So one can make the transition to the limit 

e ... o in Eq. (2.22). After that the for'llll8.rd scattering amplitude is gi-

ven bv the series 

p (-iT)
0 

f(p, 0) =-i - ~ --
a n! n 

(2.25) 

where 

a=¢" (0). 
(2.26) 

The value T equals 

2g(O) icp 
T = T 0 e /. , ___,_ 

py2rr a (2.27) 

. where ¢ is the phase of. the function g( x) at X= 0 • The series 

(2~25) _£:an be written in the integral form 

• To dx l(cp-rr/2> . P 
f(p,O).=-I...Lf-lexp[xe ]-1 1=-1-K(To) ( :'! 

a 0 x a 2.281 

and furthermore it is not difficult to _get the expression for the total 

scattering cross section 

a 
tot 

~ ( 

4rr 0 dx . 
= - f --I 1 - cos(x oos ¢) exp ( x sm ¢) I , 

a o x 

It is also simple to evaluate the diffraction peak -width 
2Ref* _!!_ 

---..1L.L...--I , . d da 
1:1 =--fn(--) 

dt dt t=O I f 12 t=O 

10 

/ 

(2.29) 

(2.30) 

'! 

. It, is easy to show _that 

.d f · To 
·--1 ~i--Lf 

dt t.=O a 2 o 

so 

.1:1= 
1 r· 

a I K( r ) 12 Re l K * ( 'ij) f ~ 
0 0 ~ 

The expression for the total cross 

obtained in paper /6/ in the case o: 

potential by means of the eikonal a 

We shall show that the meth< 

same results as· the eikonal appro 

at extremely small angles. Sipce al 

g ( x) to be a slowly variable one 

deschribing the small angle scatte 

so small that we can suppose sin-
2 

the stationary values x to be smal 

equations are valid 

¢'(x"')=ax ¢(x)= 

i.e. describing the small angle sec 

Eq. (1.3) can be replaced by GausE 

together -with Eqs. (2.33) accuracy 

the logarithm in the exponential in 

scattering angle the series in Eq. 

f( e)=- _i_P_~. (-irt 
p,. a -,--

On using the identity 

1 [ (p e) 
2 

-- exp - -'---
an 2an 

n.n 

.00 

== fdbbJO 
0 . 



to the interaction at. the given distance from 

being defined by the scattering angle.· So . 

strongly depend on an angle at whicll i~ 

change of the angle dependence of the 

is a characteristic feature of the scattering 

x goes to zero -with the scatte-

So one can make the transition to the limit 

that the forward scattering amplitude is gi-

. L!. -I 
a 

(-ir)n 
(2.25) 

n! n 

=¢ "(0). 
(2.26) 

• 0'' lcp r
0
e 

(2.27) 

the • function g( x) at X= 0 The series 

in the integral form 

l(cp-11/2) p 
{exp[xe ]-1 l=-i-K(ro) 

a (2.28) 

difficult to get the expression for the total 

(2.29) 

the diffraction peak -width 
da 2Ref*...!!.L 
-> = ·I , dt t=O 1£12 t=O 

(2.30). 
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·j 
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I 
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l 

.. It, is easy to show that 
1 

ro d.; ~~ ~i-Lf-K(.;),, 
dt t=O a2o f (2.31) 

so 

1'1= 
ro 

1 Re{K*(I()f de; K(.;) l. 
a I K( r

0 
) 1

2 
o .; (2.32) 

The expression for the total cross section Eq. (2.29) first has been 

obtained in paper /6/ in the case of the scattering on the Gaussian 

potential by means of the eikonal approximation. 

We shall show that the method developed here .leads to the 

same results as· the eikonal approximation does in the scattering 

at extremely small angles. Sipce all time . we consider the function 

g(x) to be a slowly variable one we can suppose it constant 

deschribing the small angle scattering. If the scattering angle is 
. () () th .. d so small that we can suppose sm -

2 
='--

2 
, en we can canst er _ n n 

the stationary values x to be small too. In this case the following 

equations are valid 

¢'(x"')=ax ¢(x)= al12 
2 (2.33) 

i.e. describing the small angle scattering any smooth potential of 

Eq. (1.3) can be replaced by Gaussian one. Then wi.th the accept~d 
together -with Eqs. (2.33) accuracy the pre.exponential factors and 

the logarithm in the exponential in Eq. (2.16) do not depend on the 

scattering angle the series in Eq. (2.3) comes to the series 

ip (-irt (p8)
2 

f(p, 8 ) =- --!. exp [-. 2 ]. (2.31 4) · 

On using the identity 

_1_ exp [- (p 8)2 
an 2an 

a n! n , an • 

2 
.oo ab f db b J 

0 
(bp 8) exp(-n -). 

0 . 2 . (2.35) 
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one can write the series in Eq. (2.34) in the integral form 
ab

2 
00 ---

f{p,O)=-ip Jdbb J
0

(pb O){exp(-ire 
2 

)-11. 
0 

(2.36) 

It is not difficult to make oneself sure that the exponential in Eq. 

(2.36) equals 
1 

. 

, 1 +oo 
ix{b.)=- -- f V{y'b 2 

+Z
2 )dz 

rrp -oo (2.37) 

and the integral in Eq. (2.36) coincides with the integral which has 

been obtained as a consequence of solving the Schrooinger equation 

in the short wave approximation /6/, 

Thus the representa~on of the scattering amplitude in series 

form (2.4) contains the eikonal approximation as a particular case 

and besides that it can be used for· the estimation of the large angle 

scattering amplitude. We notice thC:d the transition from the summation 

to the integration in Eq. (2A) leads to the sadlle point integral 

which must approximate the scattering amplitude sufficiently exactly. 

Supposing z = : and approximating n! by the Stirling formula we 

derive the following integral representation for the scattering ampli­

tude 

1 p o 0 
f(p, 0) = -. v' f dz(-

1P 2rrs.in 0 o 

i ~ ( z) cos z /2(~xp [ _ !... u (z)] , 
·- ' z z8 c:tJ"(z) 

. (2.38) 

where 

¢ '[~ ( z)]O y' 2rr F';I ~(z) ] + ¢ lX( z)l-~(z) ¢, [ x( z)]. (2~39) 
u ( z) = r n ['- ( '> ] ' 4e z g x z 

The saddle point position for the int~grand is defined by the equation 

u(z)-zu '(z)=O. (2~40) 

12 

\ 

I 
! 

! -

'i 

I 
. I 

One can see from the definition of the fun. . . ' 

root of the equation (2.40))_ slightly depends 

and at' small z the equation (2.40) has no 

logarithmically with z .... o· and zu '(z) being 

So at small scattering angle the saddle po!r 

ration contour and as the first approximation of tJ 

can take the value of the integrand at the uppe 

that at a sufficiently small momentum transfer tr. 

scattering amplitude is described satisfactor 

series (2.4) i.e. ·at 0 < z0 

f(p, o);; ...!.A 1{p, 0). 
p· 

. In the case of the large angle scattering 

tegral in· Eq. (2.38) by means of the saddJ 

the result 

f(p,O)§l+-v' _P · (-i ~ (zo)cosz 0/2 Y, 
lp sm 0 ) 

u "(z o) z2o <ll, ( Zo ) 

For definiteness we consider the sec 

potential 
a x2 

V(x)=g -exp{- --). 
2 ' 

. The equation defining the stationar: 

following one 

... 2. • o ax= I p sm-. 
2n 

-r:he expressions for t:Jhe second deriva.i 

and p, also look simple 

F"(x) =a 
cosO In 

sin
2
0/2n 
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series in Eq. (2.34) in the integral form 
atf ----

(})lexp(-ire 
2 

)-1 I. 
(2.36) 

make oneself sure that the exponential in Eq. 

' +oo 
=- -

1
- r V(yb 2 

+Z
2 }dz 

rrp -oo 
,...< (2.37) 

Eq. (2.3~) coincides with the integral which has 

consequence of solving the Schrooinger equation 

apprmdmation 16 1, 
entation .of the scattering amplitude in series 

the eikonal approximation as a particular case : · · 

can be used for· the estimation of the large angle 

We notice that the transition from the summation 

Eq. (2;4) leads to the sadlle point integral 

the scattering amplitude sufficiently exactly. 

approximating n! by the Stirling formula -we 

representation for the scattering ampli-

i~(z)cosz/2t/2 (} 
. _ ) exp [-- u (z)] , 

z 3 ~"(z) z 
(2.38) 

(}y'2rrF';[~(z)] 
•-ezg[x(z-)l +cf>fX(z)l-x(z)¢'[x(z)]. (2~39) 

for the int~grand is defined by the equation 

u(z)-zu '(z)=O. 
(2~40)' 

12 

l 
! 

I 
! 
I 

.I 
I 
I 

-. J 
I 
I 

f 

_I 

One can see from the definition of the function.' u(z) that_ z0 (the 

root of the equation (2.40)) slightly d'epends on the scattering angle 

and at small z the equation (2.40) has no 'solution, u( z ) increasing 

logarithmically with z .... o· and zu '(z) being finite at the point z =0. 

So at small scattering· angle the saddle po!nt lies far from the· integ­

ration contour and as the first approximation of the scattering amplitude one 

can take the value of the integrand at the upper integration limit. It means 

that at a sufficiently small momentum transfer the angle dependence of the 

scattering amplitude is described satisfactorily by the first term of the 
series (2.4) i.e. at (} < z~ 

. "" 1 f(p, e)= -A ,(p, e). (2.41) 
p 

. In the case of the large angle scattering the evaluation of the in­

tegral in -Eq. (2.38) by means of the saddle point methOd leads to 

the result 

f(p,(}}111 +.-v P - (-i ~ (zo) cosz 0/2 )!I, _ , 
1 p sin (} exp [- (} u ( z ) ] • 

u "(z 
0

) z~ c1J, ( z
0 

) o · 
(2.42) 

For definiteness we consider the scattering on the Gaussian 

potential 

a x2 
V(x) = g l!xp(- --). 

2 (2.43) 

_The equation defining the stationary point x , comes to the 

following one 

"" . 2 . (} ax"'' p sm-. 
2n (2.44) 

,J 

~he expressions for the second derivatives ·of the functions F 

and c_l>. also look simple 

F"(x"")=a ros(}/n 

sin2 (}I 2n 
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<ll"(~)=-
an 

(2.46) 2 
p ros 0/n 

In this case the general term of the series in Eq. (2.4) equals 

2 2 sin20/n t/2 g n 2p 2 2 0 . 
A (p 0)= ~ ( ---) (- ) exp(-n-sin -). 

n ' a... 2nsin0 _12 "/ a 2n 
Pv 11arosv n 

(2.47) 

The small angle scattering is defined by the amplitude 

2 . t 
f(p,O)=-gv 3 exp('2"a). 

rra (2.48) 

It is not difficult' to show that it is necessary to suppose the 

coupling constant g proportional to t~e momentum to provide the 

scattering total cross section constancy. However, even in this case 

one cq.n still. define the scattering phase shifts by the Born integ:... 

ral of Eq. (2.1). For the Gaussian· potential the equation (2.40) for 
the saddle point Z 0 comes to the/ equation 

p2z; p2z~. rrp2t. 
--+ fn( ) = fn( ). 

a a 2g 2 (2.49) 

At a large momentum transfer one can consider the logarithm 

in the left hand side of Eq. (2.49) to be a slowly l variable I function 

of z 0 and take as an approximate solution of Eq. (2.49) 

z2 a 2 o =- fu( rrp t p2 2 ). 
g 

(2.50) 

Notice that we can consider the value standing; under the logarithm 

in Eq. (2.50) to be positive since the phase of the root z 0 due to 

the logarithm complexity is negligible in that case. The large mo-

mentum transfer scattering amplitude equals 
. -~- . t 1T p2 t 

f(p' 0) =-lp v-- exp [-y-- fn ( . ) ]. 
' -at a 2g2 (2.51) 

14 

In the general case the scatteJ 

the following expression -
·' 1 . o_ 

f(p '0) = -i p v--exp [- y-t 
-at 

where z
0
(t)=lz

0
(t)l exp[it/I(t)l, i1: 

point Eq. (2.49). We get the formula 

da 2lgl
2 

--= exp(· 
dltl p 2 a 3 

for the scattering differential cross se 

Here we use Eq. (2.48) for the scatteri 

agrees well with the differential crm 

diffraction. region which is observed i 

approximation (2.41) works rather wE 

gion. Now we consider the scatterin.§ 

the estimate in Eq. (2.52) of the serie~ 

ferential ·cross section in the form 

da -~ 1T 2 
dlt I = -a·t exp [- y=t"-p 

As one can see from Eq. (2.51) at a· 

is a slowly variable function of t 

tfr(t),.,O • In this case 

da 
--,.,exp £-bv=tT 
dl t I 

Such a behavio~r ag,rees well with 1 

behaviour in the Orear region 2.0 G 

useful. method allows one to describe 

·change of the regimes in. the differer 

We cannot· describe the· more detailec . . . . . . . 2 
domain 1.0 Gev2 <'-t < 2.0 GeV , 

:1.5 



. ( 

an 
<I>"(X-')=- z 

p cos 8/ n (2.46) 

the general term of the series in Eq. {2.4) equals 

z g n 2p 2 8 ' sin28/n 
1
1
2 

) exp(-n-.-sin -). 
( -----) (- ....,., a 2n 

2nsin 8 py2 "acos8/ n 
(2.47)" 

scattering is defined by the amplitude 

. .I 2 (. t ) f(p, 8)=-g v 3 exp 2a · 
"a (2.48) 

difficult to show that it is necessary to suppose the 

tant g proportional to U,:e momentum to provide the 

cross section constancy. However, even in this case 

define the scattering phase shifts by the Born integ:.... 

1). For the Gaussian potential the equation (2,40) for. 
Z 0 comes to the equation 

p2 z~ p2 z~. 11p2t · 
--+ fn( ) = fn( 

2 
). 

a a 2g (2.49) 

momentum transfer one can consider the logarithm 

side of Eq. {2A9) to be a slowly 1 ya.riable I function 

a~ an approximate· solution of Eq. (2,49) 

z 2 a 2 · 
o =- fu( 

17
P t p2 . 2 ). 

g 
(2.50) 

can consider· the value standing; under the loga:ithm 

be positive since the phase of the root z 
0 

due to 

complexity is negligible in that case. The large me­
scattering amplitude equals 

=-- -~- . t 11' p2 t 
lp ...; -::ar:- exp [-v-;- fn ( 2g2 ) ]. . (2.51) 

14 

I 

I 

j 

I 
I 

i In the general case the scattering amplitude is defined by 

the following expression -
1 -f(p '8) = -i p v--exp [- y-t 

-at 
p z 0 ( t) 

(2.52) ] ' a 

where z
0 

( t) =I z
0 

(t) I exp [ i r,U (t) ] 

point Eq. {2.49). We get the formula 

is the solution of the saddle 

da 2jgl
2 

t 
--= exp(-) 

dltl p2a3 a (2.53) 

for the scattering differential cross section at small. angles fJ < z 0 • 

Here we use Eq. {2.48) for the scattering amplitude. Such behaviour 

agrees well with the differential cross section behaviour in the 

diffraction· region which is observed in the experiment. Thus our 

approximation (2.41) works rather well in the diffraction peak re­

gion. Now we consider the scattering at angles 8 > z 0 • On using 

the estimate in Eq. {2.52) of the series in Eq. (2.3) we get the dif-' 

ferential ·cross section in the form 

da djtf= _"·t exp[-y~ 2
Pizo(t)jcosr,U(t) a . ] a . (2,54) 

As one can see from Eq. (2,51) at a· large momentum transfer I z
0

(t) I 
is a slowly variable function of t 

r,U (t) ,o , In this case 

and the saddle point phase 

da 
--"' exp [- b v=tl. 
dl t 1 (2.55) 

Such a behaviour a~rees well with the differential cross section 
behaviour in th~ Orear region 2,0 Gev2 _<-,.t::; 5.0 · GeV2• Thus the 

useful method allows one to describe the experimentally observable 

·change of the regimes in the differential cross section behaviour. 

·We cannot· describe the more detailed structure in· the intermediate 

domain' 1.o GeV2<-t < 2.0 Gev2 , for our evaluations allow to 

15 



·piCk out only the main exponential_ part in the behaviour o~ the· 

scattering amplitude and cross section. We notice that the experi­

mental precision in the region J..O ~ev2 5': -t5: 2.0 Gev2· is not enoug~ 
to determine the analytic form of the differential cross sec.tion de­

pen?-ence on the momentum transfer. We point out only_ the possibility 

of the oscillations. in this region that follows from general Eq.(2.54). 

-"' 
3. 0 Spin Particle Scattering on 1/2 Spin Particle 

In this section we take into consideration the spin in the simp­

lest case of the scalar particle scattering on 1/2 spin particle. We 

assume that the interaction potential has the usual form 

V(x) = V (x) + Vry(x)( a~ r ), 
I· w (3.1) 

where V
1
(x )and V2 ( x) are the central and the· spin-orbital potentials 

correspondingly. Further we shall assume the form of Eq. {1.3) for 
4 . . 

them. f is the . orbital moment operator of tvo:o particles in the centre 

of mass system. If the totaL moment J( 1.= f. + ~ ) • ()f the system 

· is fixed the orbital moment f can take two values f..:_ J ::!:. t- . The 

potential (3.1) conserves parity, so the transitions J;:>etween these 

s~t~s are absent. As usually we label by f ± the values related 

to the states with J = e ±.-! ~-'l'he scattering in these states is descri­

bed by the. Schr.Odinger equation with the pote~tials Vf+ and V £­

accordingly. 

Vf+ (x)=V1(x)+ ~V 2 (x) .(3~2) 

Vf_(x)=V 1 (x)-(f +1)V 2 (x) .• (3.3) 

We use Eq. (2.1) for the .phase shifts ~ e± which turns out valid 

because of the assumption about smoothness of the potentials V 1 

a~d v2 : 

16 

I,/ 

I 
. I 
l 
I .;, 
.,;l 

I 

.~ 
t 
l 
! 
I 

\ r, 
I 

o =- /" dx x V . (x)J~ (px). 
f± 0 . f± 

The scattering amplitude 

T(p , e ) = r (P, e)+ i(q. it) g (p , e ) ~n e:, 

wh ... p xjV · th "t t · th d" ere n = - ... -- IS e uni vee or In e Ire 
IP><p'l 

the scattering· plane. Here g and f are the 

flip scattering amplitudes for which the followi 

sions are valid 
1 00 2 I Of+ 

f(p,O)= -.-~[(f +1)(e 
2tp £=a 

210£_ 
-1)+ e (e -1 

( 
1 00 2( 0 

g p, e ) = __ ~ < e+ 
2ip &t e 

210 f-
--e )lf'(rosO) 

As in the spinless' case the' amplitudes f a 

in the form of the expansions in the do~ple 

where 

f(p,O)= - 1- i (2i)n(A+n +A:) 
2ip n=l n! 

1 oo_ (2i )n + _ 
g(p,O)=- ~ -(B -B ) , 

. 2 i p n=l n! n n . 

00 + . n 
A (p , e)= ~ ( e + 1) o ( p) P (rose ) 

n f=o f + . f · 

- oo n 
An ( p , e ) = l:~o f of- ( p) P f ( rose ) 

~ o.o n 

Bn (p,O}_= ~ of+(p)Pi (rose). 
f=t -

We shall estimate these expressions replac 

tegral. · The integrals obtained in such a way 
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the main exponential part in the behaviour of the 
. . . . 

e. and cross section. We notice that the experi-

in the region l.O 9-eV2 5 -t_-:: 2.0 Gev2· is not enough 

analytic f~rm of the differential cross sec~on de­

momentum transfer. We point out only the possibility 

. in this region that follows from general Eq.(2.54). 

I -"' Spin Particle Scattering on 1 2 Spin Particle 

on we take into consideration the spin in the sim~ 

scalar particle scattering on 1/2 spin particle. We 

interaction potential has the usual form 

V(x) = V (x) + V (x)( a-~ f ) , 
I 2 

(3.1) 

V2 ( x) are the central and the spin-orbital potentials. 

·• Further we shall assume the form of Eq. (1.3) for 

. orbital moment operator of t~o particles in the centre 

the totaL moment J( 1.= f + ~ ) • of the system 

moment £ can take two val~es £ = . J ±. f- . The 

conserves parity, so the transitions ?etween these 

As usually we label by £ ± the values related 

J = £ ±.-1 • -~~~ scattering in these states is descri- . 

equation with the potentials V n and V e-. L+ 

v£+ (x) =VI( x) + ~ v z(x) 
,(3.2) 

V£_(x)=V 1 {x)-(£ +1)V
2

{x). 
(3.3) 

1) for the .phase shifts ~ e+ which turns out valid 

assumption about smoothness of the potentials V 1 

16 

.1 

I 

l 
t 
l 
l 

··' 
1.7 

·~ I 

J· 
I 
\\ 

/. 

8 =- f dx x v (x)Jr {px}. 
£± 0 £± : (3.4) 

The scattering amplitude 

T(p,O}~f(p,O)+i(q.n}g(p,O)sinO ·, 
(3.5) 

-+ _,.,. 

where n = p .... xp is the unit vector in the direction of the. normal to 
lpxp'l 

the scattering' plane. Here g and f are the spin-flip and spin-non-

flip scattering amplitudes for which the following partial wave expan­

sions are valid 

1 oo 2 I 8£+ 
f(p,O)= -

2
. ~ [(£ +1)(e 
tp f=o 

218£_ 
-1) + e (.e -1)] Pe (coso ) 

(3.6) 
1 00 21 8 £+ 2 !8 £-

g(p,0}=-2. ~ (e -e >Pe'(rosO) 
tp &t (3.7) 

As in the spinless' case the' amplitudes f and g are represented 

in the form of the expansions in the douple series 
n 

f ( p 0) = - 1 - I ~A+ +A- ) 
' 2i p n=l n! n n (3.8) 

1 oo {2i )
0 

+ _ 
g(p,O)=- ~ -(B -B ) , 

2ip n=l n! n n (3.9) 

where 

00 

A:{p,O}= ~ ( £ +i)B n (p}P (rosO) 
£=0 £ + £ . (3.10) 

A~ ( p, 0 ) = £~ £ 8 £~ ( p) P £ ( rosO) (3.11) 

-t_, oo n 

Bn {p,O}_= ~ 8£+(p)Pi (rosO). 
£=1 -

(3.12) 

We shall estimate these expressions replacing the sum by the in-. 

tegral. The integrals obtained in such a way have the saddle points. 
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We use the asymptotic formula of Eq. (2.15) for P e( rosO) • The similar · 

asymptotic formula for Pe' ( rosO) has the- form 

1 
P , (rosO);; -. 

0 e sm 
v~ 

"sin 0 
Reexp(iAO- i ~). 

4 
(3.13) 

Thus we get the following representation for the expressions (3.10)­

(3.12) 

+ ,.< --- 2 n 1T 
A (p,O)=v--· JdA.,fAo (p)R.eexp(iAO-i-

4
) 

n rrsin 0 A± · 

± 1 -2-- - n • 317 
B n (p,O)=--v--J dAyA oAt (p)R.eexp(iAO-i-

4
-), 

sin 0 17 sin 0 

We write down the phase shifts in the form 

8 
A+ 

8 + A8 ' lA - 2A 

(3.i4) 

(3.15) 

(3.16) 

where 8 lA and 8
2
A are defined by the potentials V1(x) and V2 (x). 

The evaluation of the correspondh1.g Bo~n integrals such as in Eq. 

(2.1) has been considered in detail in the previous section. The 

following formulas take olace 

8 (p) =-
1,2A 

g 1,2<x1 2 ) 2 
---~· --v " 217 p sh y( x ) - F, ( ) exp [ F I 2 ( x ) 1 

I 2 X • 1,2 
' I ,-a 1,2 

(3.17) 

F1,2 (x 1,2 ) =-¢ 1,2 (x 1,2)+2px 1,2 [shy(x
1
;
2

) -y(x 1.2 )ch y(x 1,2 )1, ·(3.18) 

where X I 2 E X I 2 (A) . . are defined from the· equations 

¢1' 2 (X I 2) = 2P Sty (x I 2) . . . (3.19) 

. A. 
chy .(xt,2 ),;, ~-2 (3. 20) 

18 

= 

Further we _shall- assume. for sim: 

and V2 are Gaussian:. 

a x 2 
V1(x)=g 1exp(- --) 

' ·. 2 
'-····., 

v2 (x)=g2exp(- .bx\ 
- 2 

No _difficulties of principle arise in the 
form potentials_ V(x) 7g(r) exp'[-¢(x 2)] • 

obtained in such a wav turn out to be 
Using the binomial expansion fo 

-- . 
± 2- I! n n-k k 

An (p,O)= y . ~(k )g g Re J4 
• IT Stn {I k=O 2 

1 · 2 17 n-k 1 
x [- ---"----v- 1 [---

217p shy(x 1) F" (x) ,_ 277psh: 
1 t 

where 

4l>nk (A) = (n-k) F 1 (x1) +kF 2 (x 

The stationary point A o 

from the equation 41>~\1; ( ,\) = 0 

for the 

It is 1 

(n-k)y[x 1(A)] +ky[x2(A)1 =i 

The second relation connecting y ( x 1 ) · 

(3.19) and (3.20) 

y [_xl (A)1 ·a 

. y[x2 (A)] b. 

It follows immediately from Eqs~ (3.~5) ·, 
point ·A. 

0 

€:• 
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.. ptoucformula of Eq. ~2.15) for Pe(rosO) • The similar 

for Pe' ( rosO) has the- form 

1 v~ 
sine 1T sine 

Re exp(i A.O- i ~). 
4 

(3.13) 

following representation for the expressions (3.10)-

.,< 
n IT 

fdA.{Ao (p)Reexp(ili.O-i-) e _ "'-± 4 (3.14) 

~ - n ••. 31T v-f d..\y..\ 811." (p) Reexp(t..\.0-t-
4
-), 

IT sin 0 .t:_ 
(3.15) 

phase shifts in the form 

8 =o +"-8 , "'-+ I..\ - 2A . (3.16) 

8
2

.,\ are defined by the potentials V
1
(x) and V

2
(x). 

the corresponding BoJ;"n integrals such as in Eq. 

onsidered in detail in the previous section.· The 

take olace 

X ) 
1_,2_ V- 2rr exp [ F (x ) ] 
-y( X _ ) F, (X ) 1,2 I ,2 

1,2 1,2 1,2 

(3.17) 

(x 1,2)+2px 1 ,2 [shy(x
1

;
2

) -y(x
1

,
2

)ch y(x 
1

,
2
)1, '(3.18). 

) are .defined from the· equations 

',2 ( x 1,2) = 2pffi y (xI} (3.19) 

. . ..\. 
Y (x ),;,·-. 

1,2 p X 
_I, 2 

(3. 20) 

18 

:: 

Further we shall- assume -for simplicity that the potentials V 1 . 

and V2 are Gaussian: 

a x 2 
VI (x)_=glexp(- -2-) 

'-···-· ·., 
bx 2 

v2 ( x) = g2exp (- --). 
2 

(3.21) 

(3.22) 

No difficulties of principle arise in the consideration of the general 
form potentials_ V(x) =;=g(r) expJ-f>(x 2 )] .However the expressions 

obtained in such a way turn out to be very complex. 
Using the binomial expansion for 8 ~ (p) we get 

+ -2- n n-k • k · k -111/4 
A;:-(p,O)= y . !.( kn )g g Re fd ll.yA. (±.11.) e x 

- . rrsmOk=O 2 , 

{!3.23) 

1 · 2 IT n-k 1 2 11 k 
x[---"----v- ] [- V- ] exp[<llk(..\)] 

21Tp shy(x 1 ) F" (x) 21Tpshy(x 2 ) F"(x) n 
l 1 2 2 

where 

<lln!<(..\) =(n-k)F 1 (x1)+kF 2 (x 2)+i..\O. 

. (3.24) 

for the function <llnk ( 11.) is defined The stationary point 11. o 

from the equation <ll~~ ( 11.) = 0 • It is not. difficult to reduce it to 

(n-k)y[x 
1
(..\)] +ky[x (..\.)] =i.!.... 

2 2 (3.25) 

The second relation connecting y ( x 1 ) with y(x 2 ) follows from Eqs. 

(3.19) and (3.20) 

Y [xl (..\.)] ____ ·a 

- y[x
2

(..\)]- T" (3.26) 

It follows- immediately from Eqs. (3.~5) .and (3.26) that at the' saddle 

point .,\ 
0 

f'' 
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where 

Y (x 
1

) =i 2.L 
2b 

y(x)Ji.l. 
2 2 ' 

e 
,.J y = ,....._ ------

a 
k +(n-k)-

. b 

Returning to Eqs. (3.19) and (3.20) we get 

p2 . ay = 
•\ = p X 1 ch y (X 1 ) = i a Sin ( b) = i ,\, 

It also follows from Eqs. (3.27)-(3.30) that 

2 2 2 
ci>nk (A)= -(n-k) _P_ sin2( ~) -k __!_psin2 ..1_ 

· a · 2b b 2 

ci>:k(Ao) =-
a(n-k) bk 

2 ay) p 2cos( b p cosy 

F';[x 1 (A 0 )] = 

ay 
a cos( 11> 

2 ay ) 
sin ( ""'2b 

F"[x (A']= 
2 2 o' 

b cosy' 

sin
2 ~ 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

Taking account of these formulas the expression for A
11 

(p, 8) = 

= A -4- ( p, 8) + A: (p, 8 ) , obtained by means of the saddle point method 
n 

has the form 

n n 1Tk A 1/2 
A n ( p , e ) = 2 k ( k ) cos - 2- ( - . ) D nk (p , 0) exp [ ci> nk (A 

0
)1, ( ) 

k=~> sine ci>" (A ) 3 •34 
nk 0 

where 

n-k -... k . . ay -(n- k) . . -k 
.Dnk (p, 0)=g 1 (Ag 2 ) [-py'21Tacos( -b-)] [-py211bcosy ] '(

3
•
35

) 

20 

By repeating the above arguments · it is nqt 

following expression fa.~ B n ( p ; 0 ) = B n+ ( p, e 
nn k 1. X ~ 

B (p, 8)=2 k. ( k )sin~.--(- , ) 
2 

· n . k& 2 sine sin Oct>"(.\ ) 
nk 0 . 

Now we shall write the series (3.8) and 

f(p,O) and g(p~O) correspondingly, retaining i 

only the first-order terms in g 2 Thus· we 

spin-orbital interaction is included in .the pol 

recti on. 

f(p, 0)= _1 _·.; (2i)n (- ~ )~ n ('.p, 
ip n=1 n! · sinOci>':

0
(A

0
) · nO 

n = l! 
1 "" (2 i) 1 A 12 · 

g(p,O)= ijJ ~1 (n-1)! sinO(- sinOci>"(A)) Dn. 
· n1 0 

In the previous section it was shown 

that our formulas were turned into the carr 

of the eikonal approximation X) when the sn 

spinless particle scattering was considered. 

here also for the scattering amplitudes (3.3'i 
use the identity (2.37) and the foliowing one 

pe (pe)2 "" 2 
2· b2exp[- 6 l=fdbobOJ1(bop0) 

a (n+ -) . 2a(n+<-) o · 
a a· 

The final expressions take the form 
00 

• ·f (p,8)=- ip {db0 b 0 J0 (p0 h 0 )[exp(ix0 )-
o . 

x) Recently,· the eikonal approximation was 
nation of the_ polarization data. in rr p sma 
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y= 

Y (X 1 ) =i 2:..t... 
2b 

y(x)J 1·y. 
2 2' 

e 
a 

k +(n-k)-
. b 

s. (3.19) and (3.20) we get 

. . p2 • ay "' 
= p X ch y (X · ) = i - sin ( -) "' i A . 

1 1 a . b . 

from Eqs. (3.27)-(3.30) that 

2 2 . 2 2 
-( ~.,-k) _P_ sin 2(2L)- k _P sin2 .1... 

a · 2b b 2 

a(n'-k) bk 

p 2oos ( aby ) - p 2 oos y 

aoos( ~) 
] = F;'[x 2 (AJ1 = 

2 ay 
sin ( 2b."" ) . 

-" 

boos y' 

sin
2 ~ 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

ount of these formulas the expression for An (p, 0) = 

0 ) , obtained.· by means of the saddle point method 

k A 1/2 ] 
)COS-

17

-(- ) Dnk(p,O)exp[<llnk (Ao)' (3.34) 
2 .. O<fi"(A ) 

sm nk o 

. a -(n- k) . . -k 
[-p v' 217 a oos( -f) ] [- py'2TTb ros y 1 · (

3
•
3

5) 
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By repeating the above arguments · it is nqt difficult to receive the 

following expression fo_r B n ( p; 0) = B n+~p, B ) ...:. s: (p~ 0): 

n n . TTk 1 · X X 
B(p,0)=2~.(k )sm-· -(- ) D (p O)exp[<ll (>.\] (336) 

. n . k=D . 2 sine sin O<ll"(A ) nk ' nk "{)' • • 
nk 0 

Now we shall write the series (3.8) and {3.9) for ~e amplitudes 

f(p,O) and g(p,O) correspondingly, retaining in A.. (p,O) and Bn(p,O) 

only the first-order terms in g 2 • Thus we shall assume, that the 

spin-orbital interaction is included in .the potential V ( x) as a .cor­

rection. 

1 · 00 (2i} n A X ·. 
f(p,O)=--~ --(- ) D ('.p,O)exp[<ll (A )1 

ip n=1 n! . sinO<Il':o (Ao) nO nO 0 (3.37) 

e 1 £ (2i)n 1 . r ~ . 
g(p, )= i'Pn=1 (n-1)! sinO(- sinO<Il"(A)) 0 n.1(p,O)exp[<lln1 (,\o)]. (3.38) 

· n1 0 

In the previous section it was shown (see (2.36) and (2.37)) 
that our formulaS were turned into the corresponding expressions 

of the eikonal approximation x) when the small angle (sin _!_ = _!!_) 
· 2n 2n 

spinless particle scattering was considered. This is. easily verified 

here also for the scattering amplitudes (3.37) and (3.38).; Again we 

use the identity (2.37) and the foliowing one 

pO (p0)2 "" 2 ab2 bb~ . 
2 b 2exp[- 6 1=fdb0 b 0 J 1(b 0 p0)exp(-n-0---). (3.39) 

a ( n + -) . 2 a( n -+<-) o 2 2 a a 

The final expressions take the form 
00 

·· ·f (p,O)=- ip Jdb 0 b 0 J0 (p0 h
0 

}[exp(ix
0
)-1] 

0 / (3.40) 

. / 

x) Recently,· the eikonal approximation was applied /7/ to the expla-
nation of the polarization data in "p small-angle scattering. 
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-, 

i 

! i 

where 

2 ~ . 2 \' 

g(p, o)sin 0= p f dbob J l(pobo)exp(ixo)_x,' 
0 0 -

- 1 00 -----

X (b ) = - -- f V h! b 
2 

+ z 
2 

)dz 
0 0 11 p -oo I 0 

'1 00 2 2 
x ,(b 

0
) = -·-"'---- f V 2 ( V b 0 + z )dz . 

1T p -oo 

(3.41) 

(3.42) 

(3.43) 

It should be noted that the assumption about the smallness of V 2 (X) 
is equivalent to the first approximation in the eikonal Xr: sin.xr =X r · 

In the follbwj.ng we shall use the expressions (3.37) and (3.38) for 
' 

receiving the 'information about the large-angle scattering too. 

We estimate the amplitudes f and g replacing the sums in 

n by the integrals which can be evaluated with the help of the­

saddle point method without any trouble. The final expressions take 

the form 

1 -- P z o(t) 
f ( p, 0 ) = -i p v-- exp [- v -t ----

/" -at · a 

. lg 2 1P
2 

_ 2 
g(p,O)smO=- ,.f---

a -rr ab t 

1-b/a ,- -
X I z 0 ( t ) I exp I i e ( t ) - v - t 

where 

v-Zrrat 

lg II 
pzoJ!2_ 1,, 

a 

r 

b/a 

) X 

icp IX 11/J(t} 

g 
1
=lg

1
le , g =I g le , z (t) =lz (t)le 

2 2 0 0 

e < t)=..!!. ,,_:.. -<P > +x +(1- _E_> .P <t> 
a 2 _ a 

and z 0 (t ) is the solution 
p2z 2 ____ o_+ en ( 
2a 

of the saddle point equation 
2 2 2 

~) = en ( " P t ). 
2a - 2g2t 

(3.44) 

(3.45) 

(3.46)-

(3.47) 

(3.48) 

For small scattering angles O_<zo we cannot apply­

point method' to the calculation of- the integr:als, repres 

arpplitudes f(p,O) andg(p, (J) --as the saddle point is far fr, 

tegration contour in this case. We retain only the first te 

sums (3.37) and (3.38) ~ It is equivalent to the approximc 

integrals by the values of the integrands at the upper 

limit. We obtain 

2 t 
f(p, e)=- g1 y --3- exp ( -.-) 

1T a _ 2a 

g(p, O)sine=- g p/y 
2 

5 
(-t)X exp(-t-)" 

- ' ~ ' 1Tb 2b 

Having the expressions for the· amplitudes f(p, 8) , 

it is easy to calculate the polarization parameter. We giv 

responding expressions below without discussion which wi 

in the next section in connection with the isotopic struc 

scattering. 

If the initial particles are unpolarized the scatteri 

in the pola.rizo.tion 
... 2Im(fg*) sine 
p (0) =It ' - 2 2 

I f(p,O)I +lg(p,O)I2sine 

For the small angle scattering when the formulas (3.49) 

take place, we obtain-

... ... a -2 2p - t 1 1 g2 . · 
P(t)=n(-) -=Y-t exp[....:...(---)11-1 sm(¢-x ). 

b yah - 2 b a g
1 

The polarization· parameter for the scattering_ at ·angl 

when the estimates (3.44) and (3.45) are, correct take~ 

P(t)=; 2lg2IP V 2 [ V~--;;t" 1 b/a l"z 11-b/aros .f(t)x 
a nb lg11 o 

21 g2 j2p 
2 

217; t b/a 2(1- b/a} 

"a2 b <- - I g 112 > I z o I 

-1 
). X ( 1 + 



"" . 2 
(})sin 8= P 2 f d hobo} 1 ( P (Jb o) exp (i X0 ) X 1 • 

0 -
(3.41) 

. 1 "" -----
(b ) =- - f V (·v b 

2 
+ z 

2 
)dz 

0 0 TT p -oo I 0 (3.42) 

. 1 "" 2 2 
,(b

0
)=---f V 2 (yb 0 +z )dz. 

rrp --oo . 

~ 
(3.43) 

the assumption about the sma:llness of V 2 (X) 

first approximation in the eikonal Xr: sinxr =X 1 • 

shall u;,;e the expressions (3.37) and (3,38) for 

about the large-angle scattering too •. 

the amplitudes f and g replacing the sums in 

be evaluated with the help of the . 

any trouble. '!'he final expressions take 

lg 2 1P 2 2 _.:;___ v --'---
a -rr abt 

1-b/a 1 -

. exp I i e ( t ) - v - t 

p z (t) 
0 

a 

v-2 rrat 

lg ,I 
pzoJ.!.L 1,, 

a 

b/a 

) X 

I X I 1/J ( t) 
, g =I g I e , z (t) =I z (t) I e 

2 2 0 0 

'-i--<~>>+x+O- -+> 1/J <t> 

solution of the saddle point equation 
2 2 2 2 ---.JL_ + fu ( P_ z 0 ) = l'n ( IT p t ). 

a 2 2 g 1 
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(3.44) 

(3,45) 

(3,46) ·, 

(3.47) 

(3.48) 

For small scattering angles 0 < zo we cannot apply the saddle 
• 

point method. to the calculation of the integr:als, -representing the 

amplitudes f ( P, 0) and g(p, (/) as the saddle point . is far from the in­

tegration contour in this case. We retain only the first terms in the 

sums (3,37) and (3.38) ~ It is equivalent to the approximation of the 

integrals by the values of the integrands at the upper integration 

limit. We obtain 

2 t 
f(p,O) =- g v-- exp ( -) 

1 
TTa 3 2a 

(3.49) 

g(p, O)sinO=- g p'y 
2 

5 
(-t)% exp(-1-)" 

; . TTb 2b (3.50) 

Having the expressions for the· amplitudes f(p, 0) and g ( p, 0 ) 

it is easy to calculate the polarization parameter. We give the cor­

responding expressions below without discussion which will be given 

in the next section in connection with the isotopic structure·· of ir p 

scattering. 

If the initial particles are unpolarized the. scattering results 

in the pola.riz;o.tion 

... . 21m (fg*) sin 0 
P(O)=n . 

. lf(p,O)I
2

+Ig(p,O)I 2sin
2
0 (3.51) 

For the sma:ll angle scattering when the formulas (3.49) and (3,50) 

take place, we obtain· 

(3.52) 
... ... a · 2 2p - t 1 1 g2 . 
P(t) =n(-) -=Y-t exp[....:....(-- -)1 1- I sm(¢-x ). 

b · yah · 2 b a g
1 

The polarization· parameter for the scattering at angles fJ > z 0 ,. 

when the estimates (3.44) and (3,45) are. correct takes the form 

P(t)=;: 2lg2IP y 2 [ y~-;t] b/a l·z' 11-b/acos t:(t)x 
a TTb lg

1
j o "' 

X ( 1 + 
2lg2 i2p 

2 
2TT ~t b/a 20-b/a) 

"a2 b <- . I g 112 > . I z o I 

-I 

]. 
(3.53) 
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' 

It is not difficult also to consider the case of the nonvanishin~ 
. 4 . -

initial polarization P
1 

f, 0 ·• The general expressions for the di~feren-

tial cross section and the polarization are well known 
... 

da(P1 ) 

"'"'"(i"{l ==I f(p, 8) 1
2 

+I g(p, 8)1
2 

sin
2 

8 +2(PI :n )sin 8'i~( r g*) (3.54) 

... 
-+ da(PI ) -I -+ 1 · 2 2 -+ -+ 
P == [ ] I n·[2Im·(fg*)sin 8+ 2lgl sin 8(P1 n )] + 

d!l ··' (3.55) 

+PI (lfl 2 -lgl 2 sin2 8)+ [ ~ xnl 2Re(fg*)sin81. 

Using the above formulas for the scattering amplitudes f( p, 8) and 

g( P, B) it is easy to calculate such values as the asymm~try parame­

ter and the polarization rotation •. The former takes place in the 

scattering of the particles, polarized perpendicularly to the . scatte-
4 

ring plane, the latter one if the vector P 1 lies in the scattering 

plane. 

4. Isotopic Structure of the· Scattering Amplitude 
. ± 

In this section we shall consider rr . p elestic scattering and 

the charge exchange reaction rr-p ... rr 0 n • Let us recall the basic 

experimental facts concerning the polarizations and the differential 

cross sections. The 77 - P elastic scattering polarization has opposite 

sign vvith respect to the TT"+ p elastic scattering polarization. The 

polarization of recoil neutron is not zero in the charge exchange 

reaction rr- p -+rr0n and it coincides in sign vvith the 11 +p scattering 

polarization. The sign of the difference of the rr +p and rr- p elastic 

differential cross sections changes. We shall give a qualitative 

description of the above mentioned experi!Jlental results With the 

help of the formulas of preceding section. 

First of all, it is necessary to take into account the isotopic 

s~cture of rr p scattering. Let T 1 and T 3 b~ the scattering ampli­

tudes in the states with the. isotopic spin 1/2 and 3/2 correspondingly. 

Each of them has the form (3.5): 

24 

:t 
J - • -+ -+ • 

T1, 3(p, 8)=£ 1 ,3 (p,8)+ l(a.n)g
1

,
3

(p,8)S1 

The scattering amplitudes of ; the three .. ' .' 

above are expressed in terms of the T 1 and .T 3 

means 

T(rr+p-+rr+p) ==Ta 

T (rr-p ... rr-p)=' .l.(T3 +2T 1 ). 
3 . 

T(rr-p-+rr0 n) == V2 (T 3 -Td. . 3 

Iri accord~nce vvith the preceding con~i1 

the potenti<;Us correspondio.g to the scattering 

definite isotopic spin, in the form 

2 b 2 ... a 1 x 1 x ... 
V 1(x)==g exp(- --)+g exp(---. )(a. f 

II 2 21 2 .· 

· · a x2 b x 2 ... -+ 
V (x)==g exp(- --3-) +g exp(-..;.....a_)(a. £ 

3 13 2 23 2 

where 
1¢11 . 1¢13 

g
11

==lg
11

le · ,g
13

==lg
13

le 

g 21 =I g I e IX21 
21 

g I 
IX . 

23 "' g I e 23 23 . 

Now it remains only to use· the results 

small-angle scattering, when the argle distribt. 

the Born approximation well· enough, we must 

(3.49) and (3.50). Let us write the scattering a1 

cit form. 
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to consider the case of the nonvanishing 

0 • The general expressions for the di!:feren­

the polarizatior1; are well knovm 

+2(P I 1J )sin e·i~( f g *) _(3.54) 

. . 2 2 -+ 
·(fg*}sin 0+ 2lgl sin O(P1 n )) + 

,...< 
(3.55) 

X n ] 2 Re ( f g *} sin e I. 

for the scattering amplitudes f( p' e) and 
•, 

values as the asymmetry parame-

rotation •. The former takes place in th~ 

~c1es, polarized perpendicularly to the scatte-
4 

the vector P 1 lies in the scattering 

Structure of the· Scattering Amplitude 
± 

we shall consider rr . p elestic scattering and 

reaction rr 7 p -+ rr 0 n • Let us recall the basic 

the polarizations and the differential 

P elastic scattering polarization has opposite 

the I!"+ p elastic scattering polarization. The 

neutron is not zero in the charge exchange 

it coincides in sign with the rr +p scattering 

of the difference of the rr+p and ,.-p elastic 

ons changes. We shall give a qualitative 

ove mentioned experimental results with the 

of preceding section. 

necessary to take into account the isotopic 

Let T 1 and T 3 be. the scattering am pH­

isotopic spi~ · 1/2 and 3/2 correspondingly. 
(3.5): 
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J • ..... _,. ~ • 
T1,3(p, 0)=f1,3 {p,O)+.l(u.n }g 1,3(p,O)sn0. 

(4.1) 

T~e scattering amplitudes of; the tflree processes mentioned 

above are expressed in terms of the T 1 and T 3 

m~ans 

T{rr+p-+rr+p} =Ta 

T {rr-p ... ,.-p}= _!(T3 +2T 1 ) 
3 

T{rr-p-+rr0 n} = V2 (T 3 -T 1). 
. 3 

by the well-knovm 

(4.2) 

(4.3) 

(4.4) 

In accordance with the preceding con~iderations let us take 

the potenti<;Us correspondipg to the. scattering in the states with the 

definite isotopic spin, in the form 

a1·x2 bix2 ... ... 
v l(x)=g exp(- -n-)+g exp(--· ·-. }( u. r ) 

11 ~ 21 2 

· a x2 b x2 ... ... 
V3(x)=g exp(- --3-) +g exp{----~L..-}(u. C ) 

13 2 23 2 ' 

where 
1¢u t¢ 13 

gu=lgule . ,gla=lg13le 

g 21 =I. g I 'X21 21 e ' g 23 = I g I e t X 2 3 23 

(4.5) 

. (4.6)' 

(4.7) 

Now it remains only to use the results · of section 3. In the 

small-angle scattering, when the argle distribution is described 'by · 

the Born approxiination well· enough, we . must use the expressions 

(3.49) and (3.50}. Let us write the scattering amplitudes in an expli­

cit form. 
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+ 2 t ) . ( _, _, ) · . 1 2 . ,-t · ( t ) T(IT+p_,IT p)=-g v--exp(- -I an g23 Pv--5-v- exp ~ (48) 
. 13 ITa! 2a3 n-b

3 
3 • 

T(IT-p ... IT--p)=-..!..[g v-
2
-exp(-t )+2g ,.;_2,-exp(.;-)l~ 

3 13 ITa~ 2a 3 II 1Ta
1 

a 1 

-i(~.;) 
py-t 

3· 
··' 

-2- t ' 2 t 
[g23v--5- exp(-2b) +2g21v~ exp(2b)1 

1Tb3 3 IT I I 

0 y2 -2-- t -2-- t 
T(IT-p_,IT n)=- [g y--exp(-) -g v--exp(-)1-

3 13 a3 2a 11 ITaa 2a 
IT 3 3 I I 

... ... y2 p - 2 t .I 2 ( t )1 
-i(a ·n) --v- t [g23v~ exp(-2-) -g21v -b5 exp 2b . 

3 • IT 3 ba IT I I 

The normalization is defined by 

da IT 2 2 2 
-

2 
([f[ +[g[ sin 6). 

p . d It I 

(4,9) 

(4,10) 

(4,11) 

Let us give the corresponding formulas for the differential 

cross sections supposing the scattering angle 0 to be small. It 

permits one to use the expressions (3.49) a_nd (3,50) 

ii ~ + + 2 . I g 1J 
2 

t 2 I g 2al 2 
t 

~(IT p _,IT p) =7[ -;:y-exp(a;)+(-t)p _b_s_ exp(,-;;)1 (4,12) 
3 

d a - - 2 [ I g d 2 
t 4 [ g 11!

2 
t --(IT p_,IT p) =-I --exp(-)+ - 3-exp(-) +4C11 • 13 (t)1 + 

d I t I 9 P2 a~ a 3 a 1 a 1 ' 

+ (-t) p 2 

2 2 
[g2al t 4[g211 t 

[--exp(-) + --exp(,-) +4C21;23 (t)11 
b 5 b3 b5 0 I 

3 1 . . 

(4.13) 

0 4 1 [ I g 1a1
2 

( t ) llr~l 2 
( t ) 2 c ( t) 1 _,IT. n)=--2 -. --exp - + -3-exp - - 11·13 + 

9p a33 a3. al a' . ' (4,14)" 

da 
diti(IT-p 

2 . I 12 
2 I g2a I t g21 t . 

+ (-t) p [ ---· exp ( -) + --exp( -) -2 C 21•23 
b 5 b b5 b • 

3 3 I I 

( t)] I. 
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We use the following notations 

C. (t)= [g•; llgke I· cos[( () .·-(() 
IJ,k f I+ 1j 2 k+l .I IJ k 

(d_.>; (dk)e · 

I g 1; II g k r"l . : 
5 . o (t) - sm [( r ) -( r ·) 

IJ;kL - 1+1/2 k+l 'oJ; lj _'ok 

(d•); ~k>e 

wherei,k=1,2; j.f =1,3 ;d 1 =a,d 2=h;( 1=</J,~ 
are unpolarized, the expressions for the 

the· form 

P( IT+p_,IT+p) ~ [ ~]"
1 

2 
· dl t 1 

ila -I 4v..:T 
P(IT-p->IT-p)=[-,-2 ] [5 13 .23 (t)+4 

. d t'l . p. • ' 

+2513;21 (t)] 

P( IT- p ->ITo n) = [-.5L_1-1 
d[tl 

4y--t[5 13:23 
p 

- 5 11;23 (t) - 5 13;2 I (t)l. 

(t) + 

Let us consider the scattering at 

is the solution of the saddle point "equatic 

amplitudes f(p ,0) and g(p, 0) are given by 

(3,45), usi~g this it is not difficult to rec 

scattering amplitudes, differential cross ·s 

We shall write the corresponding express 

tering only 

T = -lp exp 1-v-t 

v -a at 

PZo3(t) ![l+(a ... · 

a3 

I . I .l-b3/a 3 (' ( xz · exp1~ t))l 
03 • 3 

d 221· ,2. 2 b/a 2.( 

~=--IT-[l+ p g23 (-~)3 31zl 
d[t I -:Iat ITa 2b [g 12 o 

3 3 13 

27 



-2 t ) "( ...... ) ./ 2 - t v- exp(-2- -1 an g23 p v--5-y-texp( --) ( ) 
3 11 a3 a 3 11 b . 2b 3 4.8 

3 3 - --
1 

2 t· 2 t. 
-[g y-exp(-)+2g v-,- exp( -)l-
3 13 11a~ 2a3 11 11a 1 2a 1 

~ t ,-2- t' 
[g y~ exp(2b) +2g21y~ exp(K)l 

23 11 b 3 3 11 1 1 ' 
,..< 

- -2-- t -2-- t 
~[g v-- exp(-) -g y --exp(-)1-

13 3 2a 11 rra3 2a 3 . 11a 3 3 1 1 . 

-- 2 t 2 t 
- t [ g23 Y--"'!j5 exp( 2b ) -g21 V 7 exp ( 2b )1. 

11 
3 3 11 I 1 

is defined by 

da 11 2 I 2 2 
- 2 (lfl + gl sin 0). 

p . rl It I 

(4.9) 

(4.10) 

(4.11) 

the corresponding formulas for the differential 

the scattering angle () to be. small. It 

expressions (3.49) and (3.50) 

2 [, I g 1J 
2 

r t . 2 I g 23l
2 t 

-2 --a- exp( -) +(-t)p -- exp ( -)] 
p a3 a3 b5 b3 (4.12) 

3 

2 lgd
2 

t 4 lgllj
2 

t) 4C (t)l = - 2 I[-- exp( -) + - 3- exp (- + 11;13 + 
9p a~ a3 a 1 al 

- 41 1
2 

(4.13) t g2l t 11 
exp(b) + -b5 exp(ll) +4C21:23 (t) 

3 l 
' l ' . 

4 · I g 1
2 

t I glll 2 t 
=~I [.,.-!.Lexp(-)+ --exp(-) -2C

11
•
13 

(t)] + 
9p a~ a3 · a~ a 1 · ' (4.14) 

t . lg21 1
2 

t . 11 
exp(b)+-exp{.-)-2C21·23 (t) • 

3 b ~ b 1 • 
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We use the following notations 

c < I g 11 II gke I · t 1 1 IJ,k f t)= i+t/2 k+l cos[( (I)IJ -((k)kf] exp 12['""('d)+(d}ll(4.15) 
(dl). (dk) lj k£ 

. J f 

lgijllgk{l . ~ . . l 1 (4.16) 
slj;kf (t)= 1+1/2 k+1 sm [((I )ij -((J k£] exp I~[-·-+ --11, 

(dl)j @k)f . (dl)l ;(dk)f 

wherei,k=1,2; j,f =1,3 ;d 1=a, d 2=b; ( 
1
=¢,(2=)(. If the initial protons 

are unpolarized, the expressions for the polarizations P( t) , take 

the· form 

dd -; 1 2yt 
P(11+p->rr+p) = [ --1 1 ----813·23 (t) 

rll t I P ' 

P (11-p -> 1T -P) = [ dal· 2 f
1 4

y.:T [ S 13·23 (t) +4S 1 J·21 (t) +2S 11·23 (t) + 
. d fl D ' • • ' ' 

+2813;21 (t)l 

da -1 P( 11- p ... 11° n) = [--3-1 
rl It I 

4y-t[S 13:23 
p . 

- S 11:23 (t) -S 13:21 (t)L 

(t) +S 11: 21 (t)-

(4.17) 

(4.18) 

(4,19) 

Let us consider the scattering at angles () > z0 , where z
0 

is the solution of the saddle point equation (3.48). In this case the 

amplitudes f(p,O) and g(p,O) are given by the expressions (3.44) and 

(3.45), usi~g this it is not difficult to receive the, formulas for the. 

scattering amplitudes, differential cross sections and polarizations. 

We shall writ~ the corresponding expressions for 7T + p ela9ic scat-

~b/a tering only (t) . . 2 ( v-211~) . 3 •' 

- i p I -!. t p Z o 3 I [1 + (a ... • ·fi) I g I p y -~ -~ . x ---exp -v- 23 a 2 b g 
a 3 11 3 a t3 y-a~ (~2~ 

T = 

X I z I l-ba/a 3 exp(i e (t )) 1 
03 3 

da· _ 11 [' 2p2 lg23 l 2 (. Z11a3 t )b/a3l I21J-o/a.a> - 2p lz03(t)lcostft3(t) 
--= -- ll + - --- z texpl-Y-t I 
dltl -agt 11a 2b lg 12 0 a 

3 3 13 3 

(4.21) 
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13 
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21 . 12 2p g23 

b /a 2(1-b
3
/a

3
). 
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2
3 b ~ 

(....; 
2 

lg tal 
where E3 tt J is d~!ined by (3.4 7) • 

cos~ {t)x 
3 -

-·I 

l' . 

(4.22) 

Also one may consider the case, when the initial protons are 

polarized (P1 fO) • Using the general formulas (3.54), (3.55) and also 

{3.44), (3.45), (3.49), (3.50) it is easy to get the expressions for the 

cross sections and polarizations. We shall not give the corresponding 

formulas because of their complication. 

5. Discussion of the R§!sults 

· In this section we are going to accomplish the qualitative 

agreement ofthe received formulas with the experimental results/
8

/ 
+ . 

iri the elastic rr- p scattering and the. charge exchange reaction 

11-p-.11°n 
First of all, let us consider the behaViour of the coupling 

constants g 
1 

and g 
2 

with the energy. It is known that the interac­

. tion is weakly spin-dependent at high energies. Therefore it is 

natural to E?Uppose that the spirr.-orbital coupling· constant g2 

decreases with increasing energy. Let 

-a 
g 2 "'p a> 0 (5.1) 

for example. Neglecting the spin-flip part of the scattering amplitude 

at high energy and Sl'flClll momentum transfe_r and using the optical 

theorem we immediately obtain 

gl"' p (5.2). 

if the assumption about the constancy of the total cross section 

haVe been made. 
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Now let us consider the expressions (4 

rizations. P( t) • The experiment reveals the !: 

of ·the polarization. with increasing energy. It fc 

that P{t)"' p-a • Thus the behaviour of the po 

lar to that of the spin-orbital coupling, consta 

The expressions for the differential c1 

polarization include sufficiently considerable· nu 

We ·are not going to accomplish the quantit 

the experimentak points, but we consider the q 

First of all, let us simplify our expressio 

a - a = a . and b = b · = b . • This leads to tt 
1- 3 1 3 

pendence .of the polarizations · on_t becomes 

processes. Also we simplify the denominate 

omitting the term 1 g 12 
sin

2 
(} . in the expressi< 

cross secrions. Finally, we obtain 

fgl3llg231 . 
p (t )=A(t) sin( </>13 -X23 ) 

I lg 12 
13 

9 A( t) · 
P 2(t)- llg llg [sin(¢ -x )+4lg llg 

lg· 12 13 23 13 23 II -: 

_13 

+2lgllllg23lsin(¢11-x23 )+2lg 13llg2llsin(• 

9A(t) . 
P ( t) = I I g II g I sin ( </> -X ) + I g II g 

3 2 I 12 13 . 23 . 13 23 II 2 
g 13 

-lgltllg23lsin(¢u-X2a)-lgt3llg21[sin(¢ta-

where 

a 3/2 - t 1 1 
A(t)=2p(-) y-t exp [-(-- -)l. 

b 2 b a 

Thus first P( t) grows as ...;-:::-t". When t 

essential, the curve is bending (b < a) and thi 
. ta t . - ab . 

maXImum kes place at - max = -a=i)" • Thts 
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2( l-b3 /a 3 ) 

) - I z oa I 
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(4.22) 
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1.· 

_.,< 

the case, when the initial protof)S are 

general formulas (3.54), (3.55) and also 

it is easy to get the exi?ressions for the 

··- -- We shall not give the corresponding 

of the R~sults 

are going to accomplish the qualitative 

with the experimental results/8/ 

and the charge exchange reaction 

the behaViour of the coupling 

__ It is known that the interac­

ent at high energies. Therefore it is 

the spin.,...orbital coupling constant g2 

energy. Let 

-a 
"'P a>O (5.1) 

the spin-flip part of the scattering amplitude 

momentum transfer and using the optical 
obtain 

(5.2)' 

the constancy o( the total cross section 

/''. 
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Now let us consider the expressions (4.17)-(4.19) for the pola­

rizations P( t) • The experiment reveals -the sufficiently rapid_ falling 

of ·the polariz~tion . with increasing energy. It follows from our formulas 

that P( t)"" p- a • Thus the behaviour· of the polarization P( t) is simi­

lar to that of the spin-orbital coupling constant g 2 • 

The expressions for the differential cross sections and the 

polarization include sufficiently considerable· number of the parameters, 

We ·are not going to accomplish the quantitative comparison with 

the experimental, points, but we consider the qualitative picture -alone.· 

First of all, let us simplify our expressions (4.17)-(4.19). Assume 

a - a - a and b = b · = b 
1- a- · 1 a • This leads to that the form of the de-

pendence .of the polarizations on t becomes the same for all three 

processes. Also we simplify the denominators of these formulas, 

omitting the term 1 g 12 sin
2 

(} in the expressions for the differential 

cross secrions. Finally, we obtain 

fgl3llg231 - ) 
p (t)=A(t) sm( </>t3-x23 

I I g 12 
13 

9 A( t) · 
--! lg llg I sin(¢ -x )+41 g llg I sin(¢ -x )+ 
lg 12 13 23 13 23 II ·21 II 21 

_13 

p 2( t) 

+2lgllllg23lsin(¢11-x23 )+2lg 13llg2llsin(¢13-x2,) I 

9A(t) 
P (t)= . I lg II g I sin(¢ -x )+lg llg I sin(¢ -x )-

3 2 lg 12 13 · 23 13 23 II 21 II 21 
13 

-lgllllg23lsin(cf>u-X2a)-lglallg2IIsin(¢1a-X2)1, 

where 

a 312 - t 1 1 
A(t)=2p(-) y-t exp [-(-- -)l. 

b 2 b a 

(5,3) 

(5.4) 

(5,5) 

(5.6) 

Thus first P(t) grows as v--::t:""". When the exponential becomes 

essential, the curve is bending (b < a) and them it begins to fall~ The 
· ab 

maximum takes place at -t max,; a-b • This relation fixes the para-
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meter b if the a is taken from the · calculations of the Width of the 

diffraction peak. The expressions ( 4.17)-( 4.19) have . been ob~ined 
with the help of the Born approximation. We mentioned that this 

approximation gave good agreement for sinall momentum transfer 

-t ~ _ 0.4 G.ev2. In thJs region the existing experimental data are w~U 
described by the :dependence (5.6). r 

To demonstr;ate the sign change of the 77-p elastic scattering · 

polarization, let us make ·the following choice of . the phases 

77 

¢tt =¢ta=- 2' X21 = 0 • X2a = 77. (5.7) 

With this choice of the phases, the nontlip amplitudes, which give 

the main contributions to the total amplitudes T( p, (}) ar·e purely 

imaginary and positive defined. Let us introduce the two parameters 

a= I ..fuLl, 
g 13 

g 
f3 = I ----=.! I . 

g 23 

(5.8) 

It is easy to see from (5.3)- (5.5) that the right signs for the 

polarizations (~ , P3 > 0, P2 < 0) take place when 

1-4af3-2(a-f3)< 0 

t5.9) 
1 -af3+( a-{3) > 0. 

Setting the ratios P2 /P1 

tions in respect of the a 

and P3 /P1 

and f3: 
we obtain the system of equa-

' p 
' 1 2 

4af3+ 2( a-{3)=1+ -1--1 
9 P. 

-af3 +(a-{3) =-1 + : I ~I-· 
PI 

(5~10) 

-

This system has always the non-negative solutions. Let P I P = -1 , 2 1 . -

and P3 /Pt =1/2 , then a =0,55, f3 = 0,9. 
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' 
. For the present_ there is no any _ ex1 

the measuring of the large angle .scatterin§ 

not disctiss th-; expression' (4.22). Let us or 

· appearance . of the osclllati<?ns because of t 

Finally we consider the quantity 
) 

A da ( - ) da ( + + ) Ll = -- 77- p ->77 p - -- 77 p -> 1T p • 
rll tl · · · rllt I 

Neglecting the spin· dependence, putting 

account the conditions (5. 7), we obtain 

8 t' ta3 -1 1 
!:J. = - 2- 3 exp ( -) L- · 2 + -L( J) exp It (- - --:-) l 

9p a 
3 

. a 
3 

4 a
1 

- a 1 a 
3 

+...: 
v 

The' experimental data show /8/ that - 1 = 7 
. . ' . a 3 

. . . . 1 . 
energy reg1on. If we put now - = 14 , th 

. at . . 
crossover effect. for the differential cross ·s 

_scattering ~kes place at :....t"' 0.13 (GeV/c)2. 

with the experimental results. 
" 

The authors would like to ·express th 
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useful discussions. We are also indebted to 

for a special attention to our work. 

Reference 

1.. · S.P. Alliluyev, s.s. Gerstein, A.A. Lo~ 

:i95 ( 1. 965). 

2. A.A. I,ogunoV; A.N. 'I;'avkhelidze• Nuovo 

3. V.I • . Savrin, O.A. Khrustalev, Preprint. 

4. V.R. Garsevanishvili, V.A. Matveev, L.A. ~ 

lidze. Preprint E2-4251., Dubna .(1.969), ~ 
Gables Conference,: Miami (1.969); V.l 

31 



a is taken from the c~lculations of th_e Width of the 

The expressions ( 4.1. 7)-( 4~ 1. 9) have been ob~ined , 

of the Born approximation. We mentioned that this 

gave good agreement for small momentum transfer 

In this region the existing experimental data are well 

dependence (5.6)., 
the sign Change Of the TT-p elastiC scattering 

let us make ·the following choice of'.the phases . 

TT 

=.Pia=-2' X21 =0 • X2a = "· (5.7) 

of the phases, the nonflip amplitudes, which give 

to the total amplitudes T( p, (J) are purely 

positive defined. Let us introduce the two parameters 

g 21 
,8 = 1-1. 

g 23 

a= l...hLI,· 
g 13 

(5.8) 

from (5.3)- (5.5) that the right signs for the 

(~ ,P3 >0, P2 <0) take place when 

1-4af3-2(a-,8 )< 0 

(5.9) 
1 -af3+( a-,8) > 0. 

and P3 /P t we obtain the system of equa­
and ·13: 

p 
. 1 2 

· 4 a ,8 + 2( a-,8 ) ~ 1 + gl P.l 

(5;-10) 

-a f3 +(a~,8·) =-1 + ; 1....!L1. 
PI 

has always the non-negative solutions. Let P 
2 
I P

1 
= ,-1. , 

1/2 , then a =0,55, f3 = 0,9. 

.\ 

For th~ present there is no any experimental_ resul~ ~bout 
·the measuring of the large angle .scattering polarization. We ~hall 

not discUss th-; expression· (4.22). Let Us only point to th.e possible 

· appearance of the oscillati~ns because · of the fad:or cos~ ( t). 

Finally we ·.consider the quantity 

,; da ( _ - ) da ( + + ) 
Ll "' -- TT p ->TT. p - -- TT p -> TT p . 

dltl .. ' dltl . . (5.1:1) 

Neglecting the spin dependence, putting a= 0.5 and 'ta!-clng into 

account the conditions (5. 7), we obtain 

8 t · 1 a 3 1 1 1 ..._ 3/2 . ( · ) 
!l = - 2- 3 

exp (-)[,.... 2+-( --3) exp 1 t(- _ -:-) 1 + -=._(~) exp 1 :!.(.!. _ -.!.)0. 5.12 
9p a 3 . a 3 4 a I . a I a a 'o/2 al 2 al aa 

The' experimental d~ta show /8 / that -
1 

= 7 · in a sufficiently wide 
a a 

energy region. If we put now - 1- = 14 . • them it is found that the . a 
1 . 

crossover effect. for the differential cross ·sections of rr-t.p elastic 

. scattering takes place at :...t"' 0.1.3 (GeV/c) 2• It is in good agreement 

with the experimental resUlts~ 
" 
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