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1, Intrcidt;lction

 The high energy scattering differehtial cross section has two
‘r.'emarkable peculiarities: it decreases rapidl';r with the momentum
" transfer increase from zero

do
dt

~Ae’" | 05—t <05Gev? (1.1

' after that the cross section decrease with increasing momentum
transfer becomes slower,” but as before it remains 'exponential. It has
been shown in paper /1] that the cross section dependence on the

momentum transfer close to the experimentally observed one

——

do _—
it zexp_[—b\/-—t ] : (1.2')

tear the diffraction peakikcv:ar_l be obtained on the basis of the quasi- '
optical approach - in quantum.field theory /2/, supposing that the

high energy scattering  is described by a smooth potential of the

~ form

V(r)=g?)ep [-¢(r?)]
. g p L-¢(r”) (1.3)
in which the functions g(r?) and ¢é(r? ) can contain the enex;gy as
‘a’ parameter and do not turn into infinity in any fihite part of the

complex r -plane, In this case the differential cross section depen-



dence on the momentum traﬂsfer of Eq. (1.2) is explained simply by
the penetration of the scattering particles “into the classically forbid- .
den domain, However, it is necessary to add that the existence of
the diffraction peak Eq., (1.1) ,at small momentum transfer is also an
essential feature of the scattering on the potentials (1.3). ’

Thus the introduction of the potentials of Eq. (1 3) even purely
phenomenglog,mal into field theory is a highly successful step. The .
- fact that the diffraction peak is observed not only in the elastic
scattermg “but in the exchange processes as well is also in favour
of the introduction of such potent.lals The exponential index y of
the exchange processes such as the charge-exchange scattering
is similar to that of the elastic scattering and does not depend very
much on-the exchanged quantum numbers, It is difficult to submit .
these facts to the generally accepted views about shadow nature
of the diffraction peak and to the scattering Vpicture on the Yukawa.
. potential when the angle distribution depends appreciably on the-
exchange Quantum mass. The description of this scattering by the g
potentials of Eq. (2. 3) allows. to explain the regularities of these B
exchange processes, In paper /3/ where the nonrelativistic par'tlcle,
scattering on the potentials of Eq. (1.3) was studied it was empha-
sized that these potentials' could be described as potentials with a
variable interaction radius. In fact if by analogy with the Yukawa
potential the interaction radius is defined by the equation ‘

d o3 ‘ _ ’ :

— - the inverse interaction radius-  (1.4)
then the assurﬁption about the quadratic dependence of the function
#(r) upon r automatically provides nonconstancy  of the interac—
tion radius. We remind that in the case of the Yukawa potential

the constancy of the interaction radius led to the poles in the sCat-f .

‘ tering amplitude as a function of the momentum transfer and it cau-

sed the strong dependence of the differential cross. section on the
exchange quantum mass. There are no such poles in the case of

the potentials with the variable interaction radius.  Now the  scatter- ’



ing amplutude is én entire function of t and the effective interac- -
tion radius is defined by the momentum transfer, Thus the . poten-
tials of Eq. (1.3) lead to new universal scattering characteristics
which differ cons1derab1y from the more usual Yukawa poten’ual
charactemstlcs. In particular, now it is not so difficult to under'stand
“the cause of the existence of the exchange scattering d1f§rac_t19n
peak which looks like the elastic scat‘terii;xg one, Now the 'Shépe
of- the differential cross section curve is defined mainly by the mo-

mentum transfer itself, In recent paper 14l the high’ energy scattermg

"~ amplitude on the.complex Gaussmn;po»tentxal was studied with the

help of the quasipotential equation for the scattering amplitude in
" momentum space, The results obtained there are extremely . close

" to the results of the analysis of the fast nonrelativistic particle _

scattering on the potential of Eq. (1.3) this analysis heaving been
made with the help of the Schradinger’ equatlon. It was shown in -
paper /5] that this coincidence was not accidental ‘and the phase
shifts obtained on the basis of the exact qua51potenhal equatlon/ 2/
.coincide in the first approximation with the phase shifis derived
-: from t}ie nonrelativistic Schridinger equation with the s_éme pofen—-.
tial, According to these circumstai'lces the SChrESdinger equatioh is
a convenient tool for the \invﬁestigation of the scattering amplitude
even in the high energy region. . '
In the present paper the method developed in paper /?/ of

" the evaluation of the scattering amplitude is used for investigation

.fof the spmless particle scat‘termg on 1/2 spm particles, The. expres-
sions for the polarizations are obtained both in the small momentum )
transfer reg;on and in the Orear one where the scattering dlffergn—'
tial cross seétiop is described by Eq. (1.2). It is shown that at a
small scattering angle the method developed in ref, 13 is equivalefit
“to thg. widely“‘ used K eikonal approximation in the scattering thegry/ 6/,



2, Estimation of the Scalar Particle’ Scattering
Amplitude

The possibility of representating the scattemng phase shifts
on the potential (1.3) in the Born integral form

5, m- [ xax V() Iy (x), A=l 412 (2.1)

. {J‘ ) ’ - .
and the possibility of estimating further the phase shifts by means
of the saddle point method underlie the estimates car;ried out in
ref, /3/. Since in this case the phase shifts decrease rapidly (more
rapidly than the linear exponential) with 1ncreasmg ¢ (at Rer>0),
it is oonveruent to expand the exponential in the scattering amphtude.

partial wave expansion

1, 9)“5_” S (204 1)e ¢ 1P, (cos6) (29
ip

and to estimate the series by means of the saddle point method." .

bl

Thus the scattering amplitude i_s represented by the series

w2  (20)" . :
tp.0)- —L_ 5 B 4 (40, |
(p,0) 2ip am m (p,9) | | (2.3)

where . o
A(p,0)= % (20 +1)8% P, (cos 8 ).

To estimate the phase shifts we use the appro:dmatio?x‘ for the .

Bessel function

1 . o
J,(p0) = —=—==-c9p [px(shyyay)], = (2.5)
- Nompody
where » ( )
A 2.6)
d‘)"f —p—i-.



E /In this case the integral in Eq. (L2):is reduced to the integral
, . o e o )
A= S
2nmp shy

(x) e tF x)]
g(x)exp [F(x)] 2.7)
in which one can consider shy and g(x) to be slowly | variable’

_ functions of x and

F(x) =—¢(x) + 2?x(d1?/—y'ch5/). (2.8) :

‘Using the definition (2.6) it is easy to show that
F/(x)=-¢ (x)+2pshy | | (29
and
2
ch’y - :
F(x)==¢"(x)-2p —L . |
xshy (2.10)

The condition F’(x)=0 gives the function X(A) which is unobviously °

-defined bv the equations.

¢ (X)=2psh ¥ ' L (2.11)
~ A

ch o ——, 2.12

Ty ( )_

The phase shifts themselves are approximated in the following way

8g = 8X) 27 emlF()T,

9npsh 5 F (@) (2.13)
where the function ;‘( 1) is given by the expréssion
F(A) =FIZ(A) 1 ==¢(3) +2px(sh 5 =7 chy ). = - (2.149)



If we substitute’ the expressidn for. the phase shifts, Eq.(2.13),
into the series in Eq. (2.4) and replace the summation by the integ-
' ration, the series comes to the typical saddle point integral. To
estimate it one can use the asymptotic representation for the Legend-~
re polynomial A
2

) (cos@l)= \/————— Reexp(u\e-n-—-)

P : .
wA sin 0 . (2-‘15)

A

After that A (p,9) can be represented in the form

—-17/4 .
A, (p, 0)=2 V=" {RefdA VA e ; exp (@ (M) x
7 sin 0
< Rof= gx ), em o -l e L BE)  Tar
Re ( Sup v F”f-))+“l efdryie  exp( (,\)); m'( —*-\/ F,,(;.))l
‘ ‘ (2.16)

The saddle point /\0 for the integrals in Eq.(2, 16) is defined from

the equation

, 0 7 <0 :
§%)=nF1(s%)+i0=0 .
?bn( = Fis. (2.17)
It follows from Eq. (2.14) that the peint/\ o is unobviously given
by the equation
=3 ‘ . 6
Y(Ao)=i—. ,
© 2n (2.18)
However, it is more convenient not to use this equation but to sub-
stitute the derived value y(),) into Egs. (2.11) and (2.12) and to
express A (p,f)as a function of Xo « In this case the wvalue X 0.

is directly obtained from the equation
¢ 7 (% )=2ip sin — | |
X )=2ip sin — .
- o | , (2.29)

" and Eq. (2.12) serves for A, definition



o ] .

A =pX, €OS —., . . =
o= P% "2n £ , (2.20)
It is easy to shHow that at the stationary point the function <I)n'()\)
. equals S ‘
®, (Ao)=-nld&)~X ¢ (x)] - ,
: (2.27)

and Eq. (2.16) comes to ‘ ‘ S

: = 0 ——\/211F"(x O
. PX, Cos L p sin )
A _(p,0)=2[-i ° Zn_ ]/zexq)[;n fn(— — 2n 0) -
snfer () &%)  (2.29)
—n ($(F)= Fod (N,
where
. ing”(x,)
(Ao )= - = T 2 B (2.23)
Xo@.” (X5 )+4p chy (o) A -

We pomt out extremely obvious physical meanmg of Eq. (2. 19)
Squarmg the 'both sides of this equa’uon we get - -
[67(Xo)1 == 4p° sin22";n. (2:24)

There is a momentum transfer of the scattering at the angle

0/n in the right ~hand side of Eq. (2.24). Since the derivative of the '
functlon ‘¢(x) is identified with the inverse interaction rad1us, \one'
may say that the saddle point of the mtegral in Eq. (2 16) fixes a
value of the interaction radius so that the inverse . interaction ra—
dius squared, equals the momentum transfer of the scatt‘ering'atgtbg‘ )
angle 6/n . Eq. (2.3) shows that the wave function which defines
the scattering amplitude on the potential of Eq. (1.3) can be -repre\—’
seénted as a superposition of- the divergent spherical waves, each



¢

of them appearing due to the .interaction at the given dis’t‘ance from

the origin, this distarice being defined by the scattering angle. So

the resulting wave can strongly depend on an angle at which it

“is 'obs.er'ved Thus sharp change of the angle dependence" of the
scattering cross section is a characteristic feature of the scattemng

of the potentials of Eq. (1.3).

Notice that the saddle point X goes to zero with the scaf:te—r

ring angle .decrease, So one can make the transition to the limit
0-0 in Eq. (2.22), After that the forward scattering amphtude is gi-

ven bv the series
f(p,0)=-i —"a-z'———, : (2.25)
where -

(2.26)

The value-r equals

I C R

=r,e -,

p\Bra - (2.29)

where ¢ is the phase. of the function g(x) at x=0 , The series
(2.25) _can be written 'in the integral form
1(p—m/2)

. p "2dx _ i P (s
f(p,,());—l—;l—of—x-— exp [ xe J-1 }=-i " K(ro) (2.28)

and furth.ermore‘ it is not difficult to get the expression for the total

scattering cross section
' ¢

¥ o ’ . ) .
L =Tof‘ - {1—cos(xms¢)e@(xsm¢)}, | (229)

-

It is also 51mp1e to evaluate the diffraction peak w1dth

2Ref* ‘” S |
en( 7 = .] S (2.30)

dt dt t=0 |f|2 C }t=0

A=

10



.1t is easy to show that

df T

i o] . (esn)
'so - .
] _ : o
A= L Retk*(p)f k(&)1 o s
a| K(7)} o ¢ : v (2.32) ..

The expression for the total cross section Eq. (2.29) first has been -
obtained in paper /6] in the case of the scattering on the Gaussian
potential by means of the eikonal approximation,- '
We shall show that the method developed here leads to the
~same results as the eikonal approximation does in the scattering
at extremely small angles. Since all time.’wé consider the anction
g(x) to be a slowly variable one we can suppose it constant
deschribmg the small angle scattering. If the scattering angle is
so small that we can suppose Sile— =e—— | then we can con51der_

N 2n  2n .
the stationary values X . to be small too, In this case the following

equations are valid

(2.33)

i.e. describing the small angle séattering any smooth potential of
Eq. (1.3) can be replaced by GauSsian’ one, Then with the acceptéd
together with Egs. (2.33) accuracy the pre'exponential'fat:tors and
the logarithm in the exponential in Eq, (2. 16) do not defnend on the

scattering angle the series in Eq. (2.3) comes to  the series
ip (=ir)" (o)’

_— e S
B(p. 0)=- =2 ———ew [~ 50— 1. (2.34)
. On using the identity
1 (®6)° ' : '
- —] = dbbJ bp ¢ -n —
an exp[ %an ] f ( P )exp( n ) B (2'35)

11



one can write the series in Eq. (2.34) in the integral form
. . 2

oo

{(p,0)=—ip fdbbJI, (pb O)lew(cire * )-1}.
(4]

(2.36)

It is not difficult to make oneself sure that the ‘exbonenﬁal in Eq.
(2.36) equals ) ‘

. o0 ———
ix(b)== —— [ V(yb? +2? ‘
lx( ) - _{c (Vb? +2z? )dz ’ (2.37)

and the integral in Eq. (2. 36) coincides with the integral which has
" '‘been obtained as a consequence of solving the Schrodmger equation
in the short wave apprommahon /6/

Thus the representation of the scattering amplitude in series

form (2,4) contains the eikonal approximation as a particular case L

and besides that it can be used for the estimation of the large angle
scattering amplitude, We notice that the transition from the summation
to the integration in Eq. (2.4) leads to the sadlle point integral
which must approximate the scattering amplitude sufficiently exactly. -
Supposing Z= —9- and approximating n‘ by the Stirling formula -we

derive the followlng integral representatlon for the scattermg ampli-
tude -

. 1 pé- 1x(z)cosz/21/ :
f(p,0)= — d —_——— - (2.39)
(,p ) ip \/217':m0 6f Z( z3 97 (z) ) [ u(z)] .
where

o) O é,[x(z)le_\a/%.i,,.[?((z) ] S @ e ()], (239
- dezglX(2)] : : o ,

The saddle point position for the integrand is defined by the equation

u(.z)—zu’(z)=(.). : - i (2.40)

12



‘One can see from the definition of the function u(z) that %z, (the
root of the equatlon (2. 40)) shghtly depends on the scattermg angle
~and at small z the equation (2.40) has no solutlon, u(z )increasing
idgarithnﬁcally with z +0 and zu’(z) being finite at the point z =0.
So at small scatftering angle the saddle point lies far from the-integ-
ration contour and as the first approximatioh of the scattering amplitude one
can take the value of the integrand at the upper integration limit, It means
that at a sufficiently small momentum transfer the angle dependence of the
scattering amplitude is described satisfactorily by the first term of the -

series (2.4) iLe. atf < z;

f(p,0)= —:;—‘Al(p, ). (2.41)

.In the case of the large angle scattering the evaluation of the in-
tegral in Eq. (2.38) by means of the saddle pomt method leads to
the result :

X (2 o) cos.zo/ 2 )1/2 eipl-6u’(z )].. (2.42) -
)BT (2) ‘

f(p 6 11 T 51:(9‘ (=i

For definiteness we consider the scattering on the’ Gaussian

potential

(2.43)

The equation defining the stationary point X . comes to the

following one
a%=i2p sin—q--.. A )
2n . (2.49)

\’Ijhe\ expressions for the second derivatives -of the functions F -
- and ® also look simple

cosf/n

F7(x )=2a —p—e
( sin" 6/ 2n

(2.45)

13



(E)= - _____a_n___

" p %08 G/n ' (2.46)
In this case the general term of the series in Eq. (2.4) equals
' '2 sin20/n  1/2 g n 2p2 2‘ 0 - -
A (p,0)= "( Insind ) (- —_—) exp(-n—a—Sin —2—-)- (2.47)
nsin pV2 7acosf/n - an

The small angle scattering is defined by the amplitude

((p, 0) =g V—o5— e (). O (ea)

ma

It is not difficult to show that it is neceséary to suppose the
coupling constant g proportlonal to the momentum to provide the -
scattering total cross section constancy. However, even in this case‘f
one can still. define. the scattering phase shifts by the Born integ-
ral of Eq. (2.1). For the Gaussian-potential the equation (2,40) for
the saddle point Z;, comes to the equation .

2. 2 . 2,3 ap®t .
P20, gn(—E200) —fn(——0). B
a o a 2g (2.49)

At a large momentum transfer on.eb can consider the logarithm
in the left hand side of Eq. (2.49) to. be a slowly {variablel function
of 2o and take as an approximate solution of Eq. (2. 49) ‘

2 .
22 2 ﬂpzt ) S (2.50)

p g

Notice that we can consider the value standing;und‘er the logarithm
in Eq. (2 50) to be positive since the phase of the root Zz, due to.

the logarithm complexity is negligible in that case. The large mo-
mentum transfer scattering amplitude equals ' -

. 1 npt
,f(P,0)=—lp\/_t exp[-\/—-—ﬂ( 7 LI SANYS P (e

14



In the general  case the écé.ttékihg amplitude is defined by

. the following expression .
‘ PZo(t)
f(p,0)= —lp\/ exv[ \/— —_—, (2.52)

a . . - * )

where z,(t)=| zo.(t)[ exp [ifllf(t)] is the solution of the saddle >

point Eq. (2.49). We get the formula

| do_ e e |

- exp —
dle]  plal . | - (59

 for the scattering differential cross section at small. angles 0<z, .
Here we use Eq. (2.48) for the scattering amplitude., Such behaviour
. agrees well with the differential cross section behaviour in the
diffraction region which is observed in the experiment, Thus our
approximation (2.41) works rather well in the diffraction peak re-
gion, Now we consider the scattering at angles 6>z, . O'n using
the estimate in Eq. (2. 52) -of the series in Eq.- (2 3) we get the dif-

ferential cross section in the form

do n [ \/_t 2P|Zo(t)‘°°5¢’(t.)]
e € -V - .
d|t] o -at ® . a , : (2.54)

i

As one rcah see from Eq. (2.51) at & large momentum transfer |z (t)]
iIs a slowly variable function of t and the saddle point phase
Y(t)=0 . In this case o

. do

el ~exp{-by=¢t].

(2.55)

Such a behaviour agrees well with the differential cross section
behaviour in the Orear reglon 2,0 GreV2 <=t < 5,0 G:e-V2 Thus the .
usefu.l ‘'method allows one to descmbe the expemmentally observable'
-change of the regimes in the differential cross section behaviour.
-~ We cannot descmbe the more detailed structure in the 1nterrhed1ate
" domain’ 10 GreV2_‘-t < 2.0 Gev2 for our evaluatlons allow to

&

15



T g At S e

-pick out only the main expohentiali part in the behaviour of thef"M
scattering amplitude-and crossvsection.' We notice that the experi-
mental precision in the region 1.0 _G:e\f2 <-t<2,0 GeV? is not enough
to determine the ’analytic form of the differential cross section de;
pen_dehce on the momentum transfer'. We point out onlsr_ the possibility .
of the oscillations. in this region that follows from general Eq.(2.54).

f "‘, . . .
3, 0 Spin Particle Scattering on 1/2 Spin Particle

In this section we take into consideration the spin. in the simp-

lest case of the scalar particle scattering on 1/2 spin particle, We

" assume that the interaction potential has the usual form

V(x) =V () +V,0(348), |
/ 17 2 (3.1)
where V(x)and V,( x)are the central and the spin-orbital ‘potentials
correspondingly. Further we shall assume the form of Eq. (1.3) for

Py
them, { is the.orbital moment operator of two partlcles in the centre

of mass system, If the total. moment J(.—f —Z + —) of the system

i fixed the orbital moment [ can take two values = J + —%—— . The

potential (3.1) conser'{res parity, so the transitions between these
states are absent, As usually we label by £+ the values related
to the states with J=¢ +-§ The scattering in these states is descri~

bed by the. Schrodmger equatmn with the potentials Vz and Vg~

accordingly,
VZ+ @=V,(x)+ €V, (x) | o o (3.2)

V, (=Y, () =L 4DV, (9. (3.3)

We use Eq. (2.1) for the phase shifts & 0+ which turns out valid
because of the assumption about smoothness of the potentials V

aﬁd VQ :

16



5 =..qf dxszi(x):JA (px). (3.4)3.

l
» The scattering amplitude
Pxp” .
where R= is the unit vector in the direction of the- norma.l to

l—» 5> |
the scattermg plane, Here & and f -are the spin-flip and spm—non—

flip scattering "amplitudes for which the following partial wave expan-

sions are wvalid

- 21 8¢, . 21 8¢ _ o

f(p,0)= —2-?2_3[(2 i1)(e ~1)+ € (e ~11P; (c0s0) (5.5
i e 218 218 g ' |

Bp0)- g Z (e 7 e R(as0) . o)

As in the spinless’ case the amplitudes f and g are represéntéd .

in the form of the expansions in the dduble series -

f(p,0)= - ———4‘2"

21p n—l n! S v ’ (3.8)
( )n + _ R : ) V R
N B -B~ ), :
g(?’ ) 2ip ! n! —(BamBL) (3.9
bwhe-re

AL@.0= 2 (£4D)3," (DB, (wst) | (3.10)

K (po)=3 ¢ az‘: (PP, (s0) @

+ . :

B (p,0) = 252 (p) Py (cosf). . (3.12)7

_We shall estimate these expressions replacing the sum by the in-.

tegral,’ The integrals obtained in such a way have the saddle points,

17



We use the asymptotic formula of Eq. (2.15) for PE(OOS‘G) . The similar *
asymptotic formula for Py (c0s6) has the- form :

1 T
J ‘

sin @ 7 sin @

e

P/ (cosf) Re exp (i A6 — i—i—"). (3.13)

Thus we get thé following representdﬁon for the expressions (3.10) -
(3.12) ‘ ’

[

; Ai,,(p’be):\/n;név Id)&\/x‘s :i(p)Reexp(i)\O-i%) (3.14)
BY (5,0)=——v-2—7 vk 8 @Reep(inozilly, (3.9
sinf wsin® - . 4 : e
We write do;vn t‘he phase -shifts in the form
- Sy. Tl v | (3.16)

~where 8, and 9§, are defined by the potentials V (x) and v, (x) .
The evaluation of the corresponding Born integrals such as in Eq.
(2.1) has been considered in detail in the previous section, The

following formulas take place

gl,2(x1,2) 2
2, (P e ey [ F
TP A xl,é) Fl 2 (x 1,?.)

(x

1,2

)] .(3;1'7_)

.FI!Q(X 12 ) =%z (x ;9 +2px 1,2[Sh Y(x-l,2 ) —‘7(" 1,2)Ch Y (x ,,2)] ’ '(3.18)'

where X ;, =x,, (A)  are defined from the- equations
Bra(x d=2phy (x ) (3.19)
) A .
chy (x,5)= (3. 20)

PX,y 2

18



Further we shall assume. for s1mpl1c1ty that the poten’uals \ AT
and V., - are Gaussian:

*

Vilx)=g, (3.21)

V2(VX)=g2e)q’(-—%£)- A (3.22)

No difficulties of principle arise in the consideration of the geﬁeral
form potentials V(x) ;g(x2)expj[—¢(x2)] .However the expressions
obtained in such a wavy turn out to be very complex,

Using the binomial expansion for 6':\t(p) we get

+ 9 n n. n—k. k -HT/4
AAn(P:’9)=\/mkE=0(k)g 8, Re fd A VX (+)‘) e X
(8.23)
. o '-"_T ‘n~k . 1 — R
) RS SV A LA =22 Vep (0, (M1,
27p shy (x,) F;’ (xi) 2mp shy(x2). F;’(x 2)

whére .
d)nk()\)s(n—k)F‘(xll)+kF2'(x2)+iM9.
: (3.29)

The stationary point Ao for the function»(I)nk()\) is defined
from the equation DL (A)=0 . It is not. difficult to reduce it to

(n=K)y[x (M) +kylx, (2)] =i-g—. - ’ | (3.25)‘

The second relation connectingy( x, ) with y(x ,) follows from Eqs.

(3.19) and (3,20) , : ;
yiIx, W1 = —
=——b-.

—‘_—y[x 0] (3.26)

It follows- immediately from Eqgs. (3 55) and (3, 26) that at the saddle

point A

Fas

19



RECHE ol )

[ A )
y(x,)=1i<5, - ' (3.28)
where
3 (7
"(y = 2 . . .

Returning to Egs. (3.19) and (3.20) we get

(v y_: PP oAy o=
Ao =pxchy(x ) =i o-sin(==)=1iA. (3.30)
It also follows from Egs. (3.27)-(3.30) that
. : 2p? : a 2p2 y k k
= =(n—k) <P sin?2(2Y ) — in2 ’ S
® (A)= ‘ (n k) " sin (?b—) k + sin® - _ (3.32)
, a(n—k . ,
(D,”k(ho)=— :(n ) - bk k - (3.32)
n 2 ay. 2 . 4 . . :
P cos(b—)b_ p cosy :
ay
. acos{ =) . )
F7Ix,(Ay)] = LR % g (A )] = _boosy, | (3.33) .
2, a4y 2 2 2y ‘
sin” (——) sin” -

Taking account of these forrhulas the expression for A_(p,0)=
=A:(p,0)+A:(p,0) , obtained by means of the saddle point method

has the form

A(p, 0)=2 3 (1 yoos 2K A D 0.0yl ()]
. (p,0)= K ) cos - (P Oexpl ()],
=0 2 sin0 @ (A ) e 0T (339)

where

ok e ) ~n= k)
D, (p,0)=g; " (Ng,) [-pv2racos( L)1 T-pv2aboosy 1™ a.35)
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By repeating the above arguments it is n,o,’;c difﬁcult to receive the
~following expression fqij B,( p,0)=8B n+§p, 6 )~ B, (p, 0):

&1 K % S
B(p,o) 2z(k )sin 2= . _1 (-— _ Df.k (p,G)exp[d>nk()b)], (3.36)

sin @ sin 0(I>nk()\ o )

Now we shall write the series (3.8) and (3.9) for the amph'tﬁdes
f(p,6) and g(p,0) correspondingly, retaining in A (p,8) and B (p,0)

‘only the first-order terms in g, . Thus we shall assume, that the

spin-orbital interaction is included in the potential V(X) as a cor-

 rection.
f ,0 = p - ; (
(p,0)= ——2 ~ ( 'sinGCD’x:O()\o)) D« .p,?)exp [<I>n0(‘>ffo)] (3.37)
‘ (21) 1., X % , N
g(p, 9)= 1p ,Ex (n-1)! 'sinG( ’sinOCIJ’;()\O) ) Dn"l(p,G)e‘)q)‘[¢nl~ (}‘o)]' (3'38)

In the previous section it was shown (see (2.36) and (2 37))
that our formulas were turned into the correspondn'lg expressions

of the eikonal approx.lmatlon x) when the small angle (sin —21- = 2_...) .
n n .

sp1r11ess partlcle scattermg was cons1dered.‘ This is . easily verified
here also for the scattering amplitudes (3.37) and (3.38)., Again we
use the 1dent1ty (2. 37) and the following one

P _.—-__—5—] =f dby b’ J (b p8)exp(-n - = (3.39)
a (n+ z) - 2a(n+—) © ~ :

.
»
i

The final expressions take the form
(-]

Cf(p,0)=m ip, [ dbob, Jo(PO by Mep(ing) =11 ';/ (3.40)

C/

x) Recently, the eikonal approximation was applied 17 to the ‘éxpla-
nation of the polarization data in #p  small-angle scattering.
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g(pye)sme P I dbbJ (pob e (ixg) x> (3.41) -

where ‘
'x(b)—————fV(\/b ")z
(3.42)
X (b )——:-E—LV (\/b +Z )dz. N (3.43)

It should be noted that the assumption about the smallness of v (X)
is ‘equivalent to the first approx_lmahon in the eikonal X;:* sin Xy =Xy
In the folldwing we shall use the expressions (3.37) and (3. 38) for
receiving the ‘information about the large-angle scattering too.

‘We estimate the amplitudes f and g replacing the sums in
n by the integrals which can be evaluated with the help of the .

saddle point method without any trouble, The final expressmns take

the form R —
. . —_ ) ___‘pzo(t) / S
f(p,0)=-ipv— e [-vVrt—p—] (3.44)
E lg,lp® "2 J-2zat b/
,0)sing = - :
olp 0)sin0 = - = ¥ (<) (3.45)
~b/a N _—
w1zg (01 "exp 1 (1) -yt —P—z%i‘-)-},‘
where ‘
o, i¢ X IRZEH) .
g ,=lgle = ,g =l g,le " z @ =lz (t)le (3.46).
b .7 C(1- _b
(t)—;" _2__¢)'+x+(1 a)‘l’(t) ] (3.47)
and Z4(t) is the solution of the saddle pomt equat.lon
p2z(;" P T apt 7
= fn — )
2a fn ( 2a )=t 281 ) (3.48)
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. For small scattering angles 0<zo - we cannot apply the saddle},
pomt method to the calculation of theg1ntegrals, representmg the
amplitudes f(p 9) and g(p, ) as the saddle point is far from the in-
-“tegration contour in this case, We retain only the first terms in the
sums (3.37) and (3.38) . Itis equivalent to the approximation of the :
‘mtegra.ls by the values of the integrands at the upper 1ntegrahon
limit, We obtain

f(p,0)=-g Vv 23 exp ( t') (3.49)

7a v 2a

1
B0, Osin0= - g pV—r (% op(4y (3.50)
Having the expressions for the amplitudes f(p,0) and g(p,6)
it is easy to calculate the polarization parameter, We give the cor-
responding ' expressions below without discussion which will be ‘given
in the next section in connection with the isotopic structure of np\
scattering, .
If the initial par“ticles are unpolarized the scattering resulis '
. in the polarization "
S s L 2Im(fg*) sin 6

[ f(p, 0)° +lg(p,6)|25in20 ' e (3.512)

For the small angle scattering when the formulas (3. 49) and (3 50) -
., take place, we obtam

- 2 9 o X o . . :
P() =R(-2) Ve lg (- P =2 ] (s x ). (3.52)

The polarization- parameter for the scattering at angles 0>z, ,
when the estimates (3. 44) and (3.45) are. correct takes' the form

-> o /a . —b/a
P(t) lg:lp v 112,0 [\/l_z ;”' ]b kN Il b~/ cos £(t) x
22 o . 7
2 7a a 201=b/a) - :
clr, ZEIR Brab e e 689
7a’h lg,l . ‘
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It is not difficult also to consider the case of the nonvanishing
initial polarization 'P: £0., The general expressions for the differen-
tial cross section and thé polarization are well known '

do () S a a

o =|f(p, 6)1] " +]g(p,0)]” sin®0 +2(Pyn)sin@Im(fg*) (3.5%)
do(l;i) -1 - . . >
T] {802 (fg*)sin 0+ 2\g|®sn’ 0P, &)1+
. , . , - (3.55)
+Pi(|f|2-|glzsin20__)+[Pl xn ] 2Re(fg*)sinf }. ‘

Pl

Using the above formulas for the scattering amplitudes f(p, ) and
g(p, 09 it is easy to calculate such values as the asymmértr'y parame-
ter and the polamzatlon rotatlon. The former takes place in the
-scattering of the particles, polarlzed perpendlcularly to the .scatte-
ring plane, the latter one if ‘the vector P lies in the scattering

plane,

4, Isotopic Structure of the- Scattering Amplitude

In this section we shall consider ni‘p elestic scattering and
the charge exchange reaction z p »n o n . Let us recall the basic
experimental facts concernmg the polamzatlons and the differential
crass sections, The 7" P elastic scattering polarization has opposite
sign with respect to the =" p elastic scattering polarization. The
polarization of recoil neutron is not zero in the charge exchange
reaction 7 p-7n and it coincides in sign with the = *p scattering
' polarization. The sign of the difference of the n'p and n"p elastic
differential cross sections changes. We shall give a qualitative
description of the above mentioned experignental‘ results with the
help of the formulas of preceding section, ' N

First of all, it is necessary to take into account the isotopic
structure of 7p scattering, Let T, and T, be, the scattering ampli-
tudes in the states with the isotopic spin 1/2 and 3/2 correspondmgly.
Each of them has the form (3.5): '
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3 ey i*' ) . _
T ap 0=, (p, )+ i(d-n)g, ,(p,0)sn0. ~

(4; 1)

The scattemng amplitudes of the three processes mentioned
above are expressed in. terms ofthe T, and T; by the well-known

means

o T (at p- rr+p) =T, '
‘ (4.2)

T(rparp)= (T 2T,) (2.3)
T(z"p->°n) = ,‘é—z(Ta—Tl)- (4.9)

In accordance with the preceding considerations let us take
the potentials correspondmg to the scattemng m the states w1th the
definite isotopic spin, in the form

v : <2 l)_l-xz . g_”
(x)=g  exp(- )+g, ep(~—o—)(o - ’) (4.5)
: a x b x% - = : . ,
Va(x)=g13 exp(— 23 .)’+g23 exp(—-——23'—)(o . ﬂ’ ) | . (4.6)
where ]
19 . _l¢13
g, =lg,,le g =lg le
X21 S 1Xas ' (a7
8 =1 8y » Byg=lBggle : '

. . Now it remains only to use the results of section 3, In the

vsma]l—an‘gle scattering, when the argle distribution is déscribed by |
the Born approximation well enough, we must use ‘the expressions
(3.49) and (3.50). Let us write the scattering amphtudes in an exph—
cit form. : -



exp(___)-—l(an)gzs pV—— e \/-texp( bta) (4.8) .
3

T(77+p—»77+p)=_g13 Vv 2
‘ ral a,

T(a " p »7" p)———[g N exp(—)+ g \/—3- xp(—)]—
3 -
Lo p\/—T 2 t ) t ’ (4.9)
_l(a‘-n) —3 [gzs\/ nb‘; exp(-zb—a) +2g21\/-T51 exP(Z_b,)]
(par®n)=m Y20g v 2 (=t —g (=) -
‘ 3 13 "a:; 233 11 mad 2a,
(4.10)
s V2p 2 '
-i(o -n) V-t [gy ,V—ps o0 ( ) —8,V % e’cp(— ).
- 3
The normalization is defined by
do ” 2 2 . 2 ’
d|t| = ?(lf‘ +|g| S_ln 9). ‘ (4.11)

3

Let us give the corresponding formulas for the differential
cross sections supposing the scattering angle 6  to be small, It

permits one to use the expressions (3.49) and (3.50)

da 2 lgx.'l ‘823‘2 t

dItI e (7 'p a7t p) = p2 a? (—)+( ~t)p b exv{—B-;)l (4.12)
d | lgl:i [gu‘

d[ I(n pon p)— 5o =2 at Ts) a, exp( )+4C” e )+

Op? [ ™ t ; tlgl” : (4.13)

+(-t)p Y exP(-B-a') +v—b;;—exp(-g-l) +4C31;25 ()11

do oo 4l gty leid

any P el a‘:: ol (_) Crus (914 (a.12)

lgas 12 ¢ lgg, I? ¢ :
+(=t)p? [ bzi : exp (Ta) +—i)%~exp(—!—)—l)—_2C2]=23 (t)13.

3
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We use the following notations

F

' ley llaee | - '
c £) = 1
1,k ( ) (d )i+l/2( );+l [( C )“ (C )kz ] exp { (d ) (dk)e]}(4.15)
: g .ug 1, '
Skt () = M ni(g)), —(¢) lept i, 1 (410
l @)y Gy TG g lert g @), (@ k)z“’

where i,k=1,2; j,0 =13 ;d,=a,d,=b; { ~¢,{,=x « If the initial protons

are unpolarized, the expressions for the polarizations P‘(t)’ , take

the: form
P(ntpoantp) = [%]—-1 ;2-:;/:-‘?8,3;23 (t) (4.17)

P(rp - p) [ :Tf‘] »_—‘/-‘-_[s13 s (D48 1y (04280, ()4 |
+28,521 ()] | (2.19)

P(7=p »%n) -[d YT (1335 () 45450 (O .
. [tl P , (4,19

'Su;za (t)"sxla;al (t)]--

Let us consider the scattering at angles 0> Z, > where z,
is the solution of the saddle point equation (3.48), In this case the
amplitudes f(p,0) and g(p,6) are given by the expressions (3.44) and
(3.45), using this it is not difficult to receive the. formulas for the. -
scattering amplitudes, differential cross sections and polarizations,

We shall write the corresponding expressmns for n* P ela,sic. scat-

termg only ( : > 4"3/
_: — z . (t ) e _ 8 L
T=-—-———l.l-)-—expi—\/—t—g—oa——)}[l+(d-,'n)|g Ipy (Y23t %0
\/—aat a, 3 "azabs Ig I o
, . ' (4 20)
xiz '™ eplic () .
03 3 . . :
. . /e b lay )
d(t'.= - @ 14 2P2 |g23l2(_ Znaat b 3|Z !2‘“ ba'/ ‘})exp{-\/—_t— a) |z03(t)l_cos‘/’3(t)}
dit] —at 7a 2b lg . I° ’ , L TR
: ‘ ~ (4.21)
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£
{
¢

T \/—277'33{ ) 113/!13 ‘l—b"/aa-

P(t)_= ZPla&a '\/.”b { - - | lZ 03 cos §3 (t)x’
3 Iglal . i
. _ oL 7 . N (4.22)
<1+ 2p2|g231,2, (‘__ 2r7agt ,)b3/!_13 2 lg(x_ba/a3). ]’_:_] .
' m a% b 2 03
8 |83l

where £,it) is defmed by (3.47).

Also one may consider the case, when the initial protons are
polarized (? #0) . Using the general formulas (3.54), (3.55) and also
(3.44), (3.45), (3.49), (3.50) it is easy to get the expressions for the
cross sections and polarizations, We shall not give the corresponding

formulas because of their complication,

5. Discussion of the Results

"In this section we are going to accdmphsh the qualitative
agreement oﬂhe received formulas with the experimental results/ 8/
m the elastlc T p scattering and the charge exchange reaction
T p-»n' n ., )

First of all,let us consider the behavxour of the coupling

constants g, and g, ~with the energy, It is known that the interac-

“tion -is weakly spin-dependent at high energies. Therefore it is

natural to suppose that the spin-orbital coupling ' constant 8

decreases with‘int':reasing energy, Let
g,=p , a>0 (5.1)

for example. Neglecting the spin-flip part of the scattering ampiitude

at high energy and small momentum transfer and using the optical

" theorem we immediately obtain

g =P (5.9).

if the assﬁmption about the constancy of the total cross section

have been made,
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Now let us consider the expressmns (4 17)—(4 19) for the pola—‘
mzatlons P(t) . The experiment reveals the suff1c1en.tly rapld fallmg
-of the polarlzatlon with mcreasmg ener‘gy. It ‘follows from' our formulas
that P(t)~ p a_L . Thus the behaviour of the polamzatlon P(t) is ’SIml—A
lar to that of the spm—orbltal coupling constant g, - '

The expressmns for the differential cross sections and the
polarization include sufficiently cormslderable'number of the parameter's.‘
We are not gomg to accomplish the quanhta’uve compamson with
the experimental. points, but we consider the qualitative picture alone.'

First of all,let us simplify our expressions (4.17)«4.19). Assume

a,=a,=a and b —ba—b . This leads to that the form of the de-
pendence .of the polarizations ;ont becomes the same for all three
pr;océsses. Also we simplify the‘c‘ivenominyato_rs of these forrhulas,
omitting the term ]g|2 sin26 in the expressions for the differential

cross secrions, Finally, we obtain

le, llg,,l ;
P (t)=A(t) —=——2% sin( ¢, =X, ) (5.3)
: lgml
9A . , , :
P2(t)=—-(—t—)2——i le Mg, Isin(é -x, d+dlg llg, lsin(¢ -x )+ - (5.4

[g}a

+2g Mg, lsin (b, -x,)+21g 5 llg,,Isin(é,,~x,,)}
9A(t) '

P _oy) . _ . _ _
(=~ » l2Hg‘3|l' g, lsin(é -x )+lg llg Ilsin(¢ -x ) (5.9)
13
-lg, gy, Isin(o  -x,.)-1g g, Isin(& -x, )
where
T el — :
A(t) =2p(— - —(— - —)].
. M =2p(5) V-t ep[5(3 - )] (5.6)
Thus first P(t) grows as y-t . When the exponential becomes .

essential, the curve is bending (b<2) and then it begins to fall, The
. ab
maximum takes place at —'tm“= Py

. This relation fixes the para-

29



meter b 1f the a is taken from the calculatlons of the width of the'

diffraction peak. The expressions (4. 17)—(4 19) have been obtained

_w1th the help of the Born approximation. We mentioned that this -

approximation gave good agreement. for small momentum trariSfer
-t 5 04 Gev2, In this region the existing expemmental data are well
described by the dependence (5.6).

To demonstrate the sign change of the »7p elastic scattering’

polarization, let us make the following choice of .the phases

-

4 ' ‘
¢11=¢13=——2—’ XZ,’=0’ Xgg = 7 . o (5.7) .

“With this choice of the phases, the nonflip amplitudes, which give
the main contributions to the total amplitudes T(p,8) are purely

imaginary and positive defined, Let us introduce the two parameters

R I - .9

13 R g 23

It is easy to see from (5 3) - (5.5) that the right signs for the
polanzatl‘ons (B ,P, >() P, <0) take place when

1 —4aﬁ—2(a-—ﬂ‘) <0

1-aB+(a=-B)>0. )

Setting the ratios P,/P, and P,/P, we obtain the system of equa-
tions in respect of the . 2 and B:

daB+ 2 a-P)=

(5:10)
—aB +(a

1
This system has always the non—negatlve solutlons. Let P / P =-1

and P3 /P, =1/2 , then a =0,55, 8= 0,9.
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_For the present there is no any exberiniental ‘r‘e‘solts about
~the measumng of .the large angle scattemng polamzahon. We shall
not dlSCUSS the expresslon (4 22) Let us only- point to the poss1b1e
'appearance of the' oscﬂ.latxons because of the factor cos& (t)

F‘lnally we con51der the quantity

14

7T —bﬂ - 'OA ‘n+ —»7T+ .‘ A A /
dltl ( P | P) dlt| ( ‘P P) . (5.1])

'I\feglecting the spin dependerice, putting ‘a=05 and ‘taking into
account the conditions (5.7), we obtain

‘ ¢t a,s 1 3 1 1y(5.12
A - e (- 2ed(G’ep itk - o1 s L ) Ldo )l]( )
, 9p2a33, a,3 4 al coay : \/2 ;2 a,
The expemmental data show /8/ that —~7 in a suff1c1enﬂy wide
: asg |
energy r‘eg1on. If we put now —;——-14 Ty then 1t is found that_rthe

crossover effect for‘ the d1fferent1a1 cross sectxons of n“'p ’ elastic -

:scattermg takes place at -t = O 13 (GeV/c)2 It is m good agreement'

4._~'w1th the expemmental results e
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