ОБЪЕДННЕННЫЙ ИНСТНТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубва.

E2 - 4460

A.T.Filippov, Yu.N.Jepifanov

OFF-MASS-SHELL CORRECTIONS

TO GELL-MANN, SHARP AND WAGNER MODEL FOR DECAYS $\omega \rightarrow 3 \pi, \omega \rightarrow \pi \gamma, \pi \rightarrow 2 \gamma$

Submitted to ЖЭТФ

The recent $e^{+} e^{-}$colliding beam experiments and the acoumulation of a large amount of data on veotor meson photoproduotion have attraoted particular interest to different tests of the models based on the vector-dominance hypothesis (VDM). This hypothesis seems to be in reasonable agreement with the majority of experimental results $[1,2]$. However, the model of Gell-Mann, Sharp and Wagner (GSW) ${ }^{[3]}$, based on VDM, was found to be in drastic disagreement with experimental data ${ }^{[2,4]}$ In what follows we oonsider the off-mass-shell oorrections to the GSW-model which essentially remove this disagreement. With this aim we introduce the form-factor for the $w \rho \pi$ vertex $F\left(\frac{\rho_{\omega}^{2}}{m_{\omega}^{2}}, \frac{\rho_{\rho}^{2}}{m_{\rho}^{2}}\right), F(1,1) \equiv 1$. We do not consider the form-factors for $\rho \rightarrow \gamma$ and $\omega \rightarrow \gamma$ transitions because the $\rho \rightarrow \gamma$ form-factor seems to be constant ${ }^{[1]}$ in the interval $0 \leqslant p_{f}^{2} \leqslant m_{\rho}^{2}$ and•ne assume that the same is true for the $\omega \rightarrow \gamma$ form--factor. The role of the ρ form-factor may be estimated by the use of the Breit-Wigmer approximation,for in the decaju $\rightarrow \rho \pi \rightarrow 3 \pi$ the ρ meson is essentially on the mass shell (we shall prove that $p_{r}^{2}=m_{\rho}^{2}$). The corresponding correotions are rather small and can be neglected. Under the assumptions stated above we first estimate phenomenologically the dependence of $F(x, y)$ on $x=\frac{P_{\omega}^{2}}{m_{\omega}^{2}, y}=\frac{P_{\rho}^{2}}{m_{\omega}^{2}}$ employing the improved GSW-model. Then we develop a simple dynamioal model in which F may be calculated for arbitrary $x=y$.

Following the notations of GSW [3], we find

$$
\begin{align*}
& \Gamma(\omega \rightarrow 3 \pi)=\frac{m_{\omega}}{3} \frac{\gamma_{\rho \pi \pi}^{2}}{4 \pi}\left(\frac{f_{\omega \rho \pi}^{2}}{4 \pi} m_{r}^{2}\right) \frac{\left(m_{\omega}-3 m_{\pi}\right)^{4}}{\left(m_{\rho}^{2}-4 m_{r}^{2}\right)^{2}} \frac{3.56}{\sqrt{3}} \overline{F^{2}(1, y)} \tag{1}\\
& \Gamma(\omega \rightarrow \pi \gamma)=\frac{m_{\omega}}{3} \propto\left(\frac{f_{\omega \rho \pi}^{2}}{4 \pi} m_{\pi}^{2}\right)\left(\frac{\gamma_{\rho}^{2}}{4 \pi}\right)^{-1} \frac{\left(m_{\omega}^{2}-m_{\pi}^{2}\right)^{3}}{32 m_{\omega}^{4} m_{\pi}^{2}} F^{2}(1,0) \tag{2}\\
& \Gamma\left(\pi^{0} \rightarrow 2 \gamma\right)=m_{\pi} \frac{\alpha^{2}}{64}\left(\frac{f_{\omega \rho \pi}^{2}}{4 \pi} m_{\pi}^{2}\right)\left(\frac{\gamma_{\rho}^{2}}{4 \pi}\right)^{-1}\left(\frac{\gamma_{\omega}^{2}}{4 \pi}\right)^{-1} F^{2}(0,0) . \tag{3}
\end{align*}
$$

Here $\overline{F^{2}(1, y)}$ is used for a certain mean value of the square of the form-factor $F(1, y)$. We now assume for $F(x, y)$ the simplest linear symmetric dependence

$$
\begin{equation*}
F(x, y)=F(0,0)[1+\lambda(x+y)], 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1 . \tag{4}
\end{equation*}
$$

To estimate λ we use two sets of experimental data:

1) $\gamma_{\rho}^{2} / 4 \pi=0.53 \pm 0.04 ; \gamma_{\omega}^{2} / 4 \pi=4.69+1.24 ; \quad \gamma_{\rho \pi \pi / 4 \pi}^{2}=\frac{1}{4}(2.12 \pm 0.16)$
2) $\gamma_{9}^{2} / 4 \pi=0.51 \pm 0.03 ; \gamma_{\omega}^{2} / 4 \pi=3.7 \pm 0.7 ; \gamma_{\rho \pi \pi / 4 \pi}^{2}=\frac{1}{4}(2.10 \pm 0.11)$

The value of γ_{ρ} is consistent with the vector dominance in photoproduction processes and in the ρ form-factor (It should be stressed, however, that from the world average ${ }^{[4]}$ value for $\Gamma(\rho \rightarrow 2 \pi)$ we would find somewhat different numbers for quantities considered in what follows).

Comparing $\frac{\Gamma(\omega \rightarrow \pi \gamma)}{\Gamma(\pi \rightarrow 2 \gamma)}, \frac{\Gamma(\omega \rightarrow 3 \pi)}{\Gamma(\pi \rightarrow 2 \gamma)}$ predicted by Eqs. (1)-(3) with the experimental values, we obtain for data 1$)$:

$$
\begin{equation*}
\frac{F^{2}(1,0)}{F^{2}(0,0)}=2.05 \pm 0.60, \quad(5 a) ; \quad \frac{\overline{F^{2}(1, y)}}{F^{2}(0,0)}=3.08 \pm 0.80 \tag{5b}
\end{equation*}
$$

and for data 2):

$$
\begin{equation*}
\frac{F^{2}(1,0)}{F^{2}(0,0)}=2.60 \pm 0.60, \quad(6 a) ; \frac{\overline{F^{2}(1, y)}}{F^{2}(0,0)}=4.23 \pm 0.80 \tag{6b}
\end{equation*}
$$

where we used experimental results ${ }^{[1,2,4]}$

$$
\Gamma(\omega \rightarrow 3 \pi)=(11 \pm 1.2) \mathrm{MeV} ; \Gamma(\omega \rightarrow \pi \gamma)=(1.15 \pm 0.15) \mathrm{Mev} ; \Gamma\left(\pi^{a} \rightarrow 2 \gamma\right)=(7.4 \pm 1.5) \mathrm{ev} .
$$

From Eq. (Fa) we extract $\lambda \equiv \lambda_{a}^{(1)}=(0.43 \pm 0,21)$, and from Eq. (6a) we find $\lambda \equiv \lambda_{a}^{(2)}=(0,61 \pm 0,20)$. To use Eqs. (5b), (6b) we should find $\overline{F^{2}(1, y)}$. It can be shown that

$$
\begin{equation*}
\overline{F^{2}(1, y)}=F^{2}(0,0)(1+2 \lambda)^{2}\left[1-\frac{4 \lambda}{1+2 \lambda} \varepsilon\right], \tag{7}
\end{equation*}
$$

Where $\varepsilon \simeq 0.1$. So we see that $\overline{F^{2}(1, y)} \simeq F^{2}(1,1)$ and our assumption $p_{p}^{2} \simeq m_{\rho}^{2}$ is verified. Substituting Eq. (7) into Eqs. (5), (6) we obtain $\lambda_{B}^{(1)}=(0.41 \pm 0.13) \quad, \lambda_{B}^{(2)}=(0.58 \pm 0.12)$. All $\lambda_{9, B}^{(i)}$ are oonsistent with each other (within experimental errors). Considering that one parameter λ was determined from two independent quantities $\Gamma(\omega \rightarrow \pi \gamma) / \Gamma(\pi \rightarrow 2 \gamma)$ and $\Gamma(\omega \rightarrow 3 \pi) / \Gamma(\pi \rightarrow 2 \gamma)$, we may infer that our simple phenomenological model works surprisingly well and gives $\lambda \sim 0.5$.

The dependence of $F(x, y)$ on x and y may be significant in other processes. In this regard the decay $\pi^{0} \rightarrow e^{+} e^{-}$is rather interesting. Its partial width may be estimated in the simple model (Fig .la). For $F(x, y) \simeq F(0,0)$ the branching ratio $\frac{\Gamma\left(\pi^{0} \rightarrow e^{+} e^{-}\right)}{\Gamma\left(\pi^{0} \rightarrow 2 \gamma\right)}$ was found $[6]$ to be of the order $(5 \div 6) \cdot 10^{-8}$. By use of the form-faotor $F(x, y)$ from (4) this prediction may become ($3 \div 5$) times bigger. Similarly, $F(x, y)$ would diminish the prediction of the simple vector-dominated model for $\rho \rightarrow 4 \pi$ (See Fig. 1 b). These effects are worth of particular attention and will be considered in another paper.

Consider now the simple dynamical model, in which $F(x, y)$ may be oalculated. Let $\omega \rho \pi$ interaction be described by the Lagrangian $\mathcal{L}_{\omega \rho \pi}=f_{\omega \rho \pi} \varepsilon_{\mu \nu \lambda s} \partial^{\mu} \omega^{\nu} \partial^{\lambda} \vec{\zeta}^{\sigma} \cdot \vec{\pi} \quad$. The simplest way to find $F(x, y)$ is the oaloulation of the third order (in fog n) perturbation the org diagram for $\omega \rho \pi$ vertex. But, the interaction is unrenormalizable and the resillt would depend on a out-off parameter, Besides, as the coupling is not particularly weak, higher orders must be taken into account. For these reasons we estimated $F(x, y)$ calculating the sum of the infinite set of the "ladder"-diagrams (Fig.2) . Let us denote the vertex by

$$
\Gamma_{\omega \rho \pi}^{\mu \nu}\left(p_{\omega}, p_{\rho}\right)=f_{\omega \rho \pi} \varepsilon^{\mu \nu \lambda \epsilon} p_{\lambda}^{(\omega)} p_{\sigma}^{(\rho)} F\left(\frac{p_{\omega}^{2}}{m_{\omega}^{2}}, \frac{p_{\rho}^{2}}{m_{\rho}^{2}}\right) .
$$

$F(X, J)$ satisfies the linear int egral equation(Fig.2)($\Gamma w \rho \pi$ is displayed on Fig. 2 by the oirole). To make the calculations as simple as possible, we set $p_{\pi} \simeq p_{\omega}+p_{\rho} \simeq 0, m_{\pi} \simeq 0$ (soft pions approximation). Then the quation ${ }^{\circ} F(x) \equiv F(x, X)$ coinoides with that investigated in ref. [5]. By use of modified perturbati on theory [5] the expansion of $F(x)$ in a series of powers of $f \equiv \frac{1}{12} \frac{f_{w \rho \pi}^{2}}{4 \pi} m_{\pi}^{2} \simeq 0.55$ and of $\log f$ may be found. Up to the terms of the order $\sim f^{2}$ we obtain $F(1,1) / F(0,0)=1.23$. This approximation works only if $f \leqq 0$.3. For $f \sim 0.5$ the crude estimation of higher order gives $F(1,1) / F(0,0)=1$. 3. So for the Iinear extrapolation (4) we have $\lambda=$ ($0.12 \div 0.15$) . (The details of the caloulations will be published in a subsequent paper). Our simple dyamical model is therefore qualitatively consistent with experiment. For the quantitative test of the theory the non-ladder diagrams with $\quad p_{\pi} \neq 0$ should be considered.

In conclusion we would like to stress that λ is strongly dependent on $\Gamma\left(\pi^{0} \rightarrow 2 \gamma\right)$. In faot, if we take the new value ${ }^{[1,7]}$ $\Gamma\left(\pi^{0} \rightarrow 2 \gamma\right)=(11+1,6)$ eV we will obtain: $\lambda_{a}^{(1)}=(0.18 \pm 0.18)$, $\lambda_{b}^{(i)}=(0.23 \pm 0.11), \lambda_{a}^{(2)}=(0.32 \pm 0.17), \quad \lambda_{b}^{(2)}=(0.37 \pm 0.14)$ in close agreement with our simplified theory.

The useful disoussions with B.Arbuzov, A.Efremov, and S.Gerasimov are kindly acknowledged.

References:

1.S.Ting, Proc. of the XIV Intern. Conf. on High Energy Physics at Vienna, CERN, Geneva, 1968.
2.J.E.Auglstin et al., Phys.Lett., 28B, 503,508, 513, 517,1969.
3.M.Gell-Mann, D.Sharp, W.Wagner, Phys.Rev.Lett., 8, 261, 1962.
4. Partiale Data Group, Review of Partiale Properties, Rev.Mod.Phys.g 41, N.1, 1969 .
5.B.A.Arbuzov, A.T.Filippor, Nuovo C1m., 38, 786, 1965; JETP, 49, 990, 1965.
6.C.Ouigg, J.D.Jackson, Deoass of Neutral Pseudosoalar Meson into Lepton Pairs, Univ. of Cailif.preprint, Berkeley, California, 1968.
7.M.Braunschweig et al., Phys.Lett., 26B, 405, 1968.

> Reoeived by Publishing Department on April 28, I969.

a)

b)

Fig. 1

Fig. 2.

