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In the basic works performed· by A.A.Logunov and A.N. Tavkhe­

lidze/l/ the notion of the quasipotential was introduced to consider 

the bound states and the scattering of two relativistic particles. It 

is important that quantum field theory does not contradict such con­

siderations and moreover by means of this theory it is possible to 

receive the series expansions of the quasipotential in a small para­

meter. Of course, such expansions are useful only for small coupling 

constants, for instance, in the case of electrodynamics/2/. 

But in the· case of strong interactions it is difficult to find a 

direct connection between the method of quasipotential and quantum 

field theory. In this case we write the quasipotential equations for the 

system of· two particles starting from various physical assumptions. 

For instance, in recent works/3/ it was shown that the quasipotentia,.l 

method is valid for the description of high energy elastic scattering 

at large and small angles. In this case a purely imaginary smooth 

quasipotential of the Gaussian type was us.ed. When the incident 

particle energy becomes high enough there exist also various ine­

lastic processes and the quasipotential has an imaginary part. This 

work is devoted to the problem of the sign of this imaginary part. 

Let us consider, at first, the generally accepted formulation 

of the quasipotential equations. so; we have two identical spinless 
... ... 

particles. We use here the center-of-mass system p 
1 

+ p 
2 

.. O, so we 

can put p 
1 

= p ; p
2 

= - p • The energy of free particle will be 

E~p) = y m2 + p 2 Using these notations we write the quasi-

potential equation in the form 
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2 o E 2 dq 
~o p + m· -( -) I cp (p)- JV(p,q)cp(q) 

2 y 2 2 q + m 

--
or, putting cp ( p ) ~ Y P2 + rnz .p ( P) we can write also 

y 2 2 I 2 2 ( E )
2

1 .p (p) ~ f v ( p. q ) .p ( q) d q • p + m p +m --
2 

(1) 

In the case of the local potential which is often considered, 

the quasipotential is chosen in the form 

V ... V(p,q,E) ~ V<J p-q !2 
,E) 

then its Fourier-transform U depends only on the distance between 

the particles and the quasipotential equation becomes similar to 

the Schroedinger equation and differs from it only by the kinematic 

factor y p 2 
+ m

2 

.I 2 2 2 2 E 2 ... ... ... 
vP +m lp +m -(-) lll>(r)-U(r,E)II>(r)=O, 

2 

where II> is the Fourier-transform of the wave function .P 

P2 ~-!!. 
r• 

and 

To find the solution which corresponds to the elastic scattering 

of the two particles considered, let us put in the equation (1) 

1/J (p) ~8 (p-p ')+ T(p,p ') 

G IE+i dl 

E=E( p '), ' ::: 0. 

where 

-2--2 E(p) 2 E(p'); G(E) = yp +m I (----4---) -( I. 
2 2 

4 

....-

Then one can obtain the scattering equation from eqw 

T= V + V L T. 
G- i E 

In this equation E is considered as a given positive 
meter, E :::_2m 

Starting from this equation there was established an in 
theorem that if V is the Hermitian operator, then the scatte 

matrix S , defined by the amplitude T , should be unitary 

But when the incident particles energy E becomes hgh eno 

the real system, in addition to elastic scattering there exist : 

inelastic processes. 

So, if the S -matrix describes only elastic scattering , 

should have the underunitarity condition for the S -matrix: s+~ 

i.e, the operator ( 1- S +s ) should be positive, On the other 

the S -matrix, defined by the quasipotential equation can de: 

only elastic processes since it includes, in addition to incide 
tides term 8 ( p- p ') the terms, proportional to 8 ( E ( p)- E( p 

with the same energy as that of incident particles. Therefore 

into accot,.~nt the real processes one has to insert into the qt 

tential an imaginary part. 

Now let us prove the theorem that for the model equatic 

the type (1), one should receive an underunitary elastic scatt' 

matrix, i.e. ( 1- S +s ) ~ !J , if the Hermitian operator A = + ( \ 
is positive, A ~ 0 x/, 

x/ Here and in what follows we say that a certain operator 
positive if jcp ( p) A ( p , p ') cp* ( p ') d p d p ·~ 0 , 

where cp is an arbitrary function. In the local case, mentio1 
·above, the positivity conditions can be written simply ImV :::_0. 
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E z d q 
( -) I cp (p)- JV(p,q)cp(q) ---=----=0 

2 ./ 2 2 v q + m 

= y p2 + m2 f ( p) we can write also 

E z 
p 2 +m 2 -(z) I 1/J(p)= JV(p,q)I/J(q)dq. (1) 

of the local potential which is often considered, 

is chosen in the form 

V=V(p,q,E) = V(J p-q !2 
,E) 

nsform U depends only on the distance between 

nd the quasipotential equation becomes similar to 

equation and differs from it only by 

E 2 -+ ... 
-(-) I«P(r)- u(t,E)«<l(r)=O, 

2 

the kinematic 

Fourier-transform of the wave function f and 

solution which corresponds to the elastic scattering 

s considered, let us put in the equation (1) 

=f) (p-p ')+T(p,p ') G{E+id 

E=E(p'), c:;,.O, 

y p2 + m2 
E(p) 2 

(--'--) -( 
2 

4 

~ 

, ) 2 
&__)I. 

2 

Then one can obtain the scattering equation from equation ( 1) : 

T= V + V T. (2) 
G- i c 

In this equation E is considered as a given positive para-
meter, E ~2m 

Starting from this equation there was established an important 

theorem that if V is the Hermitian operator, then the scattering 

+ matrix S , defined by the amplitude T , should be unitary S S = 1 • 

But when the incident particles energy E becomes hgh enough, in 

the real system, in addition to elastic scattering there exist some 

inelastic processes. 

So, if the S -matrix describes only elastic scattering one 

should have the underunitarity condition for the S -matrix: s+s::; I 

i.e. the operator ( 1- S +s ) should be positive. On the other hand, 

the S -matrix, defined by the quasipotential equation can describe 

only elastic processes since it includes, in addition to incident par-

tides term lJ ( P- P ') the terms, proportional to 8 (E (p)- E(p ')) 

with the same energy' as that of incident particles. Therefore to take 

into acco~,.tnt the real processes one has to insert into the quasipo­

tential an imaginary part. 

Now let us prove the theorem that for the model equation of 

the type (1), one should receive an underunitary elastic scattering 
1,1 1 + 

matrix, i.e. ( 1- S +s ) ~ 0 , if the Hermitian operator A = T ( V -V ) 

is positive, A ?., 0 x/. 

x7 Here and in what follows we say that a certain 

positive if Jcp ( p) A ( p , p ') cp* ( p ' ) d p d p '?.. 0 , 
operator A is 

where cp is an arbitrary function. In the loc-..al case, mentioned 
above, the positivity co~itions can be written simply Im V ~ 0 • 

~ 
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Thus, one can obtain at once, from (2) 

(1-V • )T~V 
G-il 

(G-i£-V)(G-i£)-
1 T~V 

(3) . 
-1 . -1 

(G-id T ,(G-i£-V) V, 

Substituting (3) into (2) 

-I 
T "'V + V (G-il - V ) V • (4) 

From (3) and (4) we get 

+ -1 + + _, 
T (G+ il} ,y (G+il-V) (5) 

and 

+ + + + -1 + 
T "'V + V ( G + i ( -V ) V • 

(6) 

So, we have for 

T -T+ ,. V -V + + D, 

where 

-1 + + -1 + 
D"' V (G-il- V) V -V ( G + il- V ) V • 

(7) 

To calculate D use the identity 

(X+x)(Y+y)(Z+Z)- XYZ, 

=x(Y+y)(Z+ z)+ Xy(Z+z) +XYz 
(s) 
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and put in it 

x~v+l v~<G+il-V+)- 1 I z.,v+ 

X+ X = v I Y+ y = ( G- i ( - V)-
1 

I z + z = v • 

Consequently 

where A 

the operator 

if 

+ 
X= v -V ,jA = z 

is the Hermitian operator. We remind that we 1 

A(E) .. ~(V(E)- V+ (E)) the positivity 
1 

A(E)::_ 0 

E >2m, 

From (7) and (8) we receive 

-1 + -1 
y = ( G - i (- V ) -( G + i ( - V } . "' 

+ -1 + -1 
=(G+i£-V) (G+il-V )(G-il-V) -

-(G+i£-V+ )-
1
(G-i£-V)(G-il- Vf

1
= 

+ -l -1 + -1 
,.2idG+il-V) (G-i£-V) +i(G+il-V) A(G-i 

Therefore 

T-T+,V-V++iA(G-i£-V)-
1

V + 

+ + -l . -1 + + 
+V (G+i•-V ) (2i• +iA)(G-i£-V) +V (G+il-V 

or, taking into account (3) and (5) 

T-T+ "'iA + iA(G-ilf
1 

T +T + (G +i£ )-
1
.i A+ 
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ne can obtain at once, from (2) and put in it 

( 1- v ---)T~V x~v+, Y~(G+i£-V+)- 1 , Z=V+ 

G-il 

(G-i£-V)(G-i£ )-
1 

T =V 
(3) X+ X ~ v • Y+ y ~ (G-il - V)- I • z + z ~ v • 

(G-i£f
1 T~(G-i£-V)-1 

V, Consequently 

+ 
X= v- v ~ iA ~ z , (9) 

,) into (2) 

-1 
T ~ V + V (G-il - V ) V • (4) 

where A is the Hermitian operator. We remind that we put on 

the operator A ( E} = + ( V (E) - V+ ( E}) the positivity condition 
I 

(4) we get A(E}:::_ 0 (10) 

+ -1 + + -1 
T (G+ id ~v (G+i£-V) (5) 

if E >2m, 
(11) 

From (7) and (8) we receive 

+ + + + -1 + 
T ~ V + V ( G + i l -V ) V • 

-1 + -1 
y 2 ( G -it-V ) -( G + i ( - V } . ~ 

(6) 
+ -1 + -1 

,(G+i£-V) (G+i£-V )(G-it"-V} -

for 
-(G+i£-V+ )-

1
(G-i£-V)(G-i£- Vf

1
, 

T -T+ ~ V -V + + D, 
+ -1 -1 + -1 -1 

.. 2il(G+i£-V) (G-i£-V) +i(G+i£-V) A(G-i£-V) 

-1 + + -1 + 
o~v (G-il-V) v-v (G+ i£-V ) v • Therefore 

(7) 
T-T+ =V-V++iA(G-i£-V)-

1 
V + 

D use the identity 
+ + -1 - 1 + + -1 

+V (G+i£-V ) (2i€ +iA)(G-i£-V) +V (G+i£-V ) iA 

(X+x)(Y+y)(Z+Z)- xvz~ or, taking into account (3) and (5) 

~x(Y+y)(Z+ z)+ Xy(Z+z) +XYz 
(s) 

T- T+ "' i A + i A ( G- i c)- 1 T + T + ( G + i ( } -
1

i A + 

t 
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+T+(G +id-
1
2i£ (G-i£) -

1
T +T+ (G+id-

1 
iA(G-i£)-

1 
T= 

+ -1 -1 
=fl+T (G+id ]iA[l+(G-i£) T]+2ilTT+~(G)T. 

Let us designate 
-1 

{}= l+(G-i£) T. 

Then 

(iT) +(iT)+ +2lT(iT)+~(G)(iT)+ a+ AO= 0. 

Introducing the operator $ so that for arbitrary function </> 

&cp (p)=E(p) cp(p) 

one can see immediately 

~!G(E)I .,~~(&-E) 
E 

and write ( 13) in the form 

+ SIT + + 
(iT)+(iT) +-:;r-OT> ~(tiJ-E)(iT)+O AO.,O. 

E 

(12) 

(13) 

Note, that the operator 0 +A 0 L 0 for E :::_ 2m since A( E) :::_ 0. 

Rewrite it in the matrix p -representation 

+ 
( iT) , + ( i T ) , + 

p,p.E p,p,E 

+~f (iT) , ~(E-E(p"))(iT), , dp"+ 
E2 p,p,E p,p,E 

(14) 

+ + (0 AO ) , E -0. 
,P ,p ' 

8 . t ~ 

Put here E = E(p ') 

having designated 

and multiply (11) by 8(E(p)- E(p ')) 

Srr 
--:;-(iT) , E() 8(E(p)-E(p')) = T (p,p ') 

E" P ,p • P 

we receive 

r( p 1 p ') + ,+ ( p, p , ) + f T + ( p,p , ) T ( p , 1 p ') d p , + 

+ 
+W AO)p,p~E ~(E(p)-E(p'))=O. 

Here we have to show that the operator, represented by the 

(O+AO) 'E 8(E(p)-E(p')) 
p ,p' 

is positive, i.e. for arbitrary function h ( p) 

ff (0 +A 0) P • P ', E (p l 8 ( E ( p) - E ( p ')) h * ( p) h ( p ') d p d p ' ~ 0 • 

+ 
Really, since the operator (0 AO) p,p ',E(p) ~ 0 , then 

ff(O+AO) , g*(p)g(p')dpdp'~O 
P ,p • E(p) 

for E >_2m. 

Put here g(p) =8(E(p) -E)h(p) and note that 

,, 
~(E(p) -E) 8 (E(p ') -E )= 

=8(E( p) -E) ~(E(p ')-E(p)). 

Therefore 

ff((O+ A0) : 8(E(p ')-E{p) )] h *(p ') h(p)~(E(p)-E)dp dp' >-J). 
P • P • E( p) 
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_, + _, _, 
if (G-i•) T +T CG+id iA(G-iE) T: 

_, ]iA[l+(G-iE)-
1 

T]+2i1TT+o(G)T. 

_, 
l+(G-ic) T. 

iT)+ o(G)(i T) + 0+ A 0, 0, 

r !b so that for arbitrary function cp 

(p) .. E(p) cp(p) 

>l .. ~oc&-E> 
E 

+ + 
(iT) o( & -E)(i T)+O AO .. o. 

(12) 

(13) 

n+ An ~ o for E :::_2m since A(E):::_O. 

p -representation 

+ 
T ) ' + 

P 'P 'E 

o(E-E(p"))(iT), , dp"+ 
E p ,p ,E 

(14) 

"'0. 

8 

~ 

~ 

Put here E=E(p') 

having designated 

and multiply (14) by 8(E(p)- E(p ')) • Then, 

87T 7 ( i T) p • p '. E ( p) 8 ( E ( p) - E (p ')) = T ( p, p ') 

we receive 

r( p 1 p ') + ,+ ( p 1 p ' ) + f T + ( p ,p " ) T ( p ", p ') d p " + 

+ 
+ ( 0 A{}) P , P : E 8 ( E ( p) - E ( p ')) = 0 • 

(15) 

Here we have to show that the operator, represented by the matrix 

(ftAO) 'E 8(E(p)-E(p')) 
pIp' (If) 

is positive, i.e, for arbitrary function h (p) 

jJ(O+A{}) 'E( > o(E(p)-E(p'))h*(p)h(p')dpdp'~O. 
p. p' p 

+ 
Really, since the operator ( n An ) p. p '. E ( p) ::: 0 then 

ff(O+A{}) , g*(p)g(p')dpdp'~O 
P ,p 'E(p) 

for E >_2m • 

Put here g(p) =B(E(p) -E)h(p) and note that 

8(E(p) -E) 8 (E(p ') -E ), 

,I) ( E( p) -E) 8 ( E(p ')- E (p )) • 

Therefore 

jJ[(O+ A0) ~ 8(E(p ')-E(p) )] h *(p ') h(p)8(E(p)-E)dp dp' >-.0. (17) 
P, P 'E( p) 
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( 

Strictly speaking, this inequality is fulfilled only for E ~ 2m , But 

for E <2m S (E(p) -E) =0 and (17) is fulfilled identically, There-

fore inequality ( 17) is true for all real E , Then having integrated 

it over E we receive 

jj({l+AO) , . S(E(pJ-E(p '))h*(p 'Jh(p)dp dp':::_ 0 
p,p 'E(p) 

that means the positivity of the operator represented by the rr.'ltrix(16). 

Then from (15) we receive 

T+T++r+r _sO i.e. S+S_s1, (18) 

where 
S = 1 + T 

or, in the matrix representation 

S(p,p')=S(p-p')+~(iT) , S(E(p)-E(p')). 
. E2 o.o .E<o> 

Thus, if we have the condition (10) then the elastic S -matrix should 

be underunitary. 

Of course, if A( E)"" 0 , i.e. V is the Hermitian operator, 
T+T++T+T ,.Q and s+s = 1 

In conclusion I express my gratitude to N,N,Bogolubov and 

A.N.Tavkhelidze for valuable advice and discussions, 
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