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1. The progress recently made in the para-quark model of
hadrons/ 1/ seems to indicate that quarks are para-Fermions of order
3 as Greenberg/2/ has proposed some years ago. The equations of
motion however are unknown and special ansatzes must be made
for them. Another problem arises in hadronic physics because of the
non-uniqueness of the quantizaﬁon of wave equations for particles:
of higher spin, which may be connected with the 'above—r_nentioned
‘difficulty, As Takahashi/ 3/ emphasizes the well known relation bet-
ween the generators of space-time translations P# and the field

operator ¢ (x),

=9, ¢(x)=lg(x), P ] (1)

leads to different quantizations: a special choice of PF requires
special commutation relations for ¢ (x) in order to make (1) con-

sistent with the equations of motion

A(d) ¢ (x)=0, ' (2)

For physically relevant theories P# must be a 4-vector with P
and H =-iP, hermitian and furthermore there must exist a unique
vacuum state |0 > such‘ that H > E | (zeropoint energy), A more
appropriate form is arrived by the il;ltroduction of creation and an-

nihilation operators for the field quanta,



$(x) = £ [d%k 1a"(Wu () +b7 ()T v (0,
r ‘ ' (3)

where u (x) resp. v;(x) is a positive resp. negative frequency solution

of (2) by c~number functions, With

3 r
%:?fdkk#N(k), (4)

where N'(k) is the number operator of the state (l,r), it follows (only

one Index is written out)

+ F
[Ni,a;‘ ]=_+_a|5" (5)

and an analogous equation for the b's, Further it must hold

[N,,N;]1=0 (6)

(?)

N0 >=a7 10> = 0.

(8

The problem now consists in taking a definite form for the N,
in terms of a"t and then to search for the commutation relations
of the af" which are conslistent with (5) - (8),

2,Such a consistency problem was treated by Wigner/ 4/ ,

Tes
O-Raifeartaigh et aL/>/
detailed analysls shows that for

a) N linear in a and a’ there is only the trivial solution a=0,

for a simple harmonic oscillator, A more

b) N bilinear there are two infinite families

N=sg(k) (a a't —ka+a)—Eo; s =41, ~00<k < 400

(9



1/(1- k) kAl
g(k)=
1/2 k=1 . (10)

The s‘pectrum of N in this case is simple which is equivalent to/ 5/
aat|n>=c _|n>
with [na>= N(n)(a*t)"|0>,
A representation of the a’s is then given by
<n+1la* | n>=y7c,
and ¢  follows from (9) as

s(1-k " )E 41 k) ko 1,

s(a+D(2E_ + n) k=1 (ty)

with

f ()= —nxl 1
" -kt 1=k (12).

From c. > 0 there follow restrictions on E, which should not be
reproduced here, It can be shown that all these different represen-
tations for a, which lead to different commutation relations, are

physically equivalent to the case k== ,s =1 which corresponds

to the well known Bose- and the Okayama- commutation relations/7"9/,
but such a reduction works only for one oscillator and not for a

field,

The case c) N trilinear in a and a*

reduces to b) essentially,

and for N quadrilinear there is in general no simple spectrum of N ,
Therefore we shall firstly try to generalize b) to a countable set

of operators a'i and N .

3, First of all we define a symboal ( , ) by

(A,B)=sg(k)(AB -kBA) (13)
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and remark the identities
[(AB) Cc] +[(BC)A] + [(CA)B] =0 (14)

f(aB) cl=(alBC]) ~([calB). (15)

Next we define the operators

+ P 16a
N, =(a,.at) S =(at e ) (16a)
Ly =(°:’ax+) Mo=Ca,.a) (16b)
with
=N* N’ =N’*, t oM
$] i i ji 1 i
(17)
Then we generalize eq. (5) to
[Ny et J=afey, 8, (18a)
or
+
[Nu '3, } =a 59 im
(18b)
with
t =el+(1=8 Nrk)-1)=r ,
1j ij 1 (19)

With the help of eq. (15) we conclude, by freating the commutator
[Ny N, ], that only r(k) =0 or 1 for (18a) and r(k) «0 for

(18b) are possible, so we have

jm (z =1)
(20)

or

[N ,am+]-av:8 N =N'8 (t=0) . (20,)



This result follows also from the requirement of invariance of the
commutation relations under infinitesimal unitary transformtlons/ 10/
=, - 3 * -
a -+a —(5"+a“ )a, with @, +a%* 0.

I we require invariance for every a y then eq, (20) follows
and we qualify such theories with (20) as admissible. Theories
with (20%) are not admissible in this sense because they follow for
a =a '8 u only,

4. Now we shall study the admissible theories. From (20) we
arrhre at

] mn in  jm mj in (21)

for every form of N, (k) » especially we have (6), Eq. (21) shows
that any representation of the ail must Induce a representation

of the Lie algebra of the unitary group in ¢ dimensions U(¢)
where [ is the number of ditffex;ent modes i , Now we can ask in
what cases this Lie algebra closes in any way to the algebra of .
one of the subgroups of U ( ), the groups 0(2¢ +1) , 0(2¢ )

of Sp(2¢ ).

With (14) we see that

+ ’ + -
[L“ ,am]=_a’ Slm -[Nm! , 8 ] (22)
and therefore cohclude
. + , +
[le A ) (l()al 8“‘ (23

must hold, By inspection of the commutation relations between the

operators‘(16-a) and (16b) the following requirement must be fulfilled.
Ly+s’(k)L, =0 (24)
Nl; + 8 (k)N " =t(k) 8" (25)

with s’ =1 resp, -1 for the orthogonal resp, symplectic groups.



From (24) and (23) it follows that either s’=k , which means para-

:
commutation relatior\s"lll or
[a,,a,]s; =[a|+,a+’ ]s,=0 (26)
+ - - 1-k &
fa, v ), mms —A=bos (27)
Relation (27) may be written in the usual form
+ = & - *
[a‘ .aj]s, . (27
after an appropriate transformation of the a's if s = 1 and
|kl 1 for s = -1 {(Bose commutation relations) and if s=1
and | k| > 1 or s=-1 and |kl <1 fors =1 (Fermi
commutation relations),
The requirement of an unique vacuum state |0 > ‘with (8) leads
with the help of eq. (21) to
+
N“IO>=sg(k)a,al|0>=cu|0> (28)
and from eq. (21) it follows
-1
c .Eosu-sg cosu . (29

From eq. (25) it follgws )
E°=-1/(l+k) for Fermi c.r,
E°=1/(1-k) for Bose c,r.

whereas in the case of para-Fermi (Bose) c, r.

t'ollowslll/. Fo iz 2e R et

In the other cases where oniy the unitary Broup is realized by the

li the requirement of an unique vacuum state and the positive

a
definiteness of the representing Hilbert space leads to complicated
polynomials in E, w.ith k-dependend coefficients which in general
may not be factorized, For k=0 a very laborous computation
secures the positive definiteness, whereas the study of a few
special types of Hilbert space vectors seems to indicate that all
the cases with k£0,+1 must be excluded. -

5, The study of the non-admissible theories with (20" goes
the same line of reasoning. One attains also

N”=s’N‘ +t (30)
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and either

s’=1, [ ,atl=0
Fooe, (31)
or
L =M =0. :
vt (31%)
For (31) we have either Bose c. r, or k=-1 with
t +
[Nl,ai] = +ar , [I..i ,ai]=—2 a, (32)

and for itj all ali and aij anticommute, By a Klein transformatiolxlz/
it is possible to reverse these anticommutation relations in normal
commutation r;lations and one sees that (31) is equivalent to quantize every
mode | separately by para-Bose c.r, ‘For (31") in strikt analogy we
have
(N

b
v

; 1 =iai.N,=[a';,al (329

and for i#j all a';r commute with aji . So we see that (31') is
equivalent to quantize every modei separately by para~-Fermi c.r, The
whole Hilbert space in both cases is the direct product of Hilbert
spaces of the a; , therefore tha reduction mentioned in 2, can
be applied and hence the theories with (31) and (31") are equiva-
lent to the superstatistic theory of Roman and Aghassl/ 13'14/ and
also to the theory of Parks/15'16/. As Parks has shown this type
of theories may be of interest in the many body problems, for
instance in the BCS-theory of superconductivity.

6. The author is very indebted to Prof. A,Uhlmann, Dr, A,B,Go-
vorkov and Dr, D. Robaschik for interesting discussions and
useful remarks., Further he wouid like to thank Prof. D,I.Blokhintsev
and Prof, AN,Tavkhelidze for their kind hospitality during a stay
at the Laboratory for "Theoretical Physics in Dubna,
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