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1. The progress recently made in the para-quark model of 

hadrons/1/ seems to indicate that quarks are para-Fermions of order 

3 as Greenberg/2/ has proposed some yeat•s ago. The equations of 

motion howe·ver are unknown and special ansatzes must be made 

for them. Another problem arises in hadronic phy-Sics because of the 

non-uniqueness of the quantization of wave equations for particles· 

of higher spin, which may be connected with the ·above-mentioned 

~difficulty. As Takahashi/3/ emphasizes the well known relation bet-

ween the generators of space-time translations P 
11 

and the field 

operator /> (x), 

·-ia cf>(x) = [ cf>(x), P 
ll ll (1) 

leads to different quantizations: a special choice of P 11 requires 

special commutation relations for cJ (x) in order to make (1) con­

sistent with the equations of motion 

A(a) cf>(x) .. o. 

For physically relevant theories P
11 

must be a 4-vector with ,p1 

(2) 

and H = -i P
4 hermitian and furthermor-a there must exist a unique 

vacuum state I 0 > such that H ~ E 0 (zeropoint energy). A more 

appropriate form is arrived by the introduction of creation and an­

nlhi1ation operators for the field quanta, 
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tP (X) I. Jd 8 k !a'(k)urk(x)+b'(k)+v:(x)l, 

(3) 

where u~ (x) resp. v~ (x) is a positive resp. negative frequency solution 

of ~2) by c-number functions. With 

p 
1'-

I.Jd
3
kk N'(k), 

1'- (4) 

where N'(k) is the number operator of the state (k,r), it follows (only 

one index is written out) 

+ ± 
[ Nl 'a l ] ~ :!: a I (j II 

and an analogous equation for the b's. Further it must hold 

[N 1 ,N 1 )m0 

Nl = N+ 
I 

N 1 IO>.,a~l0> o. 

The problem now consists in taking a definitp form for the N 1 

(5) 

(6) 

(7) 

(8) 

in terms of 
+ a-
1 

and then to search for the commutation relations 

of the a f which are consistent with (5) - (a). 

2.Such a consistency problem was treated by Wignerl
4

/, 

0-Raifeartaigh et ai./5- 7 / for a simple harmonic oscillator. A more 

detailed analysis shows that for 

a) N linear in a and a+ there is only the trivial solution a= 0, 

b) N bilinear there are two infinite families 

N=sg(k) (a a+ -ka+a )-E
0

; s =±1, -oo_:::k.::; +oo 
(9) 

4 

~ 

with 
1/ (1- k) k,k1 

g (k) = 

1/2 k = 1 

The spectrum of N in this case is simple which is equivale 

aa+ln>~cnin> 

with 
In>= N(n)(a+)niO>. 

A representation of the a's U:l then given by 

< n + 11 a+ 1 n > ~ v7"".. 
and c n follows from ( 9) as 

S ( 1-k n + 
1 

) ( E + f (k )) 
0 n 

c 

s (n + 1) ( 2E 
0 

+ n) 

with 

f (k) = 
n 

n + 1 1 
1-kn+l - ~ 

k I 1, .. 

k~l 

From c n :::_ 0 there follow restrictions on E 
0 

which shoulc 

reproduced here. It can be shown that all these different rE 

tations for a, which lead to different commutation relations, 

physically equivalent to the case k ~.. , s ~ 1 which corr 

to the well known Bose- and the Okayama- commutation relc 
but such a reduction, works only for one oscillator and not 

field. 

The case c) N trilinear in a and a + reduces to b) ess1 

arx:l for N quadrilinear there is in general no simple spect 

Therefore we shall firstly try to generalize b) to a counta 

of operators + at andN
1

• 

3. First of all we define a symbol ( )by 

(A , B) = s g ( k) ( A B - k BA) 

5 
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physically equivalent to the case k = oo , s = 1 which corresponds 

to the well known Bose- and the Okayarna- commutation relations/7- 9/, 
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The case c) N trilinear in a and a + reduces to b) essentially, 

and for N quadrilinear there is in general no simple spectrum of N , 
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1 
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3, First of all we define a symbol ( )by 

(A,B)=sg(k)(AB -kBA) 
(13) 
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and remark the identities 

[(AB) C1 + [(BC) A 1 + [(CA)B1 = 0 

[(AB) C1e(A[BC1) -([CA1B). 

Next we define the operators 

with 

+ N
11 

=(a 
1 

,a
1 

) 

L
11 

e(a+ ,a+) 
I I 

N .. N + 
II 1.1 

N' =N '+ 
lj jl 

N
11

' e(a~ ,a
1 

M 
11 

=(a 
1 

, a
1 

L + =M 
lj ji 

Then we generalize eq. ( 5) to 

or 

with 

[N 11 ,a+..)=a:r 11 B 1m 

[N IJ 'a+ 
m 

"'a+ r B 
J (J lm 

r "'1+0-8 )(r(k) -1) = r 
IJ lj Jl 

(14) 

(15) 

(16a) 

(16b) 

(17) 

(18a) 

(18b) 

(1Y) 

With the help of eq. (15) we conclude, by poeatlng the commutator 

[ N 11 , Nmn 1 1 .that only r(k) = 0 or 1 for t18a) and r(k) .0 for 

(18b} are possible, so we have 

[N ,a+1.,a+
1

8
1 11 m m ( r "'1) 

(20) 

or 

[ N a +1 ,. a+ B N "'N 8 
lj ' m I lm '1 lj I 1J 

(r .,0) . (20') 

6 

..-

:: 
l'i' 
~.~~I 
'f 
'.~1 
,f 

,V 

... 

This result follows also from the requirement of lnvariance 

commutation relations under .infinitesimal unitary transformatl 

a-.'; e(B +a )a with a +a* .. 0. 
I I lj jl J lj Jl 

If we require invariance for every a 11 then eq. (20) fat 

and we qualify such theories with (20) as admissible. Thee 

with {20') are not admissible in this sense because they fo 

a "' a B o~h· 
lj I IJ '"':1• 

4. Now we shall study the admissible theories. From 

arrive at 

[N IJ , N 1 = N
1 

8 - N 8 1 mn n ~ ~ n 

for every form of N 
11 

( k) , especially we have {6). Eq~·· ~ 

+ that any representation of the a 1 must induce a represer 

of the Lie algebra of the unitary group in f dimensions 

where e is the number of different modes i · • Now we car 

what cases this Lie algebra closes in any way to the alge 

one of the subgroups of U ( f) , the groups 0(2f +1) , DO 

of Sp(2 f ). 

With (14) we see that 

[ L II , am 1 =-a: 8 1m - [ N ~ 1 , a: ] 

and therefore conclude 

[ N ' ,a + 1 = -s ' ( k)a + 8 
ml j I jm 

must hold. By inspection of the commutation relations betwE 

operators (16a) and (16b) the following requirement must be l 

L 11 + s '(k) L11 =0 

N
1
; + s'(k)N 

11 
=t(k)8

11 

with s ' = 1 resp. -1 for the orthogonal resp. symplectic 

7 
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I I IJ Jl J IJ J1 

If we require lnvariance for every a 11 then eq. {20) follows 

and we qualify such theories with (20) as admissible. Theories 

with {20') are not admissible in this sense because they follow for 
a = a 8 o~~. 

IJ I lj '"':T• 

4. Now we shall study the admissible theories. From (20) we 
arrive at 

[N , N ) ~ N 8 - N 8 
1 lj mn In jm mJ n (21) 

for every form of N IJ ( k) , especially we have (6). Eq~ .. (21) shows 
+ that any representation of the a 1 must induce a representation 

of the Lie algebra of the unitary group in f dimensions U ( f ) 

where f is the number of different modes i ·• Now we can ask in 

what cases this Lie algebra closes in any way to the algebra of . 

one of the subgroups of U (f), the groups 0(2f +0 , 0(2f ) 

of Sp(2 f ). 

With (14) we see that 

[ L I J , am ] =-a: S lm - [ N ~I , a: ] 
(22) 

and therefore conclude 

[ N ' ,a + ] "'-s ' ( k)a + 8 
ml J I Jm 

{23) 

must hold. By inspection of the commutation relations between the 

operators (1&,) and (16b) the following requirement must be fulfilled. 

L IJ + s '(k ) LJI ,.o ( 2.4) 

N' + s'(k)N ~t(k)S 
IJ II IJ (25) 

with s ' = 1 resp. -1 for the orthogonal resp. symplectic groups. 

~ 
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From ~24) and (25) it follows that either s '"' k , which means para-
' I commutation relations-'
11 

or 

[a
1 

,a
1 

]
5

, =[at,a~ ]
5
,=0 

[a ,a+ 1 ,"'-s 
I I s 

!=.Lo 
s '+ k II ' 

Relation (27) may be written in the usual form 

[a ,a+ 1 , .. 8 
I I s II 

(26} 

(27) 

~27') 

after an appropriate transformation of the a's if s = 1 and 

I k I .; 1 for s '.. - 1 

andlkl>1 or 

(Bose commutation relations) and if s .. 1 

s = -1 and I k I < 1 for s ' = 1 (Fermi 

commutation relations), 

The requirement of an unique vacuum state 1 0 > "with (8) leads 

with the help of eq, ~21) to 

N11 l 0 > = s g (k) a 1 a~ I 0 > = c 11 I 0 > 

and from eq, (21} it follows 

-I 
• I g c 0 

0 II 
c -E 8 

II 0 II 

From eq, (25) it follows 

E 
0 

=-1/(l+k) for Fermi c,r, 

E = 1/(1- k) for Bose c,r, 
0 

whereas in the case of para-Fermi ~Bose) c, r, 

follows /11/, 
E0 •(+)p/2 (p .. 1,2, .. ) 

(28) 

(29) 

In the other cases where only the unitary ~roup is realized by the 

a ~ the requirement of an unique vacuum state and the positive 

definiteness of the representing Hilbert space leads to complicated 

polynomials in E0 with k-dependend coefficients which in general 

may not be factorized, For k = 0 a very laborous computation 

secures the positive definiteness, whereas the study of a few 

special types of Hilbert space vectors seems to indicate that all 

the cases with k~ 0, ±1 must .be excluded, 

5, The study of the non-admissible theories with (20') goes 

the same line of reasoning, One attains also 

N' =s'N +I 
I I 

(30) 

8 

.-

and either 

s = 1. [ J.. , a + 1 = 0 
I l 

or 

L I= Ml = 0 • 

For (31) we have either Bose c. r. or k= - 1 with 

[N I, a~ 1 = +a± 
- I 

[ Ll ,a
1

1=-2a
1 

+ 
and for i ~ j all a± and a- anticommute. By a Klein transfor1 

I i 

it is possiblA to reverse these anticommutation relations in no1 

commutation r~lations and one sees that (31) is equivalent to quanti: 

mode 

have 

separately by para-Bose c,r, For (31') in strikt analc 

+ 
[ N 

1 
, a~ 1 ± [ - + 1 =±a

1
,N

1
=a 1 ,a 1 

and for i f, j all a~ commute with 
+ 

a; , So we see that (31' 

equivalent to quantize every mode i separately by para-Fermi c,r, ' 

whole Hilbert space in both cases is the direct product of H 

spaces of the . a 1 therefore tile reduction mentioned in 2 

be applied and hence t:'1e theories with (31) and (31'} are eq1 

lent to the superstatistic theory of Roman and Aghassi
13

•
14

/ 
/15 16/ also to the theory of Parks ' • As Parks has shown this 

of theories may be of interest in the many body problems, fc 

instance in the BCS-theory of superconductivity. 
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useful remarks, Further he would like to thank Prof, D,I,Blok: 

and Prof, A.N, Tavk:helidze for their kind hospitality during a 
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