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. 1, Introduction

Recently, Gorkov and Eliashberg/ 1/ developed a general for-
malism for the calculation of the response of a superconductor to
external fields in arbitrary order.x/ One part of this response (the
regular par-t) may be expanded in powers of the order parameter A
neglectmg higher-order terms, The other (nonregu.lar) -part depends
on the ratio of the order parameter to its frequency and momentum,
and it is necessary to sum up some classes of diagrarﬁs. Gorkov
and Eliashberg considered the derivation of the time—dependeht Ginz-
burg -Landau equation for a superconductor containing paramagnetic
impuritieé in a concentration near the critical one, The situation is
more complicated in other cases™,

In the present paper we consider a superconductor containing
nonmagnetic impurities in the limit of small mean free path (¢ «f )
and high magnetic field (H=H .2 ) i the temperature can be arbitrary
(0<T<T_) . Using the method of Gorkov and Eliashberg we derive
the tnme—dependent Ginzburg-Landau equation and the differential

= 2l

xx/ Compare also the paper by Ehashberg/ / y. where superconductors
with a small concentration of paramagnetic impurities are treated

See also



equation for the vertex part frem the microscopic theory, The ver-
Ctex part T, plays the role of a generalized scalar potential, The
reduction of the order parameter by the high magnetic field essen-
tially simplifies the situation, because it allows to restrict the calcu-
lation of some diagram blocks for the nonregular part of the response
to the lowest order in A, For small fields H (andT =T, ) such
a restriction seems not to be possible,

The resulting Ginzburg-Landau equation is compared with the
-equation derived earlier by Schmid/4/ (for T = T, ) and Caroli and
Maki/ 5/ without considering the nonregular part of the. response., °
Qur equation takes the simpler form of this earlier equation in- tl"le
cases, in which the vertex part reduces to the scalar electromag:~
netic potential (T, = (ie/7) ¢) . In section 3 we show for the
case of slow motion of the lattice of the_‘vprtex lines (flux-flow) cau-
sed by -a static electric field, that this simplification is compatible
with the differentisl equation for the vertex part.’ ’

2, Equations for At and the Vertex Part

The time-dependent Ginzburg-Ldndau  equation is obtained from

the condition of self-consistency

AW =lgl< B OB D>, (1)

where ¥ is the electron field operatof in the Heisenberg picture
x/
(4. real. .
“To the superconductor are applied the external fields ¢, A
(electromagnetic potentials), A ‘(super‘conducting order parameter

treated as an external field) and A% ', The correlation function on

the right-hand side of (1) can be expanded in powers of.the exter-

/We usé the notatlon of/ [. Because we are conswlermg here only
real tlmes, the + has the usual meanmg of complex (or Hermltean)
conjugate,



nal fields (compare/.1/ and / 2/). Then equation (1) takes the form

{we go over to the frequency representation)

St ) +A (0, —w)
A, .—_-I-‘glf ;wll—th Ba, F +thﬁ+m..[-‘+R b+
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wi'lere b=¢ecg +(ie/m)K v . » For the retarded and advanced Green’

functions in (2) we insert their power series expansions in the exter-
nal fields. ‘ ‘

The unperturbed Green functions contain the effects of the po~
tential U of the nonmagnetic impurities, We treat this impurity scat-
tering in the usual way (compare 6/) All diagrams have to be ave-
raged over the positions of the 1mpunt1es. The impurity scattermg is
considered to be isotropic charactenzed by the "electron colhsmn

time r

1 1 2,
'r—=—”"‘nm p F‘ u (P F)l ’ (3)

n is the density of the impurities. In the "dirty" limit (£ <€)

hplds rT°<<1. The unperturbed Green functions are given by

(@) = SR S . (@)

i
0 + +
"6 2r
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(£=v  (p—~pp ) and the complex conjugate expression for G{PA
7 The regular part of the response is given by the first  integral
in. (2) containing only advanced (or only fetarded) Green functions,
The integral over @, 'is evaluated with the help of the residuum
theorem, This part of the response can be expanded in powers of
the order parameter without difficulties.
In our case of high magnetic field we may restrict the calcu-
lation to the fif'st order in AT , that means to the diagram of Fig.1l,

o+

-
U °
\ .

Fig.1. Diagram of first order in A" for the regular part of
the response, —e— means GiV®* , —»— means G RA

and <7 indicates the corrected vertex,

(If it is necessary to consider the normalization of A , the term
of the third order in A has to be added of course). For the cor «

rected vertex in Fig.1 holds the equation illustrated in Fig.2, and
NI At ,
' <
% + 7

/

~ - o7
Fig.2. Equation for the correction of the A" —vertex, ® indi-
cates the uncorrected vertex and - - - corresponds to
the impurity potential’ v -, The Green functions —<—

and —»— include the corrections due to the potential ® ,

the corrected A% —vertex is given by

R, A A+) - 1 T 2irw; A+,), (5)

=
< ir(2ml —w) +rDQ *?

2 . 3 . - -
where D =r vF/ 3 is the diffusion coefficient and Q =-iV-2eA.
In the case of a A —vertex [2) " has to be substituted by (-5 . The

contributions due to the scalar botential cancel out., The calculation



‘gives for the diagram of Fig.1 the expression ( compare alsofs/)

lg|mpp 20pY w1y w(l L 8 1 pges +
fn + P (=)- V(2 + ——r -y —=—D yyAT,
773 ’ 7T 2 2+ 47T Jt * 4aT Q bA (6)

" where wp is the Debye frequency ,. ¥y is Euler's constaht, and
¥Y=-r'/T is the di~gamma -function, Using the expression for the
critical temperature, . '
gl m pp 20y

In =1, : : . 7
2n % 7T : ‘ ()

we get for (6)

g m
A++ el Pp
27 2 (8)
-¥(g T af T3 TDGPH A"
4 m

The nonrégula_r part of the response, given by the second in-
tegral in (2), contains advanced and retarded Green functions to-
gefhér. The impurity lines connecting a retarded and an advanced

Geen function lead to the factor

TP JES GRUN Su— (9)
‘ T -~iw + Dk
which becomes large for small differences of the frequencies and the

momenta, The equation foi‘ I is illustrated in F‘ig.3x; “The nonregu-

Ry

IT(uwk) =

-
|
{
A
A=k,
W-a
Fig.3. Equatlon for I, The upper lines represent retarded, the
lower advanced Green functions (for the lower lines the

direction of the arrow has the reversed meanmg), the wavy
line denotes 1 e

T o

Apart from slight differences we follow the dxagram represen-
tation of Gorkov and Eliashberg/1,3/.
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lar part of the response can be expressed in terms of vertices I'

constructed in such a way, that they sum up the diagréms containing

I-lines to all orders (see F‘igs..4 and 5). The blocks a,B,y, &

. ——- mmete—
&Sy 4 + W) + AEA
: — ——

Fig.4. Nonregular part of the response,

e - -
D:' -+ é d(_D + % ﬂ; _
6 .

« Fig.5. Equation for the vertex part[l, .

o]

and 7 contain no I-lines, The expansion of

w, (w, -0’}
wBos g Bl oty B (10)
2 2 do, 2

2

in equation (2) leads to the appearance of a time derivative in the

vertlces 8 and y .

For high magnetic ﬁelds He H, it is possible to restrict -
the calculation of the blocks a, B, ¥ and = to the lowest
order in A , To show this, we compare the vertex in Fig.2 with

the vertex of the third order in Fig.6. Since the nonregular part of
the response contains advanced and retarded Green [unctions, the
frequenc1es playing the main role in the lntegratlon over @, are

of the order of e ’ determmed by the relation DQ A=cA



LT N

Fig.6. Vertex of the third order in A

In the case of high magnetic fields holds ¢ s¢, =2De H,2 - The cal-
culation shows that the higher-order diagrams are negligible, if the

following condition™ is satisfied:

1A ‘ '
< 1. (11)
€
For low temperatures we have ¢;= T y and for temperatures
close to T. holds € =T (1-T/T )} , Therefore, condition (11)

is well satisfied for high fields H: (only for temperatures T = T,
the field has to be very close to H_,(T) ), For small fields H (and
T=T, ) cordition (11) is not satisfied; it seems then necessary
to sum up the higher-order diagrams, »

-We now consider the equations for the I''s. The diagrams

for y,a and B8 to lowest order in A are shown in Figs.7,8 and9.

»

. ’ o+ ’

7 + A + 4

Fig,7. Diagrams for Yy e

x/ This condition is analogous to the f:onfiltlon Te <1 used
in the case of paramagnetic impurities r, is the collision
time for spin reversal).



Fig.8, Diagrams for a, ,

Fig. 9. Diagrams for g,
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We get

e, , ok) = L 1 [weqS+.r(nRA);3+-—r(qAA+) A 4

r - iw+Dk?2

(129)

‘+alrl+ﬁ,r2:

@k

(and an analogous equation for[', ), where we used a gauge where
VA=0 ,(1/1)a and (1/r)  are of the order |A|*/ e,

therefore the @ and B are-only essential in equation (12). for fre-

quency and momentum differences of ‘the order w , Dk _25 1A% /e ey

The calculation gives

B (w )=B ("w )=—a (w‘ )=—a (—m )=
1 1 2 1 1’ 1 2 1. (13)
=rT(qRA) A* 4 A(prat)A
The o in the 7 may be neglected here, Thqé
M (o, 0k) ==T, (~o,,0k ) (19)
and we get
N(e,,ok) = rl— ;ia§+Dk2 lwed +
+r(q"M) [A*r A" (T, (0} 4T (-0, N1- | (15)

_r(qAA+)[1.3+rA(r', (o )+1 (—w,»]!wk ,‘

Equation (15) becomes in 1,t -represehtation a differential equation
for the vertex part ' , |

We now consider the nonregular part of the response illustra-
ted in Fig.4, The block & gives no contribution, because the poles
(for ¢ ) of the Green functions lie in the same half-plane, The di-

agram for the block 7, is shown in Fig,10,

11



E‘ig.lO. Diagram for =, .,

Thus we get for the nonregulaf part of the response the expression’

B,

i 3
LUl ARy pR Qe o LG T (0, 10, (20)
w
)

272

On substituting the expressions (8) and (16) into (2), we obtain

the time dependent Ginzburg-Landau equation

To - ' -
{ _T__+\p(.1§.)_.\p(1i L9 .1 pgthiat . ‘
47T dt 4aT (17)

oar?fdo, (—(-i-—th—ﬁzﬁ——)(q‘RA*')l'" =0,

do,

With the help of the same method we can calculate the respon-

se of the charge density p of the electrons, The result is
e’mp iemp,r : d < ‘
F F
= ¢ + do (——f (0 NI, , :
P n 2 n 2 f 1 ‘ dm’ 1 1 (1‘8)
where
< : : -
f (w):- -T———- .
eP? 41 . ! (119)

The first term in (18) is the regular. , the second the nonregulan
part of the response, ) ‘

12



3. Discussion

fn the general case the vertex part I'; depends not only on
the frequency and ~momentum differences o and k , but also on the
integration variable », , We restrict our discussion here to the
special cases, in which the depende'nce of Fl on », may be neg-

lected, Using the condition of electric neutrality of the system,

p=10 (20)

and neglecting in (18) the o , ~dependence of r, , we find

r - e 6, ; (21)

so that in these cases expression (21) has to be compatible with the
differential equation (15 ). By virtue of (21) the time-dependent Ginz-
burg-Landau equation (17) reduces to

a 1 * 2

To 1 1 1
h = =)= - D
{ = +'-I’(2) ‘Ir’.(2 * T 3T + ype Q )+

(22)

1

2ie s 1 213 +
¥Y’'(=—+-—0D YIAT =0,
¢ 2 +411'1‘ ¢

47T

+

Ezquations equivalent to (22) were already derived by Schmid/ 4/
ffor T=~T, ') and Caroli and Maki 5/ without considering the non-
regular part of the responsex.

An interesting problem in view of recent experiments is the
application of the nonequilibrium theory to the slow motion of the
lattice of the vortex lines (flux-flow) caused by a static electric field.
The flux-flow resistiviy calculated by Schmid/ 4 ‘and Caroli‘ and
Makils/ on the basis of equation (22) is in agréement, with the ex-

. XX,
periments™ ',

x/ From the point of view of the phenomenolﬁic/*al nonequilibrium
thermodynamics equation (22) is considered i “,

XX c8mpare the experiments onln +1.5 at. % Bi ﬁ].]sciys for H=0.73H_,
by Cape and Silvera 8/ and earlier work cited in' ',

i
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In connection with this application we consider the C'ompatibility
of (21) with the differential ‘equation (15) for the flux-flow regime, It
is easily seen that contributions to I éoming from (15) for large

k( Dk? >>|A‘_|2 /€, } are negligible, Thus it is sufficient for the
validity of (21) that the second and the third term on the nght—hand
side of (15) vanish for small k(DK § IAI /c e, )e

A[A+_2ie¢A*]| s

k small.

(29)

The (approximately constant) electric field is described by é6=—-Ex
‘and the magnetic field by K:(O,Hx,o ). ; since we are only consider-
ing the linear equation for At , we put H=H_, . Equation (22)

can be written in - the form

. 244,
{_a‘.’t.__zieqs+06+’ JAY =AY, (242)
T, wly_y (Lo }=0

T 2 4T | (240)

The solution of (24a) is the moving Abrikosov.solution (compare/ 4'5/)

A+=2C:exp{iqn(y+-§-t)—eﬂ (x + =3 iE : }

) .
ZeH & 4eHD (25)

We insert this solution into (23) and get

A[AY — 2ieg A* ] -

k small

(26)
2 o ~2eHx® :
=2|Cn[ J dx2ieExe =0,

so that for the flux~flow regime the validity of (21) is proven,

14 -
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