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In recent papers/
1

,
2

/ a relati~sti_c model of particle scattering 

at high energies was proposed which was based on the quasipoten

tial equation of Logunov and Tavkhelidze for the scattering amplitude 

in quantum~ field theory / 3 ,4~ In the simplest case of scattering of 

two spinless particles of equal masses the quasipotential equation 

reads : 

(1.1) 

➔ 

where E is the energy, ➔ 
p and k are the center r:,f mass system 

relative momenta of the initial and final states, respectively, 

The physical relativistically invariant scattering amplitude T( s, 1) 

is defined by the condition 

s = 4 E 2 = 4 ( m 2+ p 2) = 4 ( m2 + k 2 ) 

t = -(p-k )2 

3 



Notice, that eq, (1,1) is a relativistic analogue of the Lippmann-Schwin

ger equation for the scattering amplitude in non-relativistic quantum 

mechanics, 

The quasipotential in eq, (1,1) is a complex function of energy, 

the imaginary part · of which is due to the inelastic processes in two 

particle scattering. 

An approach to the description of high energy particle scatter

ing developed in papers/1 , 2/ was based on the phenomenological 

choice of the quasipotential in eq, (1,1), 

Furthermore an assumption was explored that high energy had

ron scattering can be de~cribed as the scattering on a smooth 

complex quasipotential vrt, El /5 / which is a nonsingular function 

of the relative 1:oord(nate of two particles. 

Such an assumption means essentially that hadron scattering 

at high energies may be considered as an interaction of two "friable" 

systems, As was shown /1, 2/ the simplest nonsingular quasi potential 

of the Gaussian type 

vC; • El= isg (.2:..)a/2e 
o a 

12 
4a (1.3) 

allows the main features of the hadron scattering amplitude at high 

e!".lergies to be reproduced. 

In describing the real physical processes it is necessary, ge

nerally speaking, to take into account the spin structure of the scat

tering amplitude. 

b the case of elastic proton-proton scattering, for instance, 

there are five independent invariant amplitudes, which can be chosen 

in the helicity basis as follows: 

T = < -1-, .l.... I TI _!_ , ...!... > 
I 2 2 2 2 

T =<!._,_!...I Tl _.L,- _1_> 
2 2 2 2 2 

4 

T =< .1. 
3 2 

.LjTj..L,-.!._> 
2 2 2 

(1.4) 
T =<..!...,--1-jTj-...!...,.l....> 

4 2 2 2 2 

T5 =<.L,Li TI L,-_L> 
2 2 2 2 

However only two of them T 
1 and T

3 
, which correspond to the 

spin-non-flip processes, give nonvanishing contributions to the for

ward scattering. 

The relative magnitudes of the spin-flip amolitudes· T
2 

, T 
4 

, 

T5 at nonzero scattering angles can be determined from the know

ledge of the polarization parameter which does not exceed 10o/c, 'clt 

high energies and decre':lSes with increasing energyf6l 
The remaining spin-non-flip amplitudes T 1 and T 

3 
are appro

ximately equal to each other. This is a consequence of a "pure 

elastic" character of high energy hadron scattering, which is due 

to the exchange of zero quantum numbers in crossed channels, 

Thus in the description of an unpolarized proton-proton scat

tering at high energies one can confine oneself to consider one 

amplitude T ~ T
1 

~ T 3 in the framework of the quasipotential equa-

tion (1,1) for spinless particlesx/. 

In the present work we give a comparison of the results ob

tained in papers/1,2/ on the bas.is of eq. (1.1) with quasipotential (1.31 

with experimental data on the high-energy elastic p p -scattering at 

small and large angles, Besides,· following the papers/ 1, 2/ we analyse 

experimental data on the elastic n p -backward scattering· (or, what . 

is the same, charge exchange p n ➔ n p scattering), taking into 

account exchange forces in the _ proton-neutron system. 

x] This assumption , however, may turn out to be not correct in the 
region of large scattering angles 0 ~ 90°, ·Nhere the requirement 
of crossing sym'Tietry makes it necessary to take into account the 
spin-non-flip amplitudes too. 

-. 
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2. Small Angle p p -Scattering 

Following the remark made in the introduction, we shall give a 

description of the high-energy elastic pp scattering at small angles 

with the help of one amplitude, which obeyes the quasipotential eq. (1.i). 

As was shown in refs./1,2/, the solution of eq. (1~1) with quasi

potential (1,1) in the region of small scattering angles at high ener

gies: 

j_!__j«l, as»l 
s (2.1) 

can be found as a convergent series of Born approximations: 

..!LI.. 

T ( ~ 2• E l = is Ill k 
n=l 

e 

n n ! 
(-

4772 g 0 

a 

n-1 

(2.2) 

t=- q2 

Notice, that the series (2.2) is a sum of the main contributions to the 

scattering amplitude increasing as s = 4p 2 at high energies, and is 

pure imaginary. The real part of the scattering amplitude is deter

mined by the contributions which increase not .fa-ster than v--;. = 2 p 

with increasing energy. 

The expression (2.2) depends on the two real parameters a 

a"1d g 0 entering the definiti_on of the quasipotential (1.3). The nume

rical values pf these parameters can be found from the experimental 

data_ at small and vanishing' momentum transfers -, i.e. from the to-

tal cross section a 
tot 

following manner 

and the diffraction -peak width l / A 

a =877al(x) 
tot 

6 

in the 

(2.3a) 

A,;,_d_[l'n~] 
dt dt t=O 

= 2a-- f ..i..£ I(,;) 
1 c xi o • e 

I(x) =- k (-xln_ fx_ d,; -,; 
n =I n n ! - O T ( 1- e 

4 11 2 g 0 
X = 

a 

(2.3b) 

(2, 4) 

We have done the comparison of .the results -obtained above .with 

experimental data on· the elastic. pp ..:.scattering in the region (2.1) 

at p =8.5, 12.4 and 18.4 GeV/c./7;8/ The theoretical curves on 
L 

Figs. 1 and 2 correspond to the following values -of the parameters 

g
0 

and a 

GeV 
P =8,5--

L C 
g = 0 13 ( GeV -2 

0 • -- ) 
C 

a = 2 6 ( · GeV • ---- ) -2 
C 

GeV GeV -2 
a =2.8 ( ~)-

2 

PL =12.4 --- , g =0,12(---), 
C 0 C C 

GeV GeV -2 
a = 3,8 ( ~ ) 

-2 

PL = 18.4 ---. go =0.14 (---) 
C C C 

which were calculated using formulae (2.3) and (2,4) fran the experi

mental values of the total cross sectionf 9/ and the diffraction peak 

width /7/ at corresponding energiesx/, As is seen from Figs,1 and 2 

the theoretical curves, reproduce rather well the behaviour of the 

differential cross section of the elastic p p -scattering in the region 

(2.1), as well as the positions of diffraction minima and their energy 

x? The numerical values of these parameters and others, calculated 
in this paper, contain uncertainties which are determined by the er
rors of corresponding experimental data. 
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dependence. Notice, that the qualitative analysis of the elastic p p 

scattering at high energies has been done from· various points of 

view in refs./1O- 14/ too. Near the points, where the sum (2.2) vani

shes, it is necessary to take into account the following terms of ex

pansion of the scattering amplitude in inverse powers of momentum 

p • This leads to the so called "filling of minima". Furthermore, 

on Fig.5 the behaviour of the differential cross section of the' elastic 

pp -scattering at pL =8.5 GeV/c in the region o .S I I I< 0,6 ( ~ )2 

C 

is shown, One can see from Fig.5 that the existence of small "sho-

ulcler" at I I I"' O.3 (GeV/c) 2 is in agreement with the results of theore

tical calculations. A similar behaviour is observed at other energies 

as well. 

3, Large Angle Elastic p p -Scattering 

Let us consider high energy particle scattering at fixed scatter,-, 

ing ar1gles: 

I _!_ I "' sin 
2 
--

0 = fixed • 
s 2 

(3.1) 

In this case the series of Born approximations for the scattering 

amplitude has the following form: 

..il. 

..,.., n 2n e 
➔ 2 l · I -- / T(q ,E ,,.,sg0n=t(n!)2 n32 

is /lo 11 y-;-
Ip a y-;;-

n-1 
) (3,2) 

When a I I I» I the main contributions to the sum (3.2) are given 

by the terms with n » I • This allows the Stirling formula n!,,.y'2i,n(..!!.._f 
e 

to be used • .f.s a "result we obtain the following expression for the 

scattering amplitude: 

.JU.. 

T (q 2 , E 

0 = fixed 

l ➔~ 
211 

oo n I e 
n=l n ~/2 (-i Y) n-1 

(3,3) 

• ➔ 00 

8 

where 

y 

'2 go e 11 a/2 
----"----(-) 
p sin2 0 / 2 a 

2 
s goe ·11 a/2 
---(-) 

I I I p a (3.4) 

The se_ries (3,3) is convergent under the condition I y I< I or using 
GeV-2 GeV-2 

the numerical values of the parameters a = 3,0 '--;:- l and g
0 

=0.13 ( -c-l 

I I I > \/s • 0.3 ~ 
C (3.5) 

Rewriting the series (3,3) in the integral form and taking the integral 

by means of the residue theorem we get: 

T (ij2, E ) ➔ -

0= fixed 
S ➔00 

2 
q P 'o 

12 11 2 

I qr o e 

where the parameter r; is equal to 

r
2 = -211ia (I+ -1.L_rn Y) 
0 11 

(3.6) 

(3,7) 

At intermediate · energies, when the second term in eq, (3, 7) can be 

neglected, i.e. r 
0
2 ., 2 11 i a we obtain the following expression for 

the differentfal cross section at large angles: 

da ---- ( 11a 2 _r=--dO = ~--) q2 -
20 

y11a 
3 e i q =vi 1 1 (3,8) 

An interesting feature of the result (3.8) is the ,fact, that at fixed 

momentum transfers corresponding to large scattering angles d~i 
weakly depends on energy. The only energy dependence of ~ 

d 0 
enters through the parameter a which is connected with the for-

ward diffraction peak width. The theoretical curve on Fig. 3 corres

ponds to a =3.0 (GeV/c )-2 and reproduces the absolute value and 

character of the decrease of the differential cross section /15-17 / 

in the region of large scattering angles, restricted by the condi ,_ . 
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tion (3,5), 'Ne stress, that in accordance with the remark in page 5 

the formula {3,8) can not be applied, generally speaking, at large 

scattering angles 0 .,90°. 

4, Elastic n p -Backward Scattering 

One can see from the foregoing consideration that the scatter

ing amplitude at large angles (3,6) exponentially decreases with in

creasing energy, Thus, the solution of eq, (1,1) with quasipotential 

(1,3) leads to the exponentially small cross section for the backward 

scattering at high energies, what contradicts in a number of cases 

the experimental data, As was pointed• out in'ref./2/ this fact is due 

to the neglect of exchange forces in the two-particle system, 

In what follows we shall show how the exchange forces can 

be included in the quasipotentietl equation and shall use the results 

obtained for the analysis of experimental data on n p -backward scat

tering, 

In the presence of exchange forces the scattering amplitude 

T (p, k ;E ) can be represented as a sum of two quan~ities/1 8/: 

T(p,t;El=G(p,1;El+H(p,k;E (4.1) 

which obey the following system of quasipotential equationsx/ 

G=g+gxG+hxH, (4,2a) 

H=h+hxG+gxH (4,2b) 

Multiplication in formulae (4,2) implies an integration in the sen

se of eq, (1, 1), The quantities g and h are the Fourier trans-

";J The system of eq, (4,2) is equivalent to the pair of equations with 
definite parities which were considered in ref./3/ 
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forms of the "direct" and "exchange" parts of the quasipotential, 

respectively: 

l I ft r➔ 
g(s ,tl= --- f die . 

(2")3 

1tt 
.h ( s , u ) = __ I __ j d -; e 

(2")3 

A 

➔ ➔ 2 V ( s '-; ) e - lk'° ,➔ 
, t = - ( p - k ,l, 

Ve(s,;) P e 

➔ ➔ 
-i k r ➔ ➔ 2 

u =-Cp+·.k l, 

where P is the coordinate-exchange operator, 

(4,3a) 

(4,3b) 

As a quasi potential of · "airect" interaction we use the expres

sion (1,3), or g(s,il=isg
0

eat 

The "exchange" part of the quasipotential is due to the crossed 

u -channel contributions, 

Taking into account the condition 

h(s ,0)1 « l I -- at S"' 00 (4,4) 
s g 0 

one can neglect the last term in eq, (4,2a), Iterating the obtained 

system of equations we get . 

H=h+hxG +Gxh.+GxhxG (4,5) 

where G is determined by the solution of eq, (1,1) with quasipoten

tial (1,3). The expression (4,5) for the amplitude H is pictured sym

bolically in Fig,6, 

Let us assume now that the "exchange" quasipotential can be 

represented as a sum: 

h(s,ul= ~ h (sleb 1u 
I (4.6) 

h (s l 
where I - 1

-- I « I 
s go 

at high energies, 

For this case the amplitude 

found in the following form: 

H 

11 

in the region I 7 I « I can be 



H (q'2 , E. l }: H
1 

(q '~ El , (4.7) 

where 

ab 

a+ nb i 

H 
1 

( q '.3E l = h ( s l }: 
I n::O 

a e ___ (- 4,r 2go (4.8) 

(a+n b. ln ! a 
I 

These results were used for the analysis of the elastic n p -back •-
. / I I GeV 2/19/, ward scattering at PL =8.0 GeVc and u < 0.6(-c-l • Only two terms 

in expression (4.?) for the exchange quasipotential were taken into 

account. For the sake of _simplicity the parameters h I and h 2 are 

assumed to be real; the cases of equal and opposite signs of h 1 

were considered, 

The parameters a and g 
O 

entering the definition of the "di-

rect" part of quasipotential were determined from the. experimental 

data on elastic proton-proton scattering at 

p L = 8.S 
GeV 

C 

g =0,1( GeV -2 
0 -_~) 

a =2..6 ( ~l-2 
C C 

The theoretical curves I and II on Fig,4, which correspond to the 

equal and opposite signs of the quantities h I and h 2 ,are calcu-

lated for the following values of the parameters h I and b 1 , 

Egual signs (I} 
GeV -2 

I h I I= 0.07 b_1 = 110. 0 ( -c--l 

I h 2 I = o. 3 b =1.8 (~)-.
2 

2 C 

Opposite signs (II) 

I h I I = o. 29 bl = 34. 0 ( ~ l-2 
C . 

I h 
2 
I o. 30 , b 

2
=1.8 ( ~ 1 -2 

C • 

12 

.. -,,, 

On ~g,5 the same trieoretical curves are plotted for comparison 

together with _the curve of the differential cross section of the elastic 

p p -scattering at pL = 8,5 GeV/c wt\ich is normalized to 1 mb/(Gev/<;/r, 

at t = O • One can see from Figs, 4 and 5 that the case of equal 

signs is! ~pparently, more preferable, 

We have shown that theoretical results obtained on the basis 

of the quasipotential equation with quasipotential of the simple ·Gaus

sian form with a small number of parameters are in good agreement 

with experimE!'"ltal data on high energy proton-proton and proton-ne

utron elastic scattering, 

Notice that the choice of the quasiootential which gives an ade

quate description of hadron scattering at high energies is a problem 

of princiole and at the same time a nontrivial one, As one can see, 

however, the physical assumptio"1 of nonsingular character of hadron 

interaction at high energies allows the main features of high-energy 

particles scattering t'.) be -reproduced, 

The a_uthors express their deep gratitude to N,N,Bogolubov, 

O,A.Khrustalev, A.A.Logunov, MA.Markov, V.I.Savrin, D,V.~hirkov, 

L,D,Soloviev, A,N,Tavkhelidze for helpfull discussions and valuable 

remarks, to N, S.Amaglobeli, 
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