
Yi~i 
061,ElJ.HHEHHbltf 

HHCTHTYT 
$1lJ.EPHblX 

HCCnED.OBAHHA 

llytSHa. -~ .. ~-,,, . . . . . .. . 
/. ... ·•·-

,-,L•' -~----., 
. -.~·· •°I 

•fJf.P· ./ 

~:,.~ l m:::;n,n 1 •· ,t/l l 

.. -;Jr . ·r/ ·' ❖'Im,~,.,.,.,¾·•~ ·•l"'q ........... v, •• 

;.,; -·· 

'

~ .•b~~ 
f ,i__,;;,· ·._-;,.,.. 

E2 - 4251 

~ • -• • ·• 

V .R.Garsevanisb viii, V .A.M atveev, 
L.A.Slepchenko, A.N. Tavkbelidze 

s = ::, 

i! ... 
,:a. • ... ... 
I 
A, 

! 
2 • IA 

~ 

RELATIVISTIC QUASIPOTENTIAL MODEL 

OF PARTICLE SCATTERING AT HIGH 

ENERGIES 

1969 



E2 · 4251 

V .R.Garsevanish viii, V .A.M atveev, 
L.A.Slepchenko, A.N.Tavkhelidze 

RELATIVISTIC QUASIPOTENTIAL MODEL 

OF PARTICLE SCATTERING AT HIGH 
ENERGIES 

Hay11so-Texsa11ec1taS1 
6H'5.IHOTeKa 

OWIH 



In this note we consider the high-energy scattering of. particles 

1 · on the basis of the quasipotential equation /1/ for t.1-ie scattering 

amplitude. For the sake of ·s~molicity we shall study the case of an 

elastic scattering of two spinless particles of equal mas,ses. 

As was shown in ref. /1/, the scattering amplitude of two spin-

less particles in quantum field theory satisfies the following equation: 

➔ ➔ 2 ➔ ➔ 
V[(p-q) ;E]T(q,k;El (1) 

➔ 

Here E is the energy, and p and k: are the centre-of-mass 

relative momenta of the initial and final states, respectively. 

'l'he physical scattering amplitude T ( s, t ) is defined by the 

condition: 

T ( s , t ) = 32 TT 
3 

T ( p , k; E) I s = 4 E 
2 

= 4 ( p2 + m2 l = 4 ( l 2 + m2 ) 

t=-(p -ti 2 (2) 

The quasipotential in eq. (1) is a function of energy, the imaginary 

part of which is due to inelastic processes in the two-particle scat

tering. For the pure real potential the scattering amplitude satisfies 

the relativistic two-particle unitarity. 

We note that in the case of weak coupling there exists a 

regular method for constructing the quasipotential using the pertur-

bation expansion for the. scattering amplitude in the framework of 
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quantum field theory. For the strong interactions there are' no gene

ral methods of. constructing the quasi potential. 

We shall consider a model of high-energy scattering of strongly 

interacting particles at small and large angles. based on the pheno

menological choice of the. quasipotential in eq. (1). 

It was shown in ref~ /2/ that the high-energy large angle scat
tering of hadrons can be described as the scattering of a particle 

on the smooth comolex quasi-potential in the "shadow" region. Such 

a model signifies , essentially that the high-energy scattering of 

strongly interacting particles can be considered as an interaction 

of two "friable" systems /3 /. From this point of view, we shall use 

in what follows the quasi potential of the Gaussian type: 

/ 
,2 

3 2 --
v ( s , 7l = i s g 

O 
( -

11
-) e 4 a 
a (3) 

where g 0 > O • We note that the chosen ootential provides for the 

constancy of the total cross section at high .energies. The parame

ter a defines the effective range of the interaction region and, gene

rally speaking, can increase with energy not faster than Ins , i.e. 

Jal~Ins, s ➔ oo. (4) 

The quasipotential in eq. (:1) being the Fourier transform of P) is 

equal to 
➔ 

. ➔2 

V(s,i\) -- f d ➔- 1 1\; 
(211)3 re V( ➔ s • r ) 

➔ 2 

l = - ~ 

t::: i s g O 
at 

e 

Let us consider first the small angle scattering at high energies 

a\ l \ < I as >> I • 

4 

(5) 

(6) 

i •· I ' ' 

i 
.I 

I 

In this case eq. (1) can be solved by iteration procedure: 

-t2 ➔ 2 4 2 
T(i\ ;El=V(i\ El+oT(~ El+•·• (7) 

The expression for the first correction to the Born approximatio1 

ls of the form: 

➔ 2 

.ST(/\ ;El 

where 

➔2 +oo 
1(1\ ;El=f 

= I 
d q➔ 

y ;2 +;2 

rr(s go l 2 

2 a.\ 

q ,I q 

V[(p'-;ji2 ;E]V[(q-k)
2

;"E] 

(~ +m2-E2-iO) 

e 

➔ 2 
at/2 I ( i\ ; t:,) , 

-2a(q-.\)
2 

e A~y,; 2 +t/1. 
-oo y m 2 + q 2 q2 +m2-t:2-i0 

(8) 

(9) 

Taking into account eq. (8) we get the following expression for fr 

scatterin.11. amplitude: 

➔., at 
712 g at 

T ( E , -~" ) = i s g
0 

r _ is g O --- r, -2-

a 

The concliUon of validity of the Born approximation reads: 

2 
go 27 

a 

< I a \ t I < 2 In 
a 

27 
2 g 0 

(10) 

(11) 

The first term in eq. (10) describes the diffraction· scattering at sm, 

momentum transfers with diffraction peak width A "'2 a • Near the 

point 
_2_ In __ a_ 

t=- a IT2go 
(12) 
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In this case eq. (1) can be solved by iteration procedure: 

-to2 ➔ 2 --l2 
_T (.A ; E) = V ( A ; E) + o T ( A ; E) + •.• (7) 

The.• expression for the first correction to the Born approximation 

• is of the form: 

➔ 2 
oT (A ; E) 

where 

v[< 11-;j>2 ;F:]v[<q-kl 2
;E] 

(;2 +m 2 -t: 2 -iOl 

a t/2 ➔ 2 
e I ( t\ ; t:,) , 

(8) 

(9) 

Taking into account eq. (8) we get the following expression for the 

scatterin.a. amplitude: 

➔ ,l at 11~1!. at 
T ( E , A. ) ~ i s g 0 .- - i s g O --- " 2 

a (10) 

The condition of validity of the Born approximation reads: 

< I a J I J < 2 In 
a 

(11) 

The first term in eq, (10) describes the diffraction· scattering at small 

momentum transfers with diffraction peak width A= 2 a • Near the 

point 

t =- -
2
- In --

3
-, 

a 1T 2 g 
0 

(12) 
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where the correction becomes comparable with the first Born ap

. proximation, a minimum can be observed in the differe1:1tiaI cross 

-section. From eq. (10) at t = o we get for the total cross section 

u _ 32 3 . 11 2 g tot - 11 g 
O 

( I - ___ o ) (13) 
a 

If one assumes a logaritmical growth of the parameter a at high 

energies the total cross section (13) will tend to its asymptotic value 

u tot ( 00 ) = 32 11
3 

g O f;om below /4 /. 
Consider now the scattering outside the diffraction region, when 

1-1-J«J; altl>I. (14) 
s 

In this case it can be ·shown that the solution of eq. (1) is given 

by a series 

where 

00 

T = i 
n = t 

(n) 
T 

at/n 41T 2 g
0 

n-1 
T(n) =is go e (- -----) 

n • n ! a 

(15) 

(15') 

is the n-th perturbation term of eq. (1). We notice that the series 

(15) can be represented in the following form 

where 

➔ 

➔ 

s l~l · iJ e 
T(s,t l = --- f d 2 p e ( 

( 2 IT ) 3 

X = 2 i. 

➔ ➔ 

172 go -p2/<a 
e 

a 

21 X 

2 i 

- I ) , 
(16) 

(17) 

and L\ !. = ( j, - le l varies in a plane, which is perpendicular to th~ 

vector ( p + l ) . The function x is related to the quasipotential 

(3) by 
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x-=-
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➔ 

f V(s,rldz ;= (p, z) • (18) 

Thus, one can see, that the scattering amplitude, which is the solu

tion of the eq. (1) with the quasipotential (3), satisfies the Glauber 

representation /7 / in the re~ion (14). One can expect that this reP
resentation would be hold for the more wide class of smooth quasi-

potentials /a/. Let us conside; an asymptotic behaviour of the., 
series (15) at a I t l » I • 

Usin_g the Sommerfeld-Watson transform we rewrite eqs.(15)(15') 

as follows 

w 
➔ 2 as 

T( ~ ;El=-- f 
8 11 

2 

d z -uz- --e z 

c 2z. r ( z + I l 'sin IT z 
(19) 

where 

U = In ( --
8

-): W =·a It I • 
41T2go . 

The integration contour C surrounds the positive r€i'lal semi-axis 

in the clockwise direction and includes the integers z"" I, 2, ••• 

It may be shown that in the region (14) the main contribution 

to the integral (19) comes from the first term_ of the series e~pansi-

on of the function 
sin 17 z 

----=-2i i 
+ sin ff' z 

e 
;!: 2 IT I z ( n + l/2 ) 

n~o 
(20) 

on the uoper and lower edges of the contour C respectively! 

As a result we have 

➔ 2 i sa l 
T (~ ,El ➔--- --- Re I 

4112 v'~ 
a I I I » l 

-2~mhy++ 
e 

\I ch y 
(21) 

where y is determined by the equation 

7 



{ e 
2 Y + 2 y) = 2 ( u + In y' 2 w - i 1T ) , 

We see, that the scattering amplitude in the region (14) 

the Orear behaviour with oscillations /5 ,a/. 

(22) 

should have 

Now we study the high energy behaviour of the scattering 

amplitude at fixed scattering ·angles 

I I I . 2 0 1· d - ~ sin - = 1xe • 
s 2 

In this case the Born series for the sc;attering amplitude reads: 
at 

-->2 00 ( 2n -
T(L'l. ,El =isg i ~ en+t 

0 n =0 ( n !)2 ( )3/2 n+ I 

is go rr,,("ii e rf><O> 

at• pya 

where 

rf, ( 0 ) = I + Re 
(1-{3) 

r In(l-/3) 

/3 = 2 i sin.!!_ et0/2 
2 

(23) 

(24) 

Notice thaf in deriving the Born series terms (24) t_he main 

contribution is obtained by integrating in eq. ( 1) over 

the principle values i,e. by integrating off the energy shell. The 

function ef, ( 0 ) is really small, for example 

/3(O=0.l =0: ¢,(0=11/2) = 0,21s. 

The asymptotic behaviour of (24) can be found by the saddle point 

method. Thus, neglecting ef, ( 0 ) we get 

➔ 2 

T(L'l. , E) ➔ C, e 

S ➔ 00 

0 = fixed 

where 

- 2 Va I t I • y In ( 

8 

ialt!, p y7 
s g O 11\/T.e 2 

(25) 

I 

I 
C= - pya y' In ( i alt!• p va ) . 

- 2 2 s g
0 

TT y' 1T e 1T 

~ 

We note that eq. (24) differs from the corresponding result of rer/2,6/ 

onlv bv an unessential factor 4 / e 
2 under the lo_garithmic si_gn. 

Thus in the model considered the behaviour of the small and 

large angle elastic scattering amplitude for spinless particles at high 

energies is determined by the two parameters g 0 and a entering 

the definition of the quasipotential, 

In principle, these parameters can be determined from the ex

perimental data at small and vanishing momentum transfer, i.e. from 

the total cross section u and the diffraction peak width A in 
• tot · 

the following manner 

a tot = 8 77 a I ( x ) 

A=-d-[In~] =2a 
dt dt t=O 

where 

I ( X) =- l 
n=1 

(-x)n = J 
··-- 0 

n • n ! 

X = 
4 11

2 go 

a 

/A1c") 
1 c x i o e s , 

di._ (·I -e-t ) 
e 

(26) 

(27) 

(28) 

Note that in order to describe the real physical processes. 

it is necessary, generally speaking, to take into account the spin 

and isospin dependence of the scattering amplitude. Such a problem 

may be solved in the framework of the multi-channel quasiootential 

equation. 
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