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Introduction 

The expansion of .the relaJ;ivistic amplitudes raised the problem 

of findhg a simple form for the matrix elements of the irreducible represen­

tations of the Lorentz group, The most degenerate representation 

has been studied at first by I,S.Shapiro and by A,Z.Dolginov and 

I,N,Toptygin/1/by analytic continuation of the representations of the 

0(4) group, Later, representations on the hyperboloid have been 

investigated systematically by Ya.A, Smorodinsky and N,Ya, Vilen,, 

kin/2/ introducing· a number of coordinate systems on the hyper­

boloid and finding the spherical functions corresponding to these 

systems, The problem of expansion of functions on the hyperboloid 

has been also solved there. Further, it has been extended to th~ 

spin non-zero case (by M,A,Liberman, Ya.A.Smorodinsky and 

M.B.Sheftel) separating the part describing the spin by realizing the 

representations on the direct product .of spaces of the hyperboloid 

· and the sphere· or conJ3 f. The representation of the principal se­

ries has been derived in angular momentum basis by S.Strom in 

1965/4/, however, due to the improper parametrization the matrix 

elements obtained were rather complicated. Recently, a compact 

form of the matrix elements has been derived in angular momentum 
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basis by A.Sebestyen et a1.f9/. In the p,·esent paper the unitary 

representations wiil be built up with parameters leading to a Lie 

algebra of two independent angular momenta. In terms of these pa­

rameters the _ 1:epresen~tions acquire a comparatively simple 

· form. An arbitrary element of the Lorentz group can be decomposed 

in the following way. We choose three Cartesian axes and define a 

combined transformation consisting of a rotation about an axis and 

of a boost along the same axis. It is shown that an arbitrary of the 

Lorentz group can be represented as a product of combined rota­

tions about x 3 , x I and once more "about x 
3 

axes, respectively. 

These operations can be written in the form of subsequent rotations 

by certain complex Euler angles a~ by Euler angles_ complex con­

jugated to the previous or'!es. The subgroups of spatial rotations are 

obtained . when the imaginary parts of the complex angles are zero. 

(Rotations with pure imaginary Euler angles; however, do not form 

subgroup). It is possible to consider the real part of Euler angles 

s coordinates_ .on the surface of 4-dimensional real sphere since 

he group of motion . of this sphere is . isomorphic to th~ 0(3) group. 
I• ', 

Then it becomes natural to consader the complex rotation group as 

group of n:iotion of the 4-dimensional complex sphere. 

As a result of our calculation we_ get a system of functions 

realizing the representation of the Lorentz group, which contains 6. 

continuous parameters. We mention that the generators M 
3 

and N 
3 

are ·diagonal in our representation as well as in the so called cy­

lindrical system· used in/
2

/. By introducing suitable parameters on the 

complex sphere both our Casimir operators coincide with the Lapla­

cean on the hyperboloid expressed in terms of cylindrical variables, 

however, the eigenfunctions are not identical since they satisfy dif­

ferent boundary conditions. 

Since these functions are eigenfunctions. of the square of the 

-i.:.momentum· they can be considered as _a· wave function of_ the relati­

vistic top (as •far as this word has a meaning in the relativistic do­

main). 
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The state of this relativistic top has no definite angular momen-

tum value. Instead, its wave function must be decomposed into a seri­

es of spherical harmonics in a fixed coordinate system. This opera-
~ 

tion leads to the usual series of angular momentum states, contained 

in a single representation of Lorentz group. Details of this problem 

will be treated separately. 

Consider a moving particle and choose the x3 -axis along 

its momentum. Then the real of the eigenvalue of the complex gene­

rator J
3 

·is the helicity of the particle, so it is natural to call the 

eigenvalue of J 
3 

the generalized complex he Ii city of. the particle. This 

fact is exhibited by the exponential dependence of eigenfu:1ctions on 

this co.mplex eigenvalue. The imaginary part of J 
3 

products the 

boost state (which belongs really to the representation of Poincare 

group). Such combination of rotation and boost turns to be a very 

natural basis for the representation of the Lorentz group. · 

1. Parametrization 

Parametrization of a Lie group G can be performed by means 

of embedding a suitable homogeneous space X into the group, 

Vve assume the group to realize a mapping of the space X onto · 

itself, by which we mean the fulfilment of the following requirements: 

a) For the unit _element e<: G, x<: X,ex=x. b) Forg 1,g2
C: G,x<: X, (g

1
g

2
lx=g

1
(g

2
xl 

c) The function gx is a continuous function of g and of x , 

The homogeneity ·of the space X requires that for any x
1 
,x

2
c;; X 

there exists at least one element g<: G which connects x 
I 

and x
2

: 

x2 c gx 1 • If there are several elements g 
1
,g

2
, ••• of G for which 

x 2 =g 1x 1 and x
2
=g

2
x

1
hold then elements of type g~\

2
=h form the little 

group of the point x 1 , Thus every point of X determines· the 

elements of G up to the little group H, which me_ans that points 

x,;; X represent the elements of the factor group G/H. Introducing 

a coordinate system in the X space we can label the elements of 

the G/H factor group. Repeating this procedure we obtain a paramet­

rization whithin the H subgroup: we choose a suitable homogeneous 

space Y Vllhich can be embedded into H, Than a coordinate system 
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parametrizes the factor group H/K where K is the little group . of 

a point Y c:; ; • Finally we arrive at a Z space points 1of which cha-

racterize unambiguously the little group L obtained in the· previous 

step. The homogeneous space X has an additional significance since 

it serves for the domain of the spherical functions with respect to 

the subgroup H. 

One of the usual chains parameters for the homogeneous. Lo­

rentz group is as follows. For the homogeneous space we choose 

the upper sheet of the real qouble-sheeted hyperboloid x~ - x~ -x;-.x; .. 1 

Points on the hyperboloid determine the elements of the Lorentz 

group up to the subgroul? of spatial rotations. Choosing e.g. the point 

x=(l,0,0,0) each element of ·G can be decomposed as a. product 

of spatial rotation leaving unaltered. x and a displacement on the 

hyperboloid. Considering the rotation group H we choose the real 

sphere '),2
1+y;+r;=lfor the homogeneous space. The little group of the 

north pole is the 0(2) group involving one parameter the Euler angle 

if, and the remaining two parameters are O, </, the polar coordi­

nates on the sphere. Finally, realizing the 0(2) group we obtain the 

circle z~ +z~=l. No further classifi~ation requlred since points on the 

circle are unambiguously characterized by the angle if, • Similar 

decomposition can be made starting from the single sheeted hyperbo­

loid. If for the homogeneous space hyperboloid is chosen, 3 out of 

the 6 parameters of the Lorentz group are contahed by the hyperboloid. 

In the following we shall use a comparatively larger homogeneous 

space, the three-dimensional complex sp~ere which involves 4 real 

parameters while the remainig 2 parameters are contained by the 

little group of a ce.rtain point on . the complex sphere. 

The Lie algebra of the Lorentz group can be represented by 

the three boost generators NI and the generators of spatial 

rotations M 
1 

. • These satisfy the commutation relations 

[M ,M )~it 0 M 0 ,[N ,N 1=-iE 0 Mo ,[M ,M ).,;, aNo 
I .k lkL L I k lkL L I k • lkL L 

where £ lkf is totally antisymmetric, c
123

=1 and i,k,f .. 1,2,3. Introduce the 

linear .Combinations in the usual way: 

6. 

I 
I 
J 
(! 
·1\ 

·1 

ii 

ii 
I 
i 
I 
I 

J .. ....!....(M+iN) 
k 2 k k 

K =....!.... ( M -i N ) 
k ·2 k k 

that obey the relations: 

[J ,J l•=ic fJf,[ K ;K l=i• 0 Kf,[J ,K )=0. 
I k lk I k lk1. I k (1) 

The form of these commutators suggests to write an element of the 

homogeneous Lorentz group in the form 

-IC1Ja -IE2J1-l£3J3.-HfK3 -ll~ x, -tc{Ka 
T( g) = e e e e e e (2) 

where 

Ck a p k + i q k ' ,: = pk - i q k (3) 

with the rang ex) of . pk and q k 

0 ~ p I < 2 TT , 0 ::: p 
2 

<.11 , 0 ::: p 
3 

< 2 11 , (4) 

- oo< q I < oo , - oo < q
2 

< oo ,- oo < q 3 < oo • 

Equation (2) containes two roto.tions by Euler angles · c* , ,* , ,* and 
1 2 S 

• 1 ,£ 2 , 'a , respectively. Rearranging the exponential in (2) we obtain 

the direct physical significance of the above parametrization in terms 

of the real parameters pk and q k • In T ( g) the following subsequent 

operations are contained: 

Boost along x 
3 

-a.xis by hyperbolic angle - 'la, 

Spatial rotation about x
3 

-axis by angle p
3 

Boost· along x 1 -axis by hyperbolic angle - q 2 

Spatial rotation about x 1 -axis by angle P2 

Boost along x
3 

-axis by hyperbolic angle - q 
1 

Spatial rotation about x
3 
-axis by angle P1 

x) This range of oarameters is related to the Lorentz group. For the univer­
sal covering group SL ( 2, c) we should have to put -211 s_ p 

3 
< 2 11 • 
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For the sake of comparison with other parametrizations we have 

listed in the Appendix the matrix elements of the 4 x 4 represen­

tation in terms of the above parameters. 

It can be seen from (2) directly that the condition of unitarity 

of the representation is 

where + 

1+ = Kl • I (5) 

denotes the hermitean adjoint with re;,pect to a certain 

positive definite scalar oroduct in the Hilbert space where the rep­

resentation is defined. 

2. ReE_resentation of the Infinitesimal Generators 

Consider the 2-parameter subgroup H = O ( 2 l x 0( 1, 1 l which contains 

spatial rotation about the x 
3 

-axis and boost along the x 3 -axis. 

These transformations will be characterized by the spatial and hyper­

bolic angle p I and q I respectively with the range O ~ p 1 <2",-00<q 1<
00 • 

rhe differential operator representation of m~ generators is given by 

a 
M·a-ia--• 

3 PI 

a 
N =i-a--· 

3 q I 

The_ simultaneous eigenfunctions of these generators satisfying the 

equations 

are 

Ma fµv =µfµv' N r =v r 
a µv µv 

fp.v(P1 ,q1l= _I_ e l(µpt-vqt) 
2" 

(6) 

For unitary representations M 
3 

and N 
3 

a re hermitean that is µ 

and v ·are both real. q_equiring the representation to be single 

or at most double-valued we obtain 

µ=o,+..L, + 
- 2 -

t •••• 
and the eigenvalue v is (7) 
continuous in the range - 00 < v < 00 
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The eigenfunctions (6) are, of course, eigenfunctions of the genera­

tors 13 --}<M 3 +iN3 ), K3 =+<M 3 -iN3 l as well: 

or 

with 

µ+iv 
13 £µv=--

2
--·£µv • K3 .rµv 

µ-iv 
=---

2 £ µv 

1 acp *mmcf,mm*'K3,1. *=m*cf,mm*. 
mm Y mm 

µ+ iv. 
m= ----, 

2 
m*a: µ-iv 

2 cf, mm*= r µv • 

(a) 

For labelling the eigc,1function, we can use m and m* instead of 

/l t V or vice versa, Introducing the combinations 

1 ± = J 1 :!: i 12 , K ± .=Kt.±. i K 2 

the familiar commutation relations are obtained: 

[Ja ,J+ l=t.1+ [J+. J_] .. 2 J 3 

(9) 
[K ,K l=+K 

3 + - + 
[K ,K ]a2K 

+ - 3 

( The remaining are zero). 

We get from these relations that 

< J + K l J + r µv "' < µ ± I l J r a a - ± µv . 

and thus the states J ±rµv are eigenfunctions of the hermitean opera­

tor M ~ = J 3 + K 3 with the eigenvalue µ ± l • The similar statement 

is valid for the state K :!:r µ,, • The same functions J :!: f µv , K :!: r µv 

however, are not eigenfunctions of the hermitean operator N3=-t<J 3-K3 >. 

Though, one would obtain frpm the commutators the relation 
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+(J~-K3 l J :!: r1u,=(v:;:il J ±lµv , in spite of this formal equation J± fµv 

cannot be considered as an eigenstate since it has complex eigen­

values and thus it does not constitute· an eleme~t of the unitary 

basis. The origin of this fact lies in the non-compactness of the 

• 0(2) x 0(1,1) group. (Recently, the same problem was faced in a paper 

by A.Chakrabarli et ai.f lO/ where the representation of the Poincare 

group has been constructed in the non-compact Lorentz group basis. 

It turned out that the action of the displacement generators P µ on the 

states belonging to the eigenvalue A of M 2 - N2 gives a state with 

the eigenvalue A :!: i • We shall solve this problem by expanding 

these undesired states in series of states of the unitary basis. As it 

will be seen the complex o -function arising in the expansion will 

· lead to no complication in the matrix elements of finite rotations). So, 

we can search for: the representation in the form: 

+ 
J!lµv .. Jdv'A;;.<v,v')!µ+i,v'• 

K ±. I µv • f dv 'B; (v,v ') I /J + t,v,, 
(10) 

.where the path of integration is the real v ' -axis. We obtain from 
- . ± . ± . ) 

( 9) that A /J and B 11 · have the formx 

:!: ± . 
A /l ( v ,v ')=a /1 ( iv )o(v '-v :!: ! ) 

+ ± (11). 
a;(v ,v')=bµ (iv)o(v '-v + i l. 

The complex o -function has arisen h;ere from requiring the uni­

tarity (that involves the infinite dimension of the representation), If, 

on the other hand, one considered the compact_ 0(4) group,the o -
function would be concentrated on the real v '-axis that would lead 

to the selection rule v ' - v., :!: I • As a consequence of the complex 

delta-function the operators J ± 
spectrum. 

K ± mix the entire continuous v ' 

~ . . . . 
The Dirac delta of comolex argument has a strict mathematical 

meaning, Jt is treated in details by textbooks on generalized functi­
ons (cc,151), It appears here, essentially, as the Fourier· expansion 
of the exponential function, 
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j 
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{1 

l 
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• 

i 
For aµ 

+ 
L 11 e_q. (9) yields the recurrance relations 

a11 (A) ,,;_,(A- I l- a;(,\) aµtil>- + 1 l = /t + .\ 

- ) + + ) -L
1
, (), h/t- /.\ + l l- h11 (,\ l,/t+/A,-1 l =/t- ,\ 

-t + + ) + a (A)b 
1
C.\+ll-b (,\ a 

1
(.\-J).,O 

/1 /1+ /L /H 

+ - - + . 
a 11 1.\) bµ+ 1 (A+l)-t,

1
,t.\) •µ_ 1 (.\+ll=O 

- + + -
a 1/.\) L1,._ 1 C.\-1 l- b/1 (,\ }_ a/1+ 1 (>.- 1 l= O 

a
1
~(,\) h

1
,:, (,\ _ I l - b /~ ().) a;_p+ I} ~ 0 , 

(12) 

where A sc i ,, • The last four equations can be satisfied by the 

ansatz 

+ + µ+A ± + µ-.\ 
ap(A)=a-(-

2
-), 1,/J().) = b-(-

2
-) 

vvhile the first two lead lp: 

_ /t+A -+ /t+>. p+A µ+A µ+ii, 11+iv 
a 1--)a <---ll=j(j+ll---(-,,---ll=j{j+ll---(---1) 

2· 2 2 4 2 2 -

(13) 

_ µ-.\ + p-A I'-.\ µ->. µ-ii, 1•- iv 
b (-

2
-) ~ <-z-- - I l = k 0:+ I l--

2
-(-

2
- -1 lek(k+ 1)--

2
- (z- -1 l, 

vvhere j ( j 1- 1 l and l ( l -t I l are certain constants within an irredu­

cible representation. ,,Vith a proper normalization of U1e basis func­

tions we get: 

+ 1 /t+i1, µ +iv _ /t+il' p+iv 
al' (ii,)~ i y j lj-t 1 )- -

2
- (-

2
_-+ I), aµ( iP)r.- iy j(j+ll--

2
-(-

2
- -1) 

+ µ-ii, 11-iv _ · 11-iv 11-iv (14) 
b (iv)=i\i'Hl+ll---(--+n, h (ir,)=-iy'lCL+))---(---n. 

/1 2 2 fl 2 2 . 

Thus finally the generators have the following representation 
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"k + 
l+fµv.=1+ r;v =fdv'o(v'-vtila;i:_iv)f/l+tv' 
- - " -

(15) 

jk + 
K!: f µv = K !: lµv = f dv'o(v'-v+ \ )b; (iv) fµ± II',. 

The condition of unit.arity (5) yields: 

+ - - + 
a1/iv- l) = bl'+' (iv)*, aµ( iv +l l =hµ_/iv)*. (16) 

The two independent Casimir operators are 

➔ 2 2 2 2 1 ➔ 2 ➔ 2 . ➔ ➔ 
J =1 1 +J2 +J 3 = 4 (M -N +21MN) 

➔2 2. 2 2 1 ➔ 2 ➔ 2 ➔ ➔ 

K = " 1 + K 2 + Ka = 4 ( M - N - 2 i M N ) • 

Using ( 15) we get that the canst.ants j(j+ll and l ( l + I l in eq, ( 13) 

are just the eigenvalues of J 2 and K2 : 

➔ 2 I k J k ➔2 j k 

J r,,v =i <i+ 1 l r,,v , K fµv =l(l+lll;~ (17) 

Thus an irreducible representation is characterized by the quantities 

and Ii • The representation (15) is invariant with respect lo the 

substitution 

j ➔ -j-1 , l ➔ -l-1 

so the representations characterized by (j ,ll and (-j-1,-l-l l 

are equivalent. 

The necessary condition of the unit.arity is 

➔ 2 ➔ 2 + 
J = ( K ) 

That is 

( i 2 - l 2 ) ( i 2 + k 2l - ( i 1- l t ) ( j t + k 1 + l) = 0 

12 

(18) 

(19) 

( 

( j 2 + l2) + 2 ( l I l 2 + j I j 2 ) = O • 

where 

j=j
1 

+ij 2 , l=l 1 +il2 

We have the solutions 

al. 

bl. 

cl. 

d). 

j I= k I' j2 " 2 

j 2 = le 2 = 0 ' j I= le I 

i 1 =-l ,- l, i2 = l2 

i2=l2=0, i,=-1<1-l. 

(19) -

(20) 

In view. of the invariance (18) solutions c) and d) can be omitted, 

· In the case b) we have a further restriction, namely o ::: j 1 ::: I , 

o ':.. l 1 ~ I , Cases a) and b) constitute the principal and supplemen-

tary- series, respectively, Writing _and l in the form 

i=_!_<fo -l+ipl, le~(f
0
-l+ipl* 

2 2 . (21) 

it is easily. seen that we can choose p to be non-negative as a 

consequence of equation (18), It will be shown further that f 0 
has only integer or half-integer values, Thus the results of the cases 

;El) and b) can be summarized as 1) p real non-negative, f 0 integer 

or half integer {principal series), 2) £ 0 = o , p imaginary, p = i p 

,with -I ~P '::; I (supplementary series), In the follmving only the prin­

cipal series will be treated since the supplementary series has no 

contribution in ·the harmonic analysis, The eigenvalues of the Ca­

simir operators in terms of f o and p are 

j(j+ll =+(f~-p
2
-l+2if 0 pl 

2 2' 
l(k+ll =-¼-<£ 0-p -l-2if 0 p). 

(22) 
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I .. 3, Matrix Elements of the Representations 

Consider a function on the Lorentz group Hg) and define the 

action of the representation on l(g) by left displacement: 

-1 
T<coH(g) .. Hgo g), (23) 

Choosing for g O the six one-parameter subgroups according to 

the six (real) parameters we obtain from (23) the infinitesimal gene­

rators· in the form of differential operators acting on the functions 

on the group 

iJ _ iJ sinc 1 iJ 
J1 -~(- sin c I col c2 :....;-- + cosr 1-or--+-.-(- -ac) 

I o_c, "'2 SID 2 3 

i a . a cosc' a 
J:;i .. _( cos ( I cot <:;i-- + SID ( I --- - --- --- ) 

1 iJc 1 iJc 2 sinc 2 iJc 3 

iJ 
J 3 =-;-a;-; 

(24) 

K • •+(-sine~ col c; 
i} i} sine~ iJ 

--- + cos c~ -- + --- --- ) 
iJcf ac; sine; ac: 

I . 
J. 2 "T'( cos 'i COi c: i} i} cos cf i} 

--+ sin c* ---------) 
.iJ Ci I iJc: siDf i iJc: 

I i} 
Ka=i aci • 

14 

Here 

-£k"Pk +iqk ct =pk-iqk 

and 

a. r· a a a' 1 a a 
~-,-( -- -i--), -- = - (-- + i--). ack 2 apk· iJqk act 2 a,\ aqk 

Generators (24) fulfill the commutation relati'ans (1), The Casimir ope­

rators- can be obtained· from (24) : 

➔ 2 1 a 2 i/ a a a2 a 
-J =--- (-- + --- -2 COS(~----)+-- +col c 2---

sin2c2 a,: a,~ • iJc I UC3 a,; iJc2 

.. (25) 
.. _,. 

·• ~ 1 ;iJ~ a 2 
· a a a2 a . 

-K =---(---+--- -2cosc* ----)+---+cote*--· 
sin2,* a,* 2 a, * 2 2 tic* ac* a, * 2 2 

iJc* 
··2 1 3 I 3 2 2 

Mat_rix elements of the unitary irreducible .representations are the 

simultaneous ei~enfunctions of (25), that is 

➔ 2 11* 
[ J - j ( j + I ) ] T ( g ) .,. * = 0 

mm , nn 

... 2- ·* 
[K -j~(j*+Jl}T( g)J, · =o. 

mm*: nn * 

The representation can be fadored out in the form 

where 

!J* 

T * * !r.m ;nn 

-l(f1m+t*J m*+t3n+c\ n*) JJ* 
=e e R rn m *; n,. * ( cos f 2 , cos C; ) e 

=e 
-Hr K-q3A+P1/l-q,v) 11• (cos c 'cos c~ ) , 

-a R * * 2 
mm ;nn 

m=-}(µ+i v), n~-½(K+ j,\). 

1S 

(26) 

(27) 

(28) 



Substituting {27) into {26) and introducing the variable zacos£2 , z*acos~ 

(26) reduces to 

2 ,1 2 d m2 +n2 -2mnz JJ* 
[(1-z l---2z------...,...- +j(j+ll)R * *(z,z*).,0(29) 

dz2 dz 1-z mm,nn 

2 d 
2 

d m*
2 
+n,.2 -2m"ia"'z* II* 

[( 1-z* )-- -2z*--- ---~- +t{i*+l l)n *• *(z,z*).,o.(30) 
di"2 dz* I_ z*2 mm ,nn 

Let us restrict ourselves temporally to the case 

Re ( m + n l > 0 , Re ( m - n ) > 0 (31) 

It will be convenient to take for the two independent solutions of 

equation (29) the following ones :x) 

pl j 1-z m-i m+n 
mn(zl=n (--) (l+z ,-mn 

2 
--) 

2 
F (-j+m,j+m+l ,m-n+l; ~) 

. 2 (32) 

m-n m+n 
j j 

Qmn== 8 mn 
1-z --2- l+z -2- l-z 

(--) (--) F(-j+n,j+n+l,-m+n+l;--) = 
2 2 . 2 

(33) 

m-n nt+n --,- -,-
I ( l-z) (l+z) ( . . I I 1-z) =nmn -- -- F -J-m,J-m+ ,-m+n+ ;-- , 

2 2 2 

_x) The solutions of the first and seco~ ki¢ · of the equation (29) 
have been studied by Andrews and Gunson/6/. Solutions (32) and (33) 
are related to the functions d jn and e jn of rcf./6/ as 

-'11( J - r.t) I J j 
mn 1,J mn 

11 
[ e+- r (zl-P (-zl with + d ~- e - mn m,-n 

I - mn' l 2sin11(j-m l for Im z < 0 
> 

(As to P n~. _ n (- z ) sec section 5 of the present papet·). 
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J 

l 
I 

' r l 
! . 
t, 

t 
11 

l 
J 
l 1, 

1 
1 
). 

J 
t) 
i 

where 

J I ., r(if-m+ll ['{j-n+ll 
Dmn a V • 

r(t+m-nl r{j+n+llr{"j-m+ll 

The general solution of equations (29) and (30) can be written in the 

form 

11* J * J 
ctm *n * ( z*)Q m n ( z l+ 

I I* I J* 
'2P m n (z)Q m*n*(z*)+c3P mn (zl pm *n * ( z*) + n mm*; nn' 

I J* 
+c, Qmn(z) Q m*n*(z*)' 

(34) 

where c 1 , c 2 , c a , c , are some constants (independent of z and z *). 

l!:quations (29) and (30) have three singular (branch) points: z=l,-1, .. , 

the cuts will be directed from :!: I outwards, that is from - l to - "' 

and from l to "" • 

[t is seen immediately that c 4 =0 since this term is singular at z= l • 

Investigating the 

obtain two equations 

behaviour of eq. (34) as z .. _, and z .. .. we 

far the three constants c 1, c 2 _, c 3 • Taking 

into account, however, that to the unit element of the group has to 

correspond the unit matrix, that is 

JJ* . 
lim R * *"'8 8(v-A), mm;nn µK 

z -•• 

it is easily proved that .this can be satisfied only by putting c 3 = o 

and so there remain two constants c t and c 2 to be determined. 

Requiring the finiteness at the points za-1 , z., 00 we get the 

equations 

c 1 A+":JA*=0 

(35) 

C I 8 + C 
2 

Q*.,,0 0 

where 

17 



· r( m * - n * + I ) re- m + n + I ) 
A=---

r{-j*+m*) r( j *+ m* +I )r(.:_j+nlr(j+ n+ I l 

,'._., 

r(m*- n*+ 1.) r (-m +n +I) 11T(n-ml 
B"'e . 

r(j *-n*+ l)r{j*+ m*+l) r( j-m+llrlj+n+Jl 

(36) 

Equatio~ (35) has non-trivial solution for c I and c 2 if the determinant 

vanishes, that is 

111(µ-K) sin1dj-nlsin11(f*-m*) 
e ---=-----;;.....-- = I (37) 

sin ,r(j*- n*) sin 11( j- m) 

where µ and K .are given by the equation (28). 

We have the following possibilities: 

a) µ- K is half integer. Then (37). generally has no solution 

which me~ns that (35) has the trivial solution c 1 "' c2 • 0 only, and 

the matrix elements vanish. This corresponds to the fact that by eq. 

(10) 

or 

J + and J _ increases· and decreases the values of 

b) µ- K is even. Then (37) reduces to 

/HK 
· sin II ( f O - --) sh 11 

2 

v-.\ ~o 
2 

/t+K t O - -- .. integer 
2 

µ by 1. 

. and thus £
0 

is integer if K integer and £0 is half-integer if K is half­

integer ·• 

c) /J - K is odd. Then (37) yields: 

/l+K II-A 
cos t1 ( f O - -- ) ch t1 -- = O 

2 2 

18 

So 

lo -~ 2 .. half-integer. 

Or 
f O is integer if K integer and ; t O is half-integer if K half-

integer. 

We have concluded that f O is integer if the eigenvalue of J3 +K3 

is integer and t O is half-integer if the eigenvalue of J 3 + K3 is half­

integer. In the latter case the representations are double valued. 

Solving the eq. (35) and choosing a suitable normalization factor 

the R -functions are obtained in the Corm 

J 
· U* N I 1* I J * I 1·* 

R · * * u mn [C P * *(z*)Q (z)-C *-I' (z)Q *-*(z*)], 
mm ;, nn mn m n mn DI n mn m n ( ~ 

4 i,/:,,inll (m-n) sin11(m*-n*) 381 

where 

CJ 
mn 

and 

sia 11(m-n) sia11(j- m) 

II ( m - n ) sin rr ( j - n ) 

2 r(j-m+IJr(j+a+l) 
r<m-n+n 

r<;-a+Or(j+m+l) 

j 
,Ninn =,/ 

sin,r(j-n)sinrr (j*-n*) 

sin 11°( j - m) sin 11 ( j * - m*) 
(Re(m+n>zo, Rc(m-n)>O). 

It is seen that the constants 

·wing property 

J J 
Nmn • C mn and a !n have the follo-

j 

C11un •1, 
J 

Nmm •1 • n,nm •I• (39} 

\Ve note·that if incidentally m--..1,2,a ••• the Q-function becomes. 

infinite, however the factor sin 11 ( m - n ) in C ! n is zero of the same 

order and therefore the R -function in eq, (38) remains finite. (In 

view of the identity sin:10 .. n/r(u)f'(l-ulthe above statement can be 

repeated for the fac_tor 1/ r ( 1-m+nl instead of sin 11 ( m- n) • It would 

have been possible to define U-ie Q-function with the co-factor 

]/r( 1-m+n l from the very beginning as it is done in the theory of 

spherical functions. It is remarkable that this factor is produced 

automatically by the regula.rily requirements on the z -plane), 

1'l 



Thegeneralizatidn of e9.(38)for arbitrary {allowed by eq. 7) values 

·of m and n is straightforward. Instead of listing the symmetry properties 

of the P and Q functions for different Values of sign Rdm+n) and sign Rdm-nl 

(as it is done for real m and n in rec.f 6,) we give P and Q for arbitrary m 

and n in a unified form. To this end the symbol II u!I will be introdu­

ced ( u is an arbitrary complex number) which is defined by 

u if Re u > 0 
ll u 11 = I 

-u ii Re u < 0 

Using this symbol the general form of P and Q is 

~1-N MtN 
i j 1-z ):r- l+z -2- 1-·z ) 

P. (zl=n (-- (--) F(-ji-M,j+M+l,l+M-N;--
mn = 2 2 · 2 

(40) 

M-N M+N 
I l 1-z --2- l+z )-2- 1-z 

Q (z)=n (--). (-- F(-j+N,j+N+l,l-M+N; --)= 
mn mn 2 2 2 

(41) 
M-N ~ 

1-z --2- l+z. - 2 1-z =n (--) (--) F(-j-M,j-M+l,1-M+N;--), 
mn 2 2 2 

where 

n _ l / f'<j+M+lll'{j-N ti) 
·mn \ 

r( 1+~1-Nl f'<j +N+ l )l'(j-M +I) 

and 

M=-}(l!m+nl!+!I m-n!!), N= ~ (l!m+nll-llm-n!!) 

Equation (27) remains Valid and instead of (38) we gel ~ow 

N j * 
Ji* • I I. . l * I J* 

R * * = mn [½nnpm*n~z*)Q' (z)-C * J' (z)Q * *(z*), ~ 
mm·; nn , -------·---- mn mn mn m n (,-12} 

4i J sin r.- 01 - N) sin 1T ( M*- X *) 

20 

where 

I 
cmn 

sinTT(M-N) sin 11 ( j- M) 

11 ( M - N ) sin ;r ( j - N ) 

r<i+M-N)2· r( j-M+ I) rCj+N+l) 

r ( i - N + l) r ( j+ M + l) 

NJ _.I sin11(j-Nlsin;r(j*-N*) 
mn - V 

sin TT ( j - M ) sin 11 ( j* - M *. f 

Let g be an. element of the Lorentz group characterized by the pa­

rameters g = (c I' c 2 ; c 3 , ct ,c; , c: ) • Then the element inverse to it has 

the parameters g-1 =<- C3 ,-£2,-£1,-ra,-ct ,cj ).The unitarity of 
JJ* . 

T mm*: 
00

,J. c, c *) ( see ~qs.(27) and (42) ) can be checked 

form 

1* * 
T ( g- 1) J = [ T ( g ) J I ] * . 

mm*: nn * nn * mm* 

4. Behaviour at the Singular Points 

the matrix 

in the 

The form of the P and Q funcUons given by equations 

(40) and (41) yields directly the asymptotic expansion of R at z = I 

The leading ·t~rm at this point is 

J J 2 

JI
* N I n I . I m-n m*-n* * m-n m*-n* 

mn mn --- -- J -- -,-, 
R * *"' ------------ [c r 

2 
r* 

2 
-C ,.. *' 

2 
r* ]'(43, mm ; nn _____________ mn m n 11 

where 

·4iy sin;r(m-n) sin 11 ( m*-n*} 

1·- z 
r = --2-

In order to investigate the lirrit r ➔ o. the follmving lemma will be 

proved. If le arid f are integers {or half-integers) x .and x 0 

real, then 
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x-x 
lim A .lx- -1 -y-o -I x-xo T➔ O kl' "o ,,).,Jim Ir! -I I -,-r--0 r --,---- =•\fa (x-"o) . 

• • I • 2 k-f 2 x-x 0 2 k-f 2 x-x 0 
4, v ,.,n rr -- ch rr --+ cos rr--sh rr--

2 2 2 2 -

Really, be cf,<" ) an element of the class of functions K x) which 

has a support not containing the point x O , then as a consequen-

ce of the Riemann- Lebesgue lemma we have 

lim·fAki'.(x-x 0 ,r),p(x)dx=O. 
T➔ O 

On the other hand using the formula 

f 
sin ax 

sh f3" 
dx = "'7f th 

arr 

2{3 
( Re f3 > O) 

we get 

lim f
00 

A k( x - x O ,r) d x,. { 
r➔ O -(IQ 

0 if 1r.,.:r 

ii k ,..f 

which proves the lemma • 

Rewrite eq. (43) in the form .. 
u* 

NI I DI I 2 
v->. 

Rmm*; nn* 
., mn mn 

-1--
v-,\ 

<IT I 2 
1-·-

4rriy (~ )2 + (~}2 
-Ir I 2 ) + 

2 2 

N I I 2 v-A v-.\ 
mn1°mn1 I -l;i- I 1-,-

+ --========-[(cmn_l)lrl -(Cm*n*-lllrl ]. 

4rri v <~ >2 
+ < ~ >2 

. 2 2 

X) 
</> c;; K if it has continuous derivatives of any order and zero 

outside a bounded region. See /s/. 
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According to the lemma and eq. (39) the first term tends ta B/JK B(v-.\) 

while the second tends to zero as r ... O 

with eq. ( 27) we find that 

• Comparing this result 

I I* 
T (£,£*) . 

0 
.. 8 •o(v-.\). 

"mm*;nn* fa= µK 

Using the analytic continuation of the hypergeometric function we 

have 

I l I 
pmn(z)=a1 pm,-n(-z)+a2 °m,-nt-z) 

I · I I 
Qmn ( z ) "/3 I pm , - n (- z ) + /3 2 Q m, -~- z ) ' 

where 

ro+M+N) r(-M-N) ro+M+N)r(j-N+Ilr(M+N) 
al= a2=--------------

r(-j-N)f'(j+N+l) rCj+N+l) r(-j+M)r!j+M+l) 

ro+M+N) r(j-N+llI'<l-M+N)r!-M-N) ro-M+N)rO+M+Nlr(j- N+l )r(M+Nl 
/31 = . /32=---------2------

ni+M-N)r(j+N+l)r(j-M+llr(-j-M) ro+M-N Jr( j + N +l) r<-i+ N) 

Substituting these expressions of • P and Q into eq. (42) we 

get the behaviour of the R -function at z =-1 

I 
II* N mn I 1* ; 

Rmm*; nn,.!z, z*)= --::::::::::::::::::::::::::::::::::::::::::::::::::::= I cm)ar /3 I pm";-n,.(-z*)P m ,-n (-z ) + 

4i y sin Tr <M-N) sinrr(M*-N*) 

(44) 
i* I i * I 

+a*2 /3 2 Q * J-z*) P . (-z) +a*1 {3 2 P * ,./-z*) Q (-zl]-compl,conj,I, 
r_nrn m,-.n m,-n m,-n 

For our purposes it will be sufficient to give only the leading terms 

of the asymptotic expansion at z = 00 
• (As to the derivation of the 

exact formula use eqs •. 2.9 (34) and 2.9 (42) of ref. /s2 
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JI" 
R 

I J ~ -1'70-½(M-N-M*+N') 

Nmnl nmnl e [( IJTO(M-N) -11ro(!.i*-N1{z-l)l-(~*;_l)I* . 
yle - -)'..,e 2 2 -

mm'\ nn* 
4iy sinl7{M-N) sinJT(M*-N*) 

(45) 

I I * I -1*-1 ' I ) _ JITO( M*-N*) * llTO(M-N > )(..:.::_) (~) ). (! z I» I, I are: ( z-ll <JT 
-(y~ e -)'2 e 2 2 · ~ 

1 
['(I +11*-N*l P(2 j *+ I lf'O-M+ Nl f<-2j-D • J* f'<I-M* ,1-N*lf'<2j*+ll ['(l+M-Nlf<-2j-I> 

Yi ,.c mn -------------- Y2=Cm*n 

['(j*-N* +I lf'(j* +M* + I) f't-j -~I ll"i-j + N l ['(j*-M*+ I )['(j*+N*+ llf<-j-N)f<-j+Ml 

(osasign lm(z-lll. 

5, Harmonic Analysis of Function on the Group 

By making use of equation (24) we obtain the following (left 

or right) Haar measure in terms of the parameters (3) 

f ,I g I( g l = + f ,Ip 
I 

d q
1 

d p 
2 

d q 
2 

d p 
3 

d q 
3 

( ch 2 q 2 - cos 2 p 
2 
)f ( p , q ) 

(116) 

~ f dp
1 

dq 
1 

<lp
2 

'<1q
2 

dp
3 

dq
3 

sinl 2 sin lt I( p,q) 

where the limits of integration arc given by eq, (4), The scalar pro­

duct for the principc.,l series is definect by 

( ¢, , r;, } = J d g cf,* ( g l if, ( g l • 
(47) 

By U1e aid of the asymptotic formula (4!::i) the follo\'.ing orthogonalit),• 

and completeness relations can be derived: 
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l 
\ 

. l 

. 1: 

1'1'* l* T II* 
Jdg{Tm"m'lf\n'n_. mm*;nn* 

4 

~8, 8, 8(v'-v)8(,\'-,\)8.,f 8(p'-p) 
/l /l K K• LO 0 (2j+ I l (2j*+l l 

where 

(p '> 0 , p > 0 ) 

j= 2 (f 0 -I+ipl, m= /l+iv 
--2~ 

(48) 

n "' K+ i,\ 
--2--

(the factor ( 2 j + I l ( 2 j 'I' + I ) on the right side plays the role of 

"dimension" of the representation) 

I oo .. _ oo oo oo JJ* JJ* 
3Z4 l: l: Jdpfdvfd,\(2j+ll(2j*+IXT(g') )*T(g) a8(g'-gl,( ). 

11 fo=....ooµ,~ o ~ -oo nm*; nn* mm*;nn* 49 

where 8 (g '-g l is_ defined by 

f d g ' 8 (g ' - g l f ( g ') "' f ( g ) • 

Explicitly: 

8(g'-gl=8(p; -p
1

)8{q'
1
-q 

1
)8(cos p; chq;-cos p

2
ch.q

2
) X 

x8(sinp; sh q~ -sinp
2 

shq
2
)8(p;-p

3
l8(q~-q

3
). 

All the summations in eq. (49) must be carried out over integer and 

half-integer values, 

Equations (48) and (49) give the following formula of Fourier 

expansion of a square integrable function on the group 
00 00 00 CO 00 

f{gl=-
1
- I . l: fdp f dv fd,\ (2j+IH2j*+UF(j,j*;m,m*;n,n*)T(g)JJ*,.. * 

32 4 l' 0 mm ,nn· " o:=-oo µ, 1(::-oo -oo -oo 

The inversion formula reads 
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F(j,j*;m,m*;n,n*)= fdgf{g)(T(g) Jl: * )*. 
• mm ; n n (51) 

Related convergence and other subUe questions see ref. /7/. 

6. Spherical Functions 

Spherical functions with respect to a subgroup H of the group 

G are defined on a certain homogeneous space X which has a 

certain fixed point x having the little group H ~ As it has been 

discussed in the section 2 each point of the homogeneous space 

X characterizes the factor group G / II • Elements ; of the group G 

can be characterized by an element of H and by a · point of X 

We have to find a homogeneous space with the above properties for 

' G = L , H = 0 ( 2) x O (1,1 ) • 
+ . 

Consider the antisymmetric tensor formed by the three-vectors 

-- -X • y 

sµv = 

0 

YI 

y2 

Ya 

-y I 

0 

-x 
a 

X 

-y2 -y 3 

X -X 
3 2 

0 X 

I 

-x 0 

Under the Lorentz transformation 
/3 

ga S µv transforms as 

S'= a f3s 
µv gµ · gv a/3 

Let . us form a complex three-dimensional sphere from the quantities 

zk=xk+iyk z! =xk-iyk 

-,, . 2 2 2 .. 2 4 2 -➔ ➔ 2 
z 2 a-z

1
+z

2
+z

3
•x -y +21xy=r 

➔ 2 2 2 2 ➔2 .. 2 . ➔➔ 2 
z* c.z; + z~ +z~ _-e.x -y -21xy ar* 
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(52) 

(53) 

(54) 

Points on this sphere are characterized by the quantities 
➔ ➔ 

X and Y 

or by 1 and t* • As it is well known both the quantities -;2 -y'J 

iy are invariant under the Lorentz transformation {53) and thus the 

surface of the sphere {54) is invariant. We mention that it can be 

shown that eq. (53) describes the transformation of z coinciding 
I 

with the three-dimensional representation {in Cartesian basis) of the 

rotation group but instead of real Euler· angles we have to put com­

plex ones. Thus, the most general Lorentz transformation of an an-., 
tisymmetric tensor {complex vector) can be performed by the familiar 

technique of spatial rotations. 

The homogeneity of the space X can be proved simply by 

showing that each point on the sphere can be transformed into the 

point < o , O , r ·). {We exclude the case when --r and y has the same 

length and are perpendicular to each other. In this case 1 2 -fland 

x y possess the above property in any frame of reference. At the 
➔· ➔ ➔-➔ 

same time both the invariants x 2 - y 2 , x y become zero and the 

complex sphere is deformed to a complex sphere of zero radius, 

which is actually the intersection of two real cones. The "north pole" 

of this surface is the origin that must be excluded). 
➔➔ 

It is seen from the invariance of x y. that if Re r and Im r 

have the same {opposite) singns than each -; and y on the· sphere 
➔ ➔ 2 2 

(x + i y l =r form acute {obtuse) angle. In other ·words, in the course 

of Lorentz transformations ; and y cannot pass the perpendicular 

position. This fact is well known also from electrodynamics. 

Consider the subgroup H consisting of spatial rotations about 

the third axis and boosts along the third axis: 

ch q 
1 

0 0 sh q 
1 

0 cos pl sinp 
1 

0 

ha I I (O<p <211 , -oo< q <oo) • 
0 -sinp

1 
cos p

1 
0 - I I 

sh q 
1 

0 0 ch q 
1 
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Substituting this into equation (53) it is readily shown that the sub­

group II constitutes the little group of the point z 0 =(0,0,rl:hz
0

=z 0 • 

(And conversely: each elemen~ of the Lorentz group leaving the 

point z 0 unaltered, has the above form). So the complex sphere 

possesses all the required properties arid can be considered as a 

domain of the spherical functions. 

Introducing polar coordinates in the usual way 

z 1 = r sin 0 cos cf, z7' =r*sin0*cosc/>* 

z 2 = r sin O sin ¢ z i s: r * sin 0 * sin <f, * 

z 3 = r cos 0 z ; = r * cos O * ( r ,{ 0 ) , 

by the complex angles 0 a 0 1 + i 02 , cf,= cf, 1 + J cf, 2 we· have labelled 

the GI II factor group by 4 ( real) parameters. The remaining 2 

angles are contained by the subgroup H • Representing the in-

finitesimal generators by differential operators on the complex sphe­

re we arrive at the Casimir operators x): 

2 , a2 a2 a 
- J = ---. --- + --- + cot 0 --

sin 
2 0 a cf, 2 a 0 2 a 0 

- K2 
a2 a 2 

· a 
--- + --- +,cot 0*---

sin 2 0* acp*2 a0* 2 a0* 

x) The Casimir operator of the group can be treated in an analo­
. gous geometic way. Writing an element of the SL(2,C lgroup in the form 

[ 
Zo + i• Z 3 Z 1 +. i Z 2 ] . 

- Z ~ + 17 2 Z O - 1 Z 3 

we obtain zg + z2
1 + z; + z3 m~, z;2 + z~ 2 + z~+z; 2=1 and thus the para­

meter space of the group is topologically hom~omorphic to the four 
dimensional complex sphere. Introducing the parameters 

E2 E3 +EI • E2 . E3-E I . E2 E3-E I E2 . E3 +EI 
z 0 acos -

2
- cos -

2
--, z 1= sin-

2
-sin-

2
-, z 2:::::stn-

2
- -:os -

2
-, z 3=cas2 sin-

2
--, 

the Laplaceans J; aµ,r;: #v av, 77 a; w gµv*at on this sphere 
yield the Casimir b~erators (25). g 
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l 

· l 

I 
i 
i 

I. 

The spherical functions are simultaneous eigenfunctions of ·;2 and ;;2 
➔ 11* · 

[ J
2 

- j ( j + l ) ] I * (0 , cf, ) = 0 
mm , 

➔ 2 * 
[K -j*Cj*+Il] 1 11 (0,cf,)=0. 

mm* 

The well behaved solutions of these equations are the functions: 

( T 
11

: C cf,, 0, O));" Choosing a suitable normalization factor we obtain m,m ; o.o . • 

1·* 8rr 2 * 
I 

1 
*(0,cp)-=v-------- (Tll (cp,0,0))*. 

mm ( 2 j + l ) ( 2 j * + I ) m • m*; 0 • 0 
(55) 

Introducing the notations 

p 1 (z) =P (zl 
m ·m P 

i c' i q zl=Q (z) 
m m,O 

(see eqs,, (32) (33) ) the following 

rived 
recurrance relations can be de-

_,--2- dp
1 

mz l ./ l mz l ./ I 
vl-z --"'-=---p +v<i-mlCj+m+llp =--- p -vlj+mlCj-m+llp 

- m - m+1 -- m m -J dz 2 . 2 
yl-z yl-z 

d l s/2 
./ 2 qm • mz I mCm+l) j mz j [Cj+mlCj-m+O] I 
V 1..- z --- = - --- q + -=======- q = --- g - ------- q • · d --2- m m+I -- m ( -I} m-1 

z yl-z y(j-mlCj+m+I) yl-z2 mm 

By the aid of these formulas and eq. (24) it is straightfonvard to 

show that the spherical functions (55) fulfill the equation (15), so 

they transform according to the_ irreducible unitary representation 

of the Lorentz group. 

The scalar product of functions <f, and if, 

. sphere we define as 
on the complex 

fd 09*(0 )I{, (0 h+ f dcp 1 d</,
2 

dO 
I 

d0
2 

(ch 20
2
-cos20

1 
)<f,*{O),p (0) 

v.,ilh the limits of integration 

o:s_<f, 1 <217 

0 < 0 < 17 
I 

-00<<(,2<"" 

-00<02<"" 
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The orthogonality and completeness relations for the spherical func­

tions read: 

l'l'* ll* J d{l ( f , '* ( 0 'cf, rr f * (0 'cf,}= 0 , 0 ( V, - V} 0 0, 0 0 ( p , - p ) • 
mm mm fl fl LO LO 

I I 
f =-oo fl=-oo 

,, 
f dp 

0 

(p'>O, p>Ol - -
f dv(fll* 

mm* 
(0',cf,'}* fli\<O,cf,} :8({1'-{l}, 

mm 

where 

mely 

o(G'-G} is the 0 -function on the compiex sphere, na-

oW '-n} = o(cf,; -cf, ,}o(cf,; -cf, 2)0 (cos O~ch o; -cos O rh02 }o (sin O; sh o; - sinO I sh02}. 
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Appendix 

The space-time coordinates transform in the following way 

xfl
1

=gfl xv 
V 

The matrix elements gfl;,, in terms of the six parameters used 

throughout this paper have the form: 

0 g 
O 

= ch. q 
I 

ch q 2 ch q 
3 

+ sh q I cos p 2 sh q 3 

g 1 = cos p ch q cos p - sin p cos p sin P. 
I I 2 3 I 2 3 

2 • I: . g. 2 = - Sill p I c q 2 Sill Pa + cos p I cos p 2 cos pa 

3 
g 

3 
= sh q 

I 
ch q 

2 
sh q 

3 
+ ch q 

I 
cos p 2 ch q 

3 

30 

g 
1

0 
= - sh q I sin p 2 sin p 

3 
- ch q 

I 
sh q 

2 
cos p 

3 

g O = - cos p 
I 

sh q 2 ch q 3 - sin p sin p sh q 
•I I . 2 3 

g 
2 = ch q sh q sin p - sh q sin. p cos p 

O •I 2 3 I 2 3 

0 
g 

2 
= -•sin p I sh q 

2 
ch q 

3 
+ cos p 

I 
sin p 

2 
sh q 

3 

g 
3 

"' - ch q ch q sh q - sh q cos p ch q 
0 I 2 3 I 2 3 

g O "' - sh q ch q ch q - ch q cos p sh q 
·3 I 2 3 I. 2 3. 

2 h • . g ... - cos p I c q 2 SID p 3 - Sill P1 cos p 
2 

cos p 
3 

g 1 = sin p ch q cos p + cos p cos p sin p 
2 I 2 3· I 2 3 

g 
3 

c: - cos p sin p ch q + sin p sh q sb q 
2 I 2 3 I 2 3 

2 
g 3 = ch q I sin p 2 cos p 3 - sb q 

I 
sh q 

2 
sin p 

3 

g 
1
3= ch q sin p sin p + sb q sh q cos p 

· I 2 3 I 2 3 

3 
g 1= sin p 1 sin p 2 ch q 

3 
+.cos p 

1
sh q 

2
sh q 

3 

. O· 
It can be checked that det g = + I arrl g

0 
> O as it must be for 

the L ~ group. It seems . to the authors that this parametrization 

is the simplest one whenever combined boost and· rotation transfor­

n1c1.tlon are required. 
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