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Introduction

The expansion of the relativistic amplitudes raised the problem
of finding a simple form for the matrix elements of theirreducible represen—
tations of the Lorentz group., The most degenerate représenfatioh
has been studied at first by IS.Shapiro and by A.ZDolginov and
I.N.Toptygin/ 1/by analytic continuation of the representations of the
0(4) group. Later, repres entations on the h};perboloid have been
investigated systematlcally by Ya,A, Smorodinsky and N.,Ya, Vilen-
km/Z/ introducing a number of coordinate systems on the hyper-
boloid and finding the spherical functions corresponding to these
systems, The problem of expansion of functions on the hyperboloid
has been also solved there, Further, it has been extended to the
spin non-zero case (by M.A.Liberman, Ya.,A.Smorodinsky and
M. B. Sheftel) separating the partdescribing the spin by realizing the
represenfations on thé direct product of spaﬁes of the hyperboloid

“and the sphere or cone/B/. The representation of the principal se-
ries has been derived in angular momentum basis by S.Strom in
1965/ 4 y however, due to the improper parametrization the matrix
elements obtained were rather complicated. Recently, a compact

form of the matrix elements has been derived in angular momentum



N

'basis by A, Sebestyen et al, /9/ In the present paper the umtary
representatlons w111 be built up with parameters leading to a Lie
algebra of two independent angular momenta, In terms of these pa-
rameters the representations acquire a comparatively  simple
form. An arbitrary element of the Lorentz group can be decomposed
in the following way. We choose three Cartesian axes and define a’
combined transformation consisting of a rotation about an axis and
of a boost along the same axis, It is shown that an arbitrar;r of the
Lorentz group can be represented as a product of combined rota-
tions about x; , x, and once more about x, axes, respectlvely.
These operations can be written in the form of subsequent rotatxons
by certain complex Euler angles an;i by Euler angles complex con-
jugated to the previous ones, The subgroups of spatial rotations are
obtained .when the imaginary parts of the complex angles are zero,
(Rotations with pure imaginary Eulerrangles,' however, do not form
R subgroup). 1t is possible to consider the real part of Euler angles
=1 ‘coo’rdi’nates on the surtace of 4-—dimensional real sphere since
the group of motion of this sphere is 1somorph1c to the 0(3) group,
Then it becomes natural to consider the complex rotation group as

2 group of motion of the 4—d|mens|onal complex sphere,

As a result of our calculation we get a system of functions
realizing t}‘le representation of the Lorentz group, which contains 6
continuous parameters. We mention that the generators M, and N,
are d:agonal in our representation as well as in the so called cy-
lindrical system used m/ / By mtroducmg suxtable parameters on the
complex sphere both our Casimir operators comcnde with the Lapla-
cean on the hyperbolbid expressed in terms of cylmdrncal varxableS,-
however, the elgenfunctxons are not 1dent1cal smce they satlsfy dif-
ferent boundary conditions, '

Since these functions are exgenfunctxons of the square of the
4-momentum they can be considered as a’ wave functxon of the relati-
vistic top (as -far as th1s word has a meanmd in the r‘elatl\'istlc do-

nain),

The state of this relativistic top has no definite angular momen—

tum wvalue, Instead,its wave functlon must be decomposed into a seri-

es of spherical harmonics in a fixed coordmate system, This opera~

tion leads to the usual series of angular momentum states, contained

‘ina single representation of Lorentz group. Detalts of this problem

will be treated separately, .

Consider 'a moving particle and choose the «xj —axis along
its momentum. Then the real of the eigenvalue of the complex gene-
rator J, 'is the helicity of the particle, so it is natural to call the )
eigenvalue of J3 the generalized complex helicity of the particle. This
fact is exhibited by the exponential dependence of eigenfunctions on
this complex eigenvalue,  The imaé,inary pa'rt_of J, products the

boost state (which belongs really to the representation of Poincaré

" group)., Such combination of rotation and boost turns to be a very

natural basis for the representation of the Lorentz group, -

1, - Parametrization

Parametrization of a Lie group 6 can be performed by means.
of embedding a suitable homogeneous space X  into the group,
We assume the group to reaiizea mapping of the space X onto"
itself, by which we mean the fulfilment of the following requirements:
a) For the unit_element eC G, xCX,ex=x, b) Forg, 8,6, xCX, (g,g,)x=g (g,x) .
c) The function gx is a continuous function of ¢ and of x .

The homogeneity of the space X requires that for any x;,x,€ X

there exists at least one element gCC which connects x, and x,:

'X =gx, , If there are several elements B rBgrree of G for which

xg=g;x; and x,=g,x, hold then elements of type g-lrgz-.:h form the little
group of th.e point X1 e Thus every point of X determines the
elements of G up to the little group H, which means that points

x €& X represent the elements of the factor group G/H. Introducing

a coordinate system in the X space we can label the elements of
the GfH factor group. Repeating this procedure we obtain a paramet-
rization whithin the H subgroup: we choose a suitable homogeneous

space Y. which can be embedded into H, Than a coordinate system



‘parametrizes the factor group H/K whére K is the litile group - of
a point y&Y ., Finally we arrive at a Z space points \of which cha-
racterize urxambiguéﬁSly the little group L obtained in theA-previOUSV
step, The homogenéous space X has an additional 'significbam‘:e‘ since
it serves for the domain of the spherical functions with respect to
the subgroup H.

One of the usual chains parameters for the homogeneous. Lo-
rentz group fs as follows, For the homogeneous space we chodse
the uppér sheet of the real double-sheeted hyperboloid x%—-x:;-x:—..x:-l,
Points on the hyperboloid determine the elements of the Lorentz
group up to the subgroup of spatial rotations, Choosing e.g. the point
x=(1,0,0,0) each element of G can be decomposed as a. product
of spatial rotation leaving unaltered x and a diéplacement on the-
hyperboléid. Considering the rotation group H we choose the real

- sphere Y%+y2+yl=for the homogeneous space, “The little group of the
north pole is the 0(2) group involving one parameter the Euler angle
¢ and the reméining two ~paraméter's are 6,¢ the polar coordi-‘
nates on the sphere, Finally, realizing the 0(2) g;'oup we obtain the

circle za, +z§=1. No further classification required since points on the
circle are unambiguously characterized by the angle ¢ ., Similar
decomposition can be made starting from the single sheeted hyperbo-
loid, If for the homogeneous space hyperboloid is chosen, 3 out of
the 6 parameters of the Lorentz group are contained by the hypérboloid.
In the following we shall use a corﬁparatively larger homogeneous '
space, the three-dimensional complex sphere which involves 4 real
parafneters while the remainig 2 parameters are contained by the
little group of a certain point on the complex sphere,

’i‘he Lie alget;ra of the Lorentz group can be represented by
the three boost generators ﬁ, and the generators of spatial

rotations M, .. Thes€e satisfy the commutation relations

[Mx’M_kL’“lk(l Mg . [N N, ]s"“nEMZ LN Taic gV,

where‘ ‘;kﬂ is totauy antisymmetric, €105=1 ard i,k (=123, Fntroduce the

linear ¢ombinations in the usual way:

1 . 1 .
Jk=—2(Mk+‘Nk)_' Kk=T(h’k_"Nk)

that obey the relations: '

[Jl ’Jk]’:itlkfjf’[ Ki'-Kk]“i(ikffKE'[J: 'Kk]=o' (1)
The form of these commutators suggesis to write an element of the

homogeneous Lorentz group in the form

-

~fCy By —legJy—Hegdy —1€FKy —1ed Ky —~tef Ky
Tlg)=e e e e e e

, @)

where
y . * 3 ’
€, =P +Hila,, € =p —ig ) (3)
. x)
v
with the range® of p, and g
0 2 0
‘<_p1< 7, SP3<.”’OSP3<?"’ i _ (4)
--~m<q’<m,--c’o<q2 <oa,—oc<qh<b°.

Equation (2) containes two rotations by Euler angles ‘r’; s € ,c; and

€ 1€45 €5 , respectively, Rearranging the exponential in (2) we obtain
the direct physical sigﬁiﬁcanee of the above parametrization in terms
of the real parameters p, and g, . In T(g) the féllowing subsequehi
operations are contained:

Boost along  x, -axis by hyperbolic angle - Ta_

Spatial rotation about x, -axis by angle p,

3
Boost'along x, -axis by hyperbolic angle ~ q,

Spatial rotation about x, -axis by angle p,

Boost along x, —-axis by hyperbolic angle -1,

3

Spatial rotation about x,~axis by angle p,

%) This range of varameters is related to the Lorentz group. For the univer-
sal covering group SL(Z,C) we should have to put -2z <p <27.



For the sake of comparison with other parametrizations.we  have
listed in the Appendix the matrix elements of the 4 x 4 represen-
tation in terms of the above parameters,

It can be seen from (2) direcﬂy that the condition of unitarity

of the representation is
=K S )

where + . denotes the hermitean adjoint with réspect to a certain
positive definite scalar product in the Hilbert space where the rep-

resentation is defined,

2, Representation of the Infinitesimal Generators.

Consider the 2-parameter subgroup H= 0(2) x 0(1,1) which contains

spatial rotation about the ~axis and boost along the x,-axis.

X
X3
These transformations will be characterized by the spatial and hyper-
bolic angle p, and q, respectively with the range 0<p, <27,-0<q <,

The differential operator representation of tht generators is given by

-

M, == 5 y Ny =i ——.

Py ) aql

The. simultaneous eigenfunctions of these generatoré satisfying the
equations

M3 f‘“’ = fl“’ . Nafl‘l’:vfuv

are

1 o =va,)
l"“,(pl g0 = 5o © . {6)

For unitary representations M, and N, are hermitean that is p
and v -are both real, Requiring the representation to be. single
or at most double-valued we obtain

and the eigenvalue v . is @)

"'=°-+—;') +-1,... -
- - continuous in the range -~ <v<e ..

The eigenfunctions (6) are, of course, eigenfunctions of the genera-

tors Jss—-;-(M,+iN3). K3=—é—§hls—iNs) as well:

ptiv p=iv
Js f}tv=—2—"_'fpv' Ka"yv =2— ‘;w
or
J =m¢ * X =m ¢ * (8)
3¢mm* ‘mm ’ 3¢mm* mm
with
B+ oiv, . B-iv 3
me= ry y M7 3 ’ ¢mm*= f}ll’ -

For labelling the eigeufunction we can use m and m* . instead of

fyv or vice versa, Introducing the combinations

J, =Jy £i0; . Ky aKygpiky

9)

{ The remaining are zero).

We get from these relations that

(13+I\3)Jt I#V»a(ytl).lif‘w .
and thus the states J-j_-'f#,, are eigenfunctions of the hermitean opera-
tor My=J; +K,; with the eigenvalue p +1 ', The similar statement
is valid for the state K if,, , The same functions Jyfpw Kifpr
however, are not eigenfunctions of the hermitean operator N,=_1;.(13—K3).

Though, one would obtain from the commutators the relation



‘—-(Js-Ks)J+ F,,u(V-x) Jyfpy + in spite of this formal equation Iy fpy
cannot be considered as an eigenstate since it has complex eigen-
values and thus it does nét constitute an element of the unitary

: basis, The origin of this fact lies in the non-compactness of the

j0(2) x0(1 1) group. (Recently, the same problem was faced in a paper
by A.Chakrabartx et al./ 10/ where the representation of the Poincaré
group has been constructed in the non-compact Lorentz gi'oup basis.
It turned out that the action of the .displacement' generators P” on the
states belonging to the eigenvalue A of M?2-N? gives a state with
the eigenvalue A+ i . We shall solve this problem by expanding
these undesired statés in ser.ies of states of the unitary basis, As it
.will be seen the complex 8 ~function arising in th'e expansion will

j lead to no complication in the matrix elements of finite rotations). So,

we can search for the rep'resentation in the forms

+
- de’A ;.(V,V’) f

'Ji-',uv IS R
10)
s, (
Kil’w-fdv 'BF(V,‘V )f“,'v'.
-where the path of integration is the real v * -axis, We- obtain from

+ , .
9) that A, and B have the form®
[ TH

. 4 . .
A#(V,V’)aau(iv)a‘lf’—Vi?)

1y

B (v,v) b (nv)a(v -v—x).-,

The complex & ~function has arisen here from requiring the uni-~
tarity {that involves the infinite dimension of the represenbﬁon). If,
‘on the other hand, one considered the compact 0(4) group,the & -
funqtion would be concentrated on the real v’-axis that would lead
to the selection rule v’-v=+1, As a consequence of the complex
delta—function the operators 1, , X + mix the entire continuous v*

spectrum,

x) The Dirac delta of complex argument has a strict mathématical
meaning, Jt is treated in details by textbooks on’ generalized functi-
ons (cfl . It appears here, essentially, as the Fourier-expansion

of the exponential function, .
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For a, , by eq. (9) yiclds the recurrance relations

p
y A g e D =AY (A1) = 4 A
b (A) 1) A D=y ) 1.”“(),,_:):,:-/\ (12)
a (A)blm()\u)-h ()\)a”“(/\-])=0
) b A D=1 Q) ay Qe 1) 0
) B A~ 4 (A= 1) =0 .

J=1 et

()\)b (/\-l)-b (/\)a

it (A1) =0 ,

ll—l

where A=z iv . The last four equations can be salisfied by the

ansatz
+ A ot -
ALY B LA TS S e
while the first two lead te:
— H4A 1A ™ H
Tl W S = jan=EET Y
P 2 2 .
(13)
- “A L pad p—-iv  p—iv
b )L( 2 —l)—k(lul)—--?— 5 ~1)=kik+ 1) = 5 ( 5 =13,

where j(j+1) and k(k+1are cerlain constanls within an irredu-
cible representation, With a proper normalization of the basisfunc-

tions we get:

iy (u +iv

[l+lll ft+iv
5 (=—-D

a;(iz/)-:i\/j(j-ol)- +1), ay iv)e-iv i+ -

p=iv  p-iv-

+ ll—IV
i =ivEk 1) e ——
bp(xv) x\'l(k+ ) 3

peiv (14)

+ 1), b v) n—x\/l(l-{l)- {

2

Thus finally the generators have the following representation

11



(jg+ky) +2(kkgijig)=0, (10) W

ik Y S -
Yy by =Tyt =fdv "8(v —uin)a#(_:\v)tytlu, where
15 *
(15) f=iy +idg o k=k, +ik, .
ik +
Ky fpy =Kyl = 080 v s Db Go) 1,y
- - N We have the solutions
The cordition of unitarity (5) yields: . . ad. o=k i, =k,
+ - ‘ -, + " s - .
aiv—1) = by g (w)*,alivel)=b, {iv)*. (16) - bY.  j,=k,=0,j =k, .
~ ‘ (20)
The two independent Casimir operators are el jym~kmldg=ky
*2 2 2 2 1,22 22 oo o .
I =1, +J2+13‘=-T(M -~N +2iMN) ! . i 4. j2=k2=0.j‘=-—k1—1.
"\
- a2* 2 2 -»> -» > - ’ ) . . . k3 . H d H
Rtk i =—:—-(M2—-Ng—-2iMN)- ! In view. of the invariance (18) »solutloné c) and d) can be omitted,
: ’ . . : "In the case b) we have a further restriction,namely 0 < j, <1,
Using (15) we get that the constants i(i;l) and k{k+1) in eq, (13) }. 0<k,<1 . Cases a) and b) constitute the principal and supplemen-
T . . 2 . ' ] PR
are just the eigenvalues of J and K : . tary - series, respectively, Writing j  and & in the form
i
P2 ik j *2 jk ik .
f =2j(j+1)1( , K I =k(k+1)f . ; 1
pv =it uv w (k+ pv (17) i : j=.lT(lo-1+ip),k=T(lo~l+ip)* (21)
Thus an irreducible representation is characterized by the quantities i it is easily. seen that we can choose p to be non-negative as a
i and k¥ , The representation (15) is invariant with respect to’ the ’ consequence of equation (18), It will be shown further that [,
— o . i
substitu holn ( has only integer or half-integer values. Thus the results of the cases
¢
$

fo—j=1 , ko—k—l "a) and b) can be summarized as 1) p real non-negative, {, integer

‘ : : (18) 1 . or half integer (principal series). 2) {,=0 , p imaginary, p=ip”~
A £ with -1<p°<1 (supplementary series), In the following only the prin-
so the representations characterized by (j,k) and (—=j=1,-k=1) ’ cipal series will be treated since the supplementary series has no
are equivalent, i ‘ ) ] : contribution in the harmonic" analysis. The eigermalues of the Ca-~

The necessary diti f the itarity i ] -
€ sary condition o unitarity s : simir operators in terms of £, and p are

- - .
IS 4 M 1, 2

. : j(j+l)=—T(l0—p —1+2iz0p)
(22)

That is 1 2 2
k(k+1) =9—(fo~p ~1=2ilgp).

(g =g ig +k =(jy=ky) (jy+k +1) =0 (19) -

. 13
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3. Matrix Elements of the Representations

Consider a function on the Lorentz group f(g) and define the

action of the representation on-i{g) by left displacement:

-1 .
Tlgo)T(g) = T{ggg). . . (23)

Choosing for g, the six one-parameter subgroups according to

the six (real) parameters we obtain from (23) the infinitesimal gene-

rators in the form of differential operators acling on the functions

on the group

sin € a

J,-—].-(-sinc cot ¢, - + cosé + ! )
i ! 2 de, Ve, sin ¢, deg
l a Cost‘ a
]2=—r(costlcul € + sin € - )
: dey . d¢,y sin€g 0Oy
1 d
] _
8 7 de,
(29)
: sine*
Kl-—;—(—sin(’; col (; +cos(*; 9 + L d
a(’; at; sin(; at:
1. . . .cos ¢*
Kzu—i-— ( cos (*l‘ col (; + sin ‘g; a - 1 d )
ok de} sin e} de}
Ké:-—l- 9 .
i de*
]
14

Here

and ‘
a, r9 ’a)a’ L9 .0
= -1= B = — 1
th 2 apk' dq, det 2 apk dq,

Generators (24) fulfill the commutation relations (1). The Casimir ope-

rators. can be obtained from (24) :

2 2
*e2 1 d J - J d
-} = ) ( ) + 3 -—2(:05(,_, )+ 2+col(2
sin“e, de, de de, de, de, <
: (25)
-
- P 2 2
2 1 i . ad
K = ( Ovz + 4 = —2cose? J )+ = +cot c* .
sin_ ¢} deY de} ) 2 Be* de 3("; 2 det

Matrix elements of the unitary irreducible .representations are the

simultaneous eigenfunctions of (25), that is

* 2 §* :
[J -](,+l)]1(g)mmt_’ a=0

-02 j'*
[k = (s ITC =0.

mm*nan*

The representation can be factored out in the form

35¥ -I((;m+("§ m*+(3n+('§ n¥y 11¥
- . *
'Imm inn =e ﬂmm,,gnn*(cos(2,cost2 )=
(27)
—l(pBKoqal\«}p‘ﬂ—qlu) ”* "
=€ Rmm*:nn*(costz,(ms('é ),
where
me— (ptiv), nm—b (k4 iA). (28)



Substituting (27) into (26) and introducing the variable zecosey, z*=coset

(26) reduces to

2 «12 d m2 +0° ~2mnz 13*
[(1-2 )—?-2;. T +ji+ DR m*;n“,,(z.z*)ao(zg)
a 4w e2mte
e et T T . A DI . (z,29)20.(30)
d dz* 1—2*

Let us restrict ourselves temporally to the case

Re(m+n)20, ﬂe(m-—n)zo. R (31)

It will be convenient to take for the two independent solutions of

X

equation (29) the following ones:

‘man ote
i N l=-z 2 l4z ; ) -z :
P (z)=n  (—) ( ) Fl=jtm,jtmel,mensl; ) (32)
p m-n m 4n
1o 2 1 2 -
an"“:nn ( z) ( re ) F(-i+ﬂ-i+n+l,—m+n+lg 1-z ) -
(32)
_E!-_“ _mh\
=nl’“n(%) (%—) F(—j—m, jem4+l,~m+n+1; l;z)'

.x) The solutions of the first ard second kl;)d of the equation (29)
have been studied by Andrews and Gunson/9 Soluhons (32) and (33)
are related to the functions 47" and ej" of ret./0/ as

mn J ‘mn a 1‘”(]-“) i

R B s o L Pan = G=Mvith + for 1w 250
i

(As to P -n{-2z)see section 5 of the present paper),

16

where

J 1 P(jem+ D D(j=n+1)

" P 4m=n) [‘(j+n+l)[‘(’j—m+l)-
.

The general solution of equations (29) and (30) can be written inthe

form

"* i > I AR : )
llmm * ¥ cP * ‘(z')Q (z)+ (‘QP (2)Q n* t(z*)+c P (z)ngxn*(z*) + (34)

+e, Q’ (z)Q o *n «(z%),

where c;.,cg.c3 .c4 are some constants (independent of z and:z*),
Equatiohs (29) and (30) have three singular (branch) points: z=1,~1,«,
the cuts will be directed from +! outwards, that is from -1to -«

and from1l to ~ ,

It is seen immediately that c;=0since this term is singular at z=1,
Investigating the behaviour of eq. (34) as z+-1 and z-+ = we
obtain two equations for the three constants ccy.cy o Taking
into account, however, that to the unit element of the group has to

correspord the unit matrix, that is

. “* ) s 8( ) - .
llm' Rmm*;nn*= )k v-A), .

it is -easily proved that this can be salisfied only by puiting c3=10
and so there remain two constants ¢y and c, to be determined.
Requiring the finiteness at the points z=-l, z=x we get the

equations

clA+c2..A*=
' (39)

*
lﬂ +c2B =0,

where .

17




Tlm*=2*+ 1) (=m4+n +1)

A= s
) I(~+m*)T(j*+ m* 41 (=j+)T(4n+ 1)

(36)

17(n=m) Mm*=n*+ 1T (=m+n+ 1)

=e

I(j*=o*+ DT(j*4 n* DT (j=m+ DTG4 +1)

Equatioh (35) has non=trivial solution for ¢, and ¢, ifthe determinant

vanishes, that is

ein(p-x) sinﬂ(j—n)sinﬂ(j‘*—K\*) 1, (37)

sinw (j*~n*) sin#(j—m)

where p and « _are given by the equation (28).

We have the following possibilities: )

a) k- x is half integer.. Then (37). generally has no solution
which means that (35) has the trivial solution ¢,=¢;=0 only, and
the matrix elemenis vanish, This corresponds to the fatt that by eq.
(20) J, and J_ increases’ ‘and decreases the values of p by 1

b) p-x is even. Then (37) reduces to

S
»sinn(to--’;—-) sha =0
or
K .
£y~ a integer

.and thus [, is integer if « integer and fis half-integerif « is hall-

integer -,
) n-%x is odd. Then (37) vields:

vaA
‘”K)chn._2_=o .

cosﬂ(f’o—

‘18

B K
2

L= = half-integer.

Or .
[, is integer if x integer and "ty is half-integer if x hall~
integer. :

We have concluded that £, is integér if the eigenvalue of J;+K,
is integer and {, is half~integer il the éigenvalue of Jy+Kzis hall-
integer. In the latter case the representations are double valued.

Soiving the eq. (35) and choosing a suitable ﬁorn;aiization i’actor
the R -functions are oblained in the form

5 -

. i N mn

=
mm*; no*

o e o ’”* 3 Pt
{Cnan,n; (2 )onn(z)-cm*nrmn (z)Qm*n‘(z ),

43y sin@ (m=n) sin 7{m*c*)

(39)

where
":m= sin#{m—a) sin7(j—m ) r(m—n+\)2 r(j-m+1)r(j-}n+l)
.gl{m-n) sinm(j—n) F(j=p+ DI +ms1)
and
sinz{j~n)sinz (j* ~n¥)
,N'in=v moaR T ! . (Re(m{-n)zo, Hc(m—n)zo) .

sinﬂ'.(j-—m)sinﬂ(i*—m*)

It is seen that the constants K., ¢l amd n} have the follo- -

wing property

C‘ wl, N’ -.l, nj =l . (39)

We note’ that if incidentally ®m~n=12,3...the @ -function becomes.
infinite, however the factor sinzn{m<») in C:m‘ is zero of the same
order and therefore the R -function in eq. (38) remains finite, (In
view of the identity sin@aan/TGII(1-wthe above statement can be
repeated for the factor 1/T'(l=mi)instead of sinw(m=-n) , It would
have been possible to define the Q-funclion with the co-factor
1/T'(1-m41n) from the very beginning as it is done in the theory of
spherical functions, It is remarkable that this faclor is produced

automatically by the regularity requiremenls on the 2 -plane),

13



Thegeneralization of eq.(38)for arbitrary (allowed by eq.7) values
of m and n is straightforward, Instead of listing the symmetry prope_rt.ies
ofthe P and Q functions for different values of sign Re(m#n). and sign Re(m—n)
" (as it is done forreal m and o in ref./ﬁfs we give P and Q for arbitrary m
and n ina unificd form.  To this end the symbol [}u]l will be introdu-

ced ( v is an arbitrary complex number) which is defined by

u il leu>0

= |
““H —u if Reu<O0 .
Using this symbol the general form of P and Q is

M-N MEN : 1=
T < G - -z
Pl e (1z2) 2 (L1EZ ) 2 p(ejeM,jeMEl, e M=N; ) (40)
mn mn 2 . 2 . 2

M—N MAN

i i L=z y 2 1+z y 2 . X ll;-\l N: l—-z -
Q,(2) =ng( > ). ( > )" F(—=j+N,j+N+1, +N; — )

(42)
_M-N _agN 1
i -2z F] 1+z. e i _ -z
=0, — ) (— ) Fl=jmM, j=M4 1, 1=M4N; — ),
. where
i 1 /F(j+hi+l)l‘(j—N+l)
n
ClaM-) TGaN+DTG=M 41D
and
Mae (arnll 4l m=nlD)y ¥=FClmeall=fm=all) -

Equation (27) remains valid and instead of (38) we get now

1* ¥ e Mo Y=l ! (005 (¥
c P i(z)Qm“(z - m*n*[’mn z)Q_ % * zeti2)

R * = mn m¥

41 sin 7 (M~N)sin 7 (MF=N*)

20

where

L sin7(M~N) sin 7 (j=M) L(aMat)? F(j=M+DTCG+N+D)

7 (M=N) sing (j=N) '

F(j=N+DIT(j+M41)

. -V sinn(j-N)sinrr(j*—N*)h
sin m(j—=M) sin 7( j*=-M*)

mn .

Let g be an element of the Lorentz group characterized by the pa-
rameters g={ep€ey3;¢€ 5,¢% ,¢% , e} ), Then the element inverse to it has
the parameters g =(- ¢; ,~€5,-€ 1;~¢},~¢% ,¢% ). The unitarity of the matrix
T e, ¢*) (dee eqs.(27) and (42) ) can be checked in the

mm*: nn

form

_y, i1*
T(g ) *

mm ;nn

={T(g)’l* 1*.
* nn*'mm*

4, Behaviour at the Singular Points

The form of the P and Q functions given by equations

(40) and (41) yields directly the asymptotic expansion of R at z=1."

The leading term at this point is

. :
- N 1al ® 4 _mmn mEn*, mea _mtet

T o« 2 7 4 2
am*; nn* - {c .t r ~C #xt ° 7 ],(43)

‘4i\/ sin7{m~n) sin 7 (m*—n*)}

where

In order to inv’éstigate the linmit r- 0. the following lemma will be
proved, If ¥ and ¢ are integers (or half-integers) x and x,

real, then
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X""Xo x—xo
e R a
. - Ir] ~1rl s s
lim Akz(x—xo ,7)=lim =8 0kx=xg)e
r+0 . 7-0 " 2 " f g
- X=X - -
4i \/ sinn ch?n 94 cos?m 7 sh?m o

2

Really, be #{x) an element of the class of functions X x) which

has a support not contalning the point - x, , then as a consequen-

ce of the Riemann-Lebesgue lemma we have
im- [A glx=xg 1) @(x)dx=0.
0

On the other hand using the formula

sin ax s

S dxe= T 2T (Re f>0)
R h B x B 2B v
we get
o0 0 if k£l
lim f Akg(x—xo,r)dx=
20 == 1 k=t
which proves the lemma.
Rewrite eq. (43) In the form
f 2 v-A v=A
1* Nmnl“:m' -IT' i—;—
T 42([rl ~|rl )+
amiy (B2K)? 4 (2=A) '
. 2 2
Yo R -A v=A
' Nmnh:l n -'V ] i_——a—
+ = (¢! —Dlr] 7 =(Cpmulr] 1.

; p=K 12 veA 2
4:7\/(—'2 Y o+ > )

$C X jf it has continuous derivatives of any order and zero

outside a bounded region, See /5/.

22

According to the lemma and eq. (39) the first term tends to By 8(v=A)
while the second tends to zero as r+0 |, Comparing this result
with eq. (27) we find that

‘T 1 (e,¢*) . =8 *S(v-A).

. x €=0 px

mm*; nn

Using the analytic continuation of the hypergeometric function we

have
] ] ]
P (z)=a P (=2z)+a_ Q =z)
mn 1 m,~n 2 “m,-n
Q (z) =B P! (=148, 0! _(~2)
mn 1" m,~n 2 m,~n ’
where

. I'(1+4M+N) T (-M=N) FOsM+NIT(j=N+DT (M £+ N)
1 = ag =

F=~j=N)T({(G+N+1)

FG+N+D T(=~j+ MIT(GG+M+1)

T(14+M+N) T(j— N+ DIU-MNIT(~M=N) T0=M+ N T4 M+ NG~ N+ DTMAN)
.=
FO+M-NIT(j+N+D? T(=j+N)

=

N1+M=-NITG+N+ DT G-M+ DI (-j-M)

Substituting these expressions of *“P and Q into eq. (42) we
get the behaviour of the R-function at -z =-1

i

mn

13* N

*)
Rmm"‘: nn*(z' z )—

i ¥ i )
~{c, la* ﬁle,.;_n,.l—z*)Pm._n(—z) +
4i\/sinﬂ(M—-N) sin F(M*~ N*) '
(44)

i* i i* i .
+a’; ﬂ2 Qm*’_n,(—z*) Pm,I-.n(—Z) +a:‘ ﬂz P, J-z%) Qm'_"s—-z)]—cumpl.con].l.

m’y—n

For our purposes -it will be sufficient to give only the leading terms
of the asymptotic expansion at z== , (As to the derivation of the
exact formula use eqs. 2.9 (34) and 2,9 (42) of ref. /8/2
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f 4 2 -lnu?‘(.\x-n-u*-m*)

* Noal® e $TOM~N) g RNy =Ly
R“ — [()'IETT : =Y, € e *;(z—l) = l)v—'
mm® nn* ‘ 2 2
4i\/sinﬂ(.\l—N)siuﬂ(M*-—N*)
(45)
- *_ - - ko) =51 ', .
—(y* e 17a(M*=N") -yt JToM-Ny 2=l )‘(_’_2__1_) 1. §z}>1, [aglz=1]<n)

1 _ 2 2

g Tl-u* FNHCEFD T (LaM=-ND=2j=1)

Ly COAF-N P j* DE0-M+ N =241
" "Cmn A y2= ‘m¥ ¥
DG =N DT RM* D D= =M=j+ N ) TG *=M5 D) TGN D D=4

(o = sign Im(z—1)) .

5, Harmonic Analysis of Function on the Group

By making use of equation (24) we obtain the following (left

or right) Haar measure in terms of the parameters (3)

1 5
fd g[(g):——z— fdpldqx dp2dq2dp3dq3(ch2q2-—c052p2)f(p.q) =

(46)

. =fdpldqldp2 'dqz dp, dq, sine, sinef, {(p,q)

where the limits of integration are given by eq. (4)s The scalar pro-

duct for the principal series is defined by

(S, ,0) = fdgd*(g)ilg). : ‘
S.0) = [dgd*lg) iy A (27)

By the aid of the asymptotic formula (43) the following orthogonality

and completeness relations can be derived:

.

24

-~ MRICACTA R-1P) ’-)«)Blo, los(p ‘~p)

’ ,'j’# * 1
T TR APRILY . L.
X *
momoane 3an* (25410 (2% 1)

(48)

(p‘zo, PZO)

where

1 i i
i= - (Ly—1+ip), m= F;w R x;n)«

{the factor - (2j+1)(2j ¥4+ 1) on the right side plays the role of

"dimension" of the representation)

32;4 3 ; fmdp;odu fwd)t(2j+l)(2j*+l)(T(g ‘)“* )*T(g) H* ‘na(g';g), :
ke g m*; nn* mm*:nn* (49)

%:—m#,[{:—ooo —0 =00

where J(g’~g) is defined by

fdg d(g’~¢g) flg)=flg).
Explicitly:

(g -g)=8(p; -pl)a(q’l__q 1)tS(cos p; chq; —cos p, ch.qz) X
x 8 (sin p; sh q; ~sin p, sh q2)8(‘p;—pa)8(q;—qs) .

All the summations in eq. (49) must be carried out over integer and
half-integer values. '
Equations (48) and (49) give the following formula of Fourier

expansion of a square integrable function on the group
o0 o0 ‘ o0 o0 o0

! : .
f(g) = r b3 by Jdp fdv fdA (2j+l)(2j*+l)F(j,j*;m,m*;u.u*)T(g)“*
“‘m*“n’*

27 lo""“’ s Kenm o0 0 —c0 -0

The inversion formula reads

N
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ir*
F(j,j*;m,m*;n,n*)é fdgf(g)(T(g)mm*' D L (52)

inn

Related convergence and other subtie questions see ref, 121,

6.  Spherical Functions

Spheﬁcal functions with respect to a subgroup H of the group
G are deflned on a certain homogeﬁeous space X which has a
certain fixed point x having the liftle group- B , As it has been
discussed in the section 2 each péint of the homogeneous space
X characterizes the factor group G/H , Elements iof the group ¢
can be characterized by an element of H and by a point of X .
We have to find a homogeneous space with the above properjﬁes for

.c=1;’+ L H =0(2) x 0(1,1) .

. Consider the antisymmetric tensor formed by the three-vectors

- Bl
Xy Yy 2
( 0 —yl ")’2 ")'3
9, ° Yy s
y =x 0 x
2 3 ) I
- 0
Y3 Y2 ¥y
L
Under the Lorentz transformation 5f y Spv transforms as
. a B :
= S . 53
S#V S# 8, af ( )

Let us form a complex three-dimensional sphere from the quantities

: * .
z =x  +i z =x =iy
X X Ye 0 k x x
- -»> -» Radnd 3
2% =22 422 +12nx2~y2+2|xy=r
1 3 3 :
- - - - (54)

2

Ing 2 . 2
2, z‘;z+z*2_=x —y “=2ixy =1*°,
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e i e P

—

Points on this sphere are characterized by the quantities x and y
or by Z and Z* , As it is well known both the quantities *2-y%,
XY are invariant under the Lorentz transformation (53) and thus the
surface of the sphere (54) is invariant, We mention that it can be
shown that eq. (53) describes the transformation of z, coinciding
with the three-dimensional representation (in Cartesian basis) of the
rotation group but instead of real Euler angles we have to put com- '
plex ones, Thus, the most general Lorenfz transfdrmation og an an-
tisymmetric tensor (complex vector) can be performed by the familiar
technique of spatial rotations. '

The homogeneity of the space X can be proved simply by
showing that each point on the sphere can be transformed into the
point (0,0,r}, (We exclude the case when ? and 7 has the same
length and are perpendicular to each other. In this case %2 —3V?and
x y poésess the above property in any frame of reference., At the
same time both the invariants :9 —;2 . :; become zero and the
complex sphere is deformed to a complex sphere of zero radius,

which is actually the intersection of two real cones, The "north pole"

_of this surface is the origin that must be excluded).

It is seen from the invariance of ;; that if Rer and Imr
have the same (opposite) singns than each x and 'y on the sphere
G+iy) 7 =r? form acute (obtuse) angle, In other ‘words, in the course
of Lorentz transformations * and y cannot pass the perpendicular
position, This fact is well known also from electrodynamics.

Consider the subgroup H consisting of épatia.l rotations about
the third axis and boosts along the third axis:

.
0 s
” ch q, 0 ..th
0 cos p sinpl' 0
he (0<p <27 ,~0<q <oo).
0 —-sinp’ cos p, 0 -1 1 .
L shq 0 0 chq
. 27



Substituting this into equation (53) it is readily shown that the sub-
group H constitutes the little group of the point z, =(0,0,r):h 2z =z,.
(And conversely: each element of the Lorentz groub leaving the
point z, unaltered, has the above form), So the complex sphere
possesses all the required properties arid can be considered as a
domain of the spherical functions,

Introducing polar coordinates in the usual way

z,= rsin 0 cos ¢ z¥ = r*sin O*cos H*
z2=rsinosin¢ . z =r* sin@*singp*
zg =1 cos 0 z*¥ =r* cosO* (rf£0),

3
by the complex angles 0=0,+i0, ,¢=¢, +id, we have labelled
the G/H factor group by 4(real) parameters, The remaining 2
angles are contained by the subgroup H . Representing the in-

finitesimal generators by differential operators on the complex sphe-

re we arrive at the Casimir operators x);
2 2 :
~J% ! y J + J + cot 0 J
29 9g¢? 962 a6
2 2 .
—K2 = - ! J + - 9 +.cot0*——(-9——.
sin20* Jd¢p*?  Jo*? ag*

x) The Casimir -operator of the group can be treated in an analo-
.gous geometic way, Writing an element of the SL2,C)group in the form

[ zg +izg z g4 +izg
-z3 +iz 4 zg—izg
we obtain 23 +2% + 22422 =1, z}2+2%2+z2P+23% 1 and thus the para-

meter space of the group is topologically homeomorphic to the four
dimensional complex sphere, Introducing the parameters

[ 2 63 +€l 62 Gz’-—f 2 (a—f €, R ‘Z! +€l
(o133 , Z‘= Bln—-—slﬂ ,22=SlnT 208 —,Za—CQS"—Sln—y

2 2 2

the Laplaceans aE g 9, V_*' * Ve* gt 9%  on this sphere
yield the Casimir Z:%erators (25),

ZOBCOS
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. . » g
The spherical functions are simultaneous eigenfunctions of 1% and

-

i* .
(2 - j(j+l)]lm:n*(0,¢>)=0
N -

-

[k?

~i*Gre ) (170, ¢)_ 0.

mm

The well behaved solutxons of these equat:ons are the functxons-

ii*
(T N 0'0(¢,0,0)).* Choosing a suitable normalization factor we obtain

m,m"

ji* 82 s
77 0,¢)=vy (pil* (,0,00 %, (55)
mm : (25 + 1)(25*%4 1) m.m¥;0,0

Introducing the notations

L e
pm(z)—P_mp(z) q (z)-—Qm'o(z)

(see eqs. (32) (33) ) the .folloWing recurrance relations can be de-

rived
— 4 —
" -
Vi-z —o- - - =Zp +\/(]-—m)(]+m+1)p —__"'.’_ p:l—\/(j+m)(j-m+1)pli .
B z -
. \/l—z \/l---i2
dat . ) s/2
Viez? Im e mz gl mim+1) i _ mz qj_[(j+m)(j-m+l)]/5
. d ) —_—ee i T—=—"1, 1 -1
2 Ve Vimm)Gimad) o Vimg? m (m—1) "

By the aid of these formulas and eq, (24) it is stralghtfonvard to
show that the spherical functions (55) fulfill the equation (15), so

they transform according to the 1rreduc1ble unitary representation '

- of the Lorentz group,

The scalar product of functions ¢ and Y on the complex

.. sphere we define as

JAQSHDIP Q)= 46, 46, 40,40, (ch 20 -cos20,)44@)y (1)

with the limits of integration

0<d,<2n —o <<
i 0<0 <=n —0<f,< .
29



The orthogonality and completeness relations for the spherical func~

tions read:

i1* i* . ’
fdn(fm,m,* (6, ¢ L (Q,¢)=‘o‘#,#8(u -u)b‘zo, goﬁ(p -p) .
{(p">0, p>0)
00 00 . [} 00 & >’ s ¥ . »
I #E_N Jodr _J vl g0 11 40,4) =5(0°-0Q),

2 .
where 0(Q°-Q) is the 8 -function on the complex sphere, na-

mely

8(Q '—Q):B(QS; -¢ 1)5(¢£ -¢2)3(cose"ch0£ ~cosf ichez)b\ (sine" sh 0;--sin0l shea).
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Appendix

The space-time coordinates transform in the following way

4
c B gk Y

The matrix elements g"v in terms of the six parameters used

throughout this paper have the form:

g00=Ch-q . ch q, chq3+5hqlc°5 pzshq3

gll=casp’chq2 cos p, — sin p, cosp, sin P,
2 - . .
g g=—sinp, ck q , sin py + cos p,cos p ,cos Py

3
g 3=shq'chq2 shqs +chqlcos pzchq3

30

5 AT AN 5

T

: .
go=—shqlsmp2 sin pS—CthShqz cos p,

)

go.—.-cos sh h - si i
i P, 1, crqa sm‘pls'mp2 shq3

2 . :
g = ch‘ql sh q LSinp, = Sh,ql sin.p, €03 p,

0 o
g 2=:—=7.|nplshq2 chq3+cosplsinp2 shq:l

3
go=-chqlchq shqa-shqlcospzchq

2 3

0
- sh -
g == s qlchq2 chqa chql. cos p, Shqa,

2 . . .
g 4= - cos p'ch 9, sinp - sinp, cesp , cos Py

1 .
g pgsinp, ch q,cos Py +cosp (Co8 P, sinp,

3 . .
8 2=—Vcosp'slnp2 chqs +smplshq2 shq:’ :

2
ga'-..-.c‘hq‘smpmcosp:‘—shqlshq2 sinps

1
g = ch q 1smp2slnp3+ sl’tql sh q 208 P,

3

g l=nsi11 Py sinpachqatcosplsh.q 2sh 9 ,-

It can be checked that det g=+!- and 8250 as it must be for
* ] :

the L, group, It seems to the authors that this parametrization

is the simplest one whenever combined boost and rotation transfor-

mation are required,
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