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The concept of Heisenberg field is introduced accord-
ing /1' 2/. The space of test funct~ons is denoted ell • For 

each tes.t function ~ ell , defined on space time, there 

of linear operators acting in Hilbert exists a set Aa ( f ) 

space J< The mapping f ... A a ( f ) is linear. There 

exists for each a ~ .fJ such that A a < f ) .. ·A f3 ( f ) • 

Opera tors Aa ( f ) 

vectors, dense in J< 

containing the vacuum 

are defined on a domain o of 

Furthermore, D 

and A a < f ) 

in o into vectors in D , A (f)D<;. D 

and-

is a linear set 

carry vectors 

for each a 

The space of linear continuous functionals on the test 

functions is denoted ellx • If ll' 1 , lf'2 1;. D then 

regarded as a functional of D , belongs 

to cl> . Commonly it is assumed that c1> -s and 

is a tempered distribution. s is a complete 

countably normed space. It is the only property of s 

which is essential for our consideration so , we assume 

cl> being arbitrary complete countably normed sp~ce and 

being an operatorvalued distribution on ell 

For the definition and general properties of spaces 

cl> and c~~x one is referred to3). A complete countably 

normed space cl> is an intersection of Banach spaces cliP, 

Then we have cllx = u ell x 
p=l p 
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We shall prove that for every field Aa (f) there exists 
such p , that! for arbitrary 'l'1, IJI2c; D <'l'1 ,Aa(£)'1'2 > 

belongs to ~P I • 

This means ~hat if we suppose Aql f > to be an opera
torvalued distribution on a complete countaply normed space 

"" 41 .. · 41 , then A a< f > should be necessarily an 
p .t 

operatorvalued distribution on some Banach space 41P · • The 
separability of R is essential point in our proof. The 
separabpi ty of : R b a consequence of separability of $ • 

irreducibility o~ fie~ds and countability of the set of the 
values of a ~ Irr¢ducibility of fields means that the 
vacuum state is ~yclic for the smeared fields, that is 
polynomials in the smeared fields P < Aa1 lf1> A a 2 (f 2 > .. • > • 

when applied to the vacuum state. vield a set Do of vec-
tors dense in the :H , if functions f 1 . f 2 ••• , run 
through all the spaces 41 .It is evident that at every f 1 

running through some sequence of functions, dense 
in 41 , we obtain a countably set of vectors dense in H 
This is the consequence of continuity of matrix elements 

of fi~lds as nistrihutions. 
Let IJI k be complete orthonormal system, belonging to 

D • Now we prove theorem I: there exists such p that all 
·• Akn(f?=('l'k,Aa(f) IJin lie in ~; for arbitrary values 

k an~ a 
1 

The matrix element (IJI • A13U 1 >Aa<OA{31fi>'l' > , 'I' c; D, is a 

distribution on f due to Af31f 1 > IJI , A ~lf 1 ) IJI c;. D. 

The function f1 c; 41 is arbitrary one but fixed. Now 

we have : C'l' , A f3 If 1 > A a I 0 A ~ ( f 1 > IJI > "' 

• I. ( 1J1 ' Au. ( f 1 ) 'l'k ) ( 'I' n ' A {3 ( f 1 ) lp ) A kn ( f ) = 
k,n ,.., 

.. I. c ex Ak (f) 
k 

k n n 
,n 

c: = ( l'k' Aa (f) 'I' ) 
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The double of series of distributions conv 
in 41x • We shall use a theorem3): a sequence 
tions converges in a weak sense in 41x only if 

of sequence are belonging to the same Banach sp 
In order to apply this theorem we must prove 
suppose all ck J. o • Let 'P; be some rnth 
tern, lflk' c;D , such that every vector 'Pn 

linear combination of 'l''k • It is evident 
distributions< 'I'~ , A a< f > IJI: > are belonging · 
then all distributions < IJ'k, A.a<O 'I' n:-~ are belo 
same .q, x 

p 

Let f 1 c; 41 possess the property that c k =~ 

for infiuit~ ~~t of values k 

Now it is possible to establish one to one 
(1) 

dence between all 1J' fk , such that c fk = o 
~ ' 

'I' mll , such that c mt"' o • Let us introduce t 
vectors: 

IJI , 
2n-1 

'I'' 
2n 

IJI(t) 
fn 

·~1) 
D 

+ '1'(2) 
mn 

y2 

- 'I' (2) 
m n 

v2 
Vectors 'I'' n fqrm a complete orthonormal sy5 

are belonging to n • It is evident, that C' k .. 

for evf;!ry k • Now the number n ,
1 

is introc 
that ('I',Af3H 1llflk).o k>n

11 
• We have .n,• 

a sequence f l conver,ge to f in • • Then o: 
ses are possible: 1) numbers nf f are bounded 
by some H , 2) there exists f' c.. $ such tha· 
We have: 

¢k =f k+1 -fk I. ¢ - f 
k k 

<1',Af3<¢r >•n >=<¢. A13 11 t+1 >'I'D>-<• ,A/3 lfr >'I' n >. 
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1 prove that for every field Aa (f) there exists 
thati for arbitrary 'I' t , '~'2.;;; D <'l't · Aa (f) 'l'2 > 

Cl>p 

ans that if we suppose Aq( f > to be an opera
stribution on a complete counta)>ly normed space 

, then A a< f > should be necessarily an 

ed distribution on some Banach space ellP · • The 
of H is essential point in our proof. The 
of H is a consequence of separability of 4> • 

ty of fields and countability of the set of the 
~ Irreducibility of fields means that the 

is ~yclic for the smeared fields, that is 
in the smeared fields P < Aa (ft A a (f 2 > • • • > • t 2 

to the vacuum state. vield a set Do of vee-
in the H , if functions f t . f 2 ••• run 

I 

the spaces ell • It is evident that at every f 1 

ugh some sequence of functions, dense 
obtain a countably set of vectors dense in H 
consequence of continuity of matrix elements 

.distributions. 
be complete orthonormal syste~, belonging to 
prove theorem I: there exists such p that all 

a (f) 'I' n lie in Cl>; for arbitrary valhes 

rix element<'l' ,Af3(f 1 )Aa(f)Af3(f 1>'1'>, 'I'.;; o, is a 

on f due to Af3(f
1 

>'I' , A ~(f 1 ) 'I' .;;;. o. 

ction f1 ~ ell is arbitrary one but fixed. Now 

('I' ,Af3(f 1 )Aa(f)A~ (f 1 )'1') • 

f3 ( f 1 ) 'l'k ) ( 'I' n , A f3 ( f 1 ) 'I' ) A k., ( f ) 

A kn (f) < " ( 'I' k • A a ( f) 'I' ) 
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The double of series of distributions converges weakly 
in ellx • We shall use a theorem3): a sequence of distribu
tions converges in a weak sense in ellx only if all members 

of sequence are belonging to the same Banach space ell; 

In order to apply this theorem we must prove that we can 
suppose all ck J. o • Let '1'; be some 0rthonormal sys-
tem, '1'.; ~o , such that every vector 'l'n is a finite 
linear combination of 'l''k • It is evident that if all 
distributions<'l'~, Aa (f)'l'~> are belonging tp some CI>Rx, 

then all distributions < 'l'k, AaW 'I' n) are belonging to the 
same q, x 

p 

Let f 1 ~ ell possess the property that c k =<'I',A 13<1 1>'1' k >,lo 

for infiuite ~et of values k 

Now it is possible to establish one to one correspon
Ct> dence between all '~'tk , such that cfk .. o , and all 

'I'~: , such that c mt,.: o • Let us introd,uce the followin,g 
vectors: 

Vectors 

'I' , 
:ln-1 

'I'' 
2n 

'I', n 

'I' ( 1) + '1'(2) 
f n mn 

v2 
·~t) - 'I' (2) 

n m 
n 

v2 

form a complete ort:Jlonormal system. All 'l''n 

are belonging to o • It is evident, that c' k-<'I',A f}'' 
1
>'1''k>;.o 

for ev~ry k • Now the number n ,
1 

is introduced such 
that (9,Af3H 1 >1f'k).o k>n

11 
• We have n

1
•nat • Let 

a sequence f ,t conver,ge to f in 41 • Then only two ca-
ses are possible: 1) numbers nf f are bounded from above 
by some H , 2) there exists f' G- 41 such that n ,, • oo 

We have: 
"k .. , k+t -fk l: " - f k k 

(Y' A f3("f ,., n ) ""("' A f3 (f f + 1 )1' n) -( Y 'A f3 (ff ) 'I' n ). 

~ 
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We can choose such a sequence f k , that n ~·n cpt_ r f + t • 

If n q, f :5:. n r P + 1 then 

('i',A (cp 0 l'l' l=('i',A (£0 l'l'
0 

l-{'i',A Un )'1'
01 

l=O, 
a ,L •rt+1 a L+t 'f+t a L f+t 

In consequence of continuity of the m':-11 tiplicati.on on c 

numbers in II> , a sequence f 'k ... akfk , ak tZ. 0- -{-i.•l + ""}k > 

converges to f • We denote cp ~ = f ~+1 -f'k • ~ .P ~ = f • 
. II. 

Numbers a 
k Can be always chosen in such a way that 

n...l.,.>n, •nr 
'I' k - I jt+1 k+l 

. In consequence of continuity of 
multipl1cation on c - numbers in ell • if the series I..p 'k 

k 

converges , then every series I.{3k ¢~ 
k 

' {3 k~ {1- 2i ,l+ 2\ ), 
m I.fJ•k </>'k •f' 

to be chosen 

converges too. We accept all {3m 'm <f, 

and 
SO that C •q,m =('P,Aa (f') 'l' 0 ¢m 

C n </> t ('I' A a (f , ) 'I' •¢ f ) =0. 

) ,;. 0 

Due to this we can always l l ) choose {3 f <;.. 0- 2T . 1 + --;r- so, 

that all c •¢ m f. o. m _< f • Therefore sequence {3k can 
be chosen so that all c •('I',Aa(f'l 'I' l ,&o, for every f • . •q, •¢e 
If numbers n~ are not bounded, then n ,=~ 

'I' f I 

Let a sequence x k s;. D have the property that n Xk ... "". 

Because of continuity of multiplication on c - numbers in 

II> , we can choose sequence y k ~ o so, that X 'k = YkN k .. 

0. We have n v' ,. n v • Thus only two cases are possib-
"-k· "' k 

le: 1) there exists such f' ~;;.ell that n,, •oo ,2) all 
numbers · n r are bounded from abbve by some H , when f 

runs through the all space ell • In the second case the set 

of the vectors A <fl 'I' • f running through the all space ell , 

is finite dimensional for each 'I'~ o , for example 'I' ·'1' 0 • 

This is meaningless. 

So it was proved that there exists such f 1 ~11> 
all C n= ('I',Aa (ft) 'l'n l-/- 0 

We introduce the notations: 

6 

that 

I 

··~ 
)' 

1 .,. 
··.:~~~ 

' ' 

I;· ·'~~; .,,',I 

i;•l' 

'•f I tl 
~i~ 

l 
~ '\II 

'I 

I' 
,/( 

I• 
II 
I 
)I 

ll 
)I 

' ' ' ! 

l I 

I 
'I 

~.:, . 
~ 

H X 

I e A k (f)- B kH (f), 
nw=l n n 

We have: 

I ex Akn (fl•B k(f) • 
-• n 

<'P, A{3(ft )Aa (f)A~(fl l'l'l~ I eke: Akn(f) .. 
k,n 

.. I c k B k (f) •. 
k 

The series ~ c k B k (f l converges weakly 

cause of continuity of multiplication on ~ · 

addition in Cll x , we can fing for every B ~ 

weak ne igbourhood u k , that B k< fl ~;;. u k an 

ries I c k B 'k(fl 
.k 

rary choice of 

X 

converges weakly in II> 

B ~ (f > ~;;. u k' • There exists 

all u k are belonging to· II> ; • If such P 

exist, we can find such a sequence B ~ < n 
B ~(fl~ u k and B'k<fl r;; ll>k • The series 

must converge weakly in e~~x • The series ca~ 

weakly in II> x only if all B ~(f > are belonginJl 
II>; , because all c k-1 o • Thus we can fin1 

k such H k , that all B kH (fl,A k r (f > are t 
c{) X 

I' 
when H > H k , n > H k , because all 

This property is valid for every complete 

system 'I' .k belonging to D and such that all 
- ('I' • A a (fl 'I' k > .;. o • If a 11 A (f) a ren' t bE 

the s arne II> ; 
pairs k 1 ,n; 

., then we can choose such a 
that A k ' ' 'I 

' In I 

The complete orthonormal system 'I''" 

lf>x 
I n < H k 

I I 

is definec 
We choose some number £I such that n I + f I > H kl 

'l'k 
k " n I k .;, D I+ f I 

'I'' = k 
cos a 1 'I' n 

1 + sin a I 'I' n I + f I k = D I 

sin a 'I' '• -cos a 'I' k = D + e 
I n I I n I +f I I 

7 



oose Stith a sequence 

n 1 v+• then 

f k , that D ~ D 

cf?e 'e + • 

) =<'I',A U0 
n 1f+l a L+ 1 

)'1'
0 

)-('I',A (( 0 )'1'
01 

)=0, 
I f+t a L f+ I 

ence of continuity of the ml!ltiplication on c 

<ll , a sequence f'k=akfk , ak~O--}k,l+ -}r-> 
• We denote c;b~ =f~+• -r'k. ~c;b~ =f. 

. k. 

k Can be always chosen in such a way that 

- n fk+l . In consequence of continuity of 
ion on c - numbers in ~ 

, then every series ~(3 k cf> ~ 

if the series ~ </> 'k 
k 

k ' (3 k r.; (I- 2~ ,I+ 2Ik ). 

converges too. We accept all (3m • m <f, 

n SO that Cncf>m =('I',Aa(f')'l'ncf>m) (. 0 

C = ( 'I' A a ( f ' ) 'I' -'- ) =0. 
ncf>e n'l'{l 

I I we can always choose f3e~;... 0-2T· I+ 2r> so, 

n</> m (. o, m _< e • Therefore sequence f3~r. can 
o that all c •f'I',A. <r'> 'I' > (.o, for every e • ncp a n</>e 
n</> e are not bounded, then n ,=~ 

f 

sequence )( k .c;. D have the property that n Xk -+oo, 

continuity of multiplication on c - numbers in 

n choose sequence y k .f. o so, that X 'k = YkX k ... 

D v' = n v 0 Thus only two cases are possib· 1\.k• 1\. k 

e exists such £ ' <;;. <ll , that n,, '"'"" , 2) all 
are bounded from above by some H , when 

h the all space ~ • In the second case the set 

ors A U > 'I' • £ running through the all space <ll , 

imensional for each 'I'<;. D , for example 'P ·'1'
0

• 

ningless. 

was proved that there exists such f
1

<;;.<1l 
,Aa (£ 1 ) 'P

8
) (. 0 

roduce the notations: 

6 

..-

that 

1:•:'1 ... I 
··-.. ~· 
r~~ 

'··'i•1\(:, ;cS I 
)r:1 1 
,.\ . ./. 

tl: 

J 
f 

· .•. ·~1 .·' 
,·I 

\ r· • 

~
·~ 
I 
I 

,'} 
;i·n; 
. lj! 

:~ t 
\11/ 

i 

ll r 
)'1 

I~ 
II 

'i 
. I. 

1'1' 
t, 

··' 

H " 
l: c A L (f)- B k H (f ), .... t n a.n 

We have: 

.. 
l: c" Akn (f). a k(fl. 
-• n 

('I', A (3 ( f 1 ') A a (f ) A~( f 1 ) 'I') • l: C k C : A k n (f) m 
k,n 

.. l:ck Bk<n •. 
k 

The series ~ c k B k (£ > converges weakly in <ll x • Be-

cause of continuity of multiplication on ~ -numbers and 

addition in <ll x , we can fing for every B k (£ > such a 

weak ne igbourhood u k , that B k< f > <;;. u k and every se-
x . 

ries I c k B 'k(£ > , converges weakly in <ll for arbi t-.t 

rary choice of B ~(f) ~ u ~<- • There exists such p that 

all u k are belonging to· <ll ; • If such P doesn 1 t 
exist, we can find such a sequence Bt <n , that 

B ~(£)<;;. u k and B'k(f) r;j cl>k • The series~ CkB'k(f) 

must converge weakly in <llx • The series can converge 

weakly in <ll x only if all B ~(f) are belonRinR to the same 

k 
c1> Px , because all c k-1 o • Thus we can find for every 

such H k , that all B kH <O.A k ~ (f > are belonging to 
• X 

p when H > H k • n > H k , because all c: (. o 
This property is valid for every complete orthonormal 

system 'P k belonging to D and sttch that all c k = 

·('P. A a (f) 'P k> 1- o • If all A (f) aren 1 t belonging to 
the same <ll ; 
pairs k 1 ,n; •• then we can choose such a sequence of 

that A k 'n' r;j 
' I I 

The complete orthonormal system 'P' ... 
<ll; D/HkJ ,if i>p • 

is defined as follows. 
We choose some number. f 1 such that n 

1 
+ ~ 

1 
> u k

1 'l'k k(.nl k (. n
1
+f

1 
'I'' k .. 

\ 

' 

cos a I 'I' n I + sin a I 'I' n I + f I 

sin a 'I' • • - cos a 
1 

'I' o 
I n I n I +L 1 

• 
7 
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It is evident that al1 c 'k -< ". A Q< r 1l" ~ c . ,... 
nl en +f 

tg a I ., - ' tg a ' I /o I I 
c 

D l+f I 

) .;. 0. 'if 

c 
n I 

All H X 

8 ' (f l • l: C ' A ' ( f l "' 
kH nat n kn 

H 
- l: c , X (" , • A (f)" , ) 

111=l n k a n 

are belonging to the same ~ : , necessarily, because all 

c 'k Ia o • Let us take 1 > p , 1 > p 
1 

H X, , 

8' <n- l: c A <n .. 
k 1 H no:l n k 1 n 

.. ~:b 0 (a)Ak 0
(fl k 1 -/n 1 k 1/on 1 + C 1 

I , 
, H 

8 ' ( f ) • ~ b ( a l A (f) + l: C (a l A k o ( f l 
k 1 H nml n k 1 n n•t n. 1 + [. 1n 

k I .,. n I k I "'D I + f I 

All A kn <fl are belonging to the same ~: , if 8' k n > H k 
I 

Therefore, if 8 •k 8 <r l '1- ~ ; , then all 8'k 8 (fl r;,1 ~ ; 
I k 1 I 

H>Hk
1 

, are not belonging to ~: • We accept that all 

a ,m<i are chosen. b (al is belinear combination of m n 

c"" a .k , and sin a k • If for a certain value of a 1 
B k 

1 
H k 

1 
~;. lll

1
x we c.an always choose another value ot 

at so, that B t H k 9 Ill x1 • Therefore the sequence 
l . l 

a 1 can be chosen in such a way that all B 'k.H (f) r;/IIIJ. 
if H > H k J • Thus we obtained t~e contradiction, as the 
result of the supposition that there exists such a sequen-

ce k 1 , n 1 , that A k 
1 

n 
11 

U l Gt Ill t 
There Theorem I is proved. Now we prove the follow

ing generalization of this theorem. 
Theorem II. There exists such P , that for arbitrary, 

1fl 1 • 1fl 2 t;. D • ( 1fl 1 • A a (f) 1fl 2 ) t;. I) : 

8 

.-

If the assertion in the theorem is not co· 

there exists such a. sequence X k~;.o, that <x2n_1,A 

It is evident that X k can be chosen b) 
ways. Vectors x' k • x"k t;. D are arbitrary. 
some values of .\:a , and 

X 

( x2n-1. +.\lx·. A ( f) .( X 
2 

+ .\ n X" ) c;. I) 
a n .o~~ n 

then for each another values of .\t ' and 

(X 2 .,_1 + .\ x' . A < n < x + .\ x" > 'I· 41 x 
1 a 2n 2 n 

It is evident that xk can be chosen so that eve 

ence of Xk. is lineary independent. The sequence 

is orthonormal. Usin£ .. the arbitraryness in choi 

we can choose,._ them so that ( 11'2 n -t· A a (f) 1fl 2 D) Gt 

If sequence 1f'A isn't complete, we can 
some another sequence of vectors from D • So 
such complete orthonormal sequence 1f''t , tha 

( qt : • A a (£) 1fl t+, 1 ) r;f Ill x p .. oo 
• pk k 

This is contradictory to theorem I. Theorem II 
Author is indebted to V.S.Vladimirov, M.K 

I.T.Todorov and S.S.Khorushi for helpful di 
..... , 
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t that 
n I 

D 1+f I 

H 

(f) - l: 
nod 

a 11 c 'k -< 11' • A p<r 

' C nl + f I 
tg a 1 1-

C 
n I 

C ,x A ' (f) = 
n k n 

c; X (lpk' ,Aa (f) '~'n' 

,> 1p ~ ) 1- 0. 'if 

to the same 

Let us take 
~ : , necessarily, because all 

> p' i > pI 
H X, , 

l: C A (f),. 
~~~=:1 n k 1 n 

A k n (f ) k I .• n I k 
1

-/. n I + C I 

I ' 
' H 

~b (a)A (f) +l: C (a)A k f (f) 
D=l n k In n•1 n • I + fD 

k I =n I + f I 

belonging to the same ~: 

H (f) ~ ~ : 
k I , then 

not belonging to ~ ~ • We 

, if B'kn>Hk 
I 

all B'k H(f) ~ Ill ; 
I 

accept that all 
hosen. b n(a) is belinear combination of 

sin a k • If for a certain value of a J 

1x we can always choose another value ot 

B k H k r;f ~; • Therefore the sequence f . f 

hosen in such a way that all B 'u < n r;f ~ .t 
. Thus we obtained the contradiction, as the 

supposition that there exists such a seq~en-
tha t A k < fl r;t ~ t 

I n >I 

orem I is proved. Now we prove the follow
ation of this theorem. 

ere exists such P , that for arbitrary, 

X ~ D • ( 'I' 1 • A a (f) 'I' 2 ) ~ ct P 

8 

.... 

If the assertion in the theorem is not correct then 

there exists such a. sequence X k~o. that <x
2
n-t'Aa(f) X 

2
n>r;; ~:. 

It is evident that Xk can be chosen by different 
ways. Vectors x' k . x"k ~ D are arbitrary. If for A 

1

• 

some values of A 2 ' and 
( • A , 

X 2n-t + t X ' A ( f) .( X + A X" ) ~ ~ X 

a 2n 2 n 

then for each another values of At , and ..\ 2 

<x 2,_1 + ..\ x' · A u > < x + ..\ x" > '1· ct x 
1 a 2n 2 n 

It is evident that xk can be chosen so that every subsequ• 
k ence of X k. is lineary independent. The sequence 'P k ::tknX k 

is orthonormal. Using .. the arbitraryness in choice ofxk 
we can choose,._ them so that <'I' 

2
n _

1
• A a (f >'I' 

2
n > ¢ ~:. 

If sequence 'l'n isn't complete, we can join to it 
some another sequence of vectors from D • So we obtained 
such complete orthonormal sequence 'I'~ , that 

( lJI : • A a (f ) 'I' k+, 1 ) r:/ ~ x p .. oo 
' pk k 

This is contradictory to theorem I. Theorem II is proved. 
Author is indebted to V.S.Vladimirov, M.K.Polivanov, 

I.T.Todorov and S.S.Khorushi for helpful discussions. 
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