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1. Introduction

The interaction modifies the canonical light cone sin-
gularity of free two-point functions. This modification is
described formally by the wave renormalization constantz;’,
Such description, however, becomes mathematically meaning-
less if z;" is infinite. Treating the results of per-
turbation theory as a guide, one should expect that Z;’
in all four-dimensional nontrivial examples of interacting
local fields is infinite, and it is necessary to look for
another methods of describing the short-distance behaviour
of two-point functions.

The renormalization factor Z:' describes the modifi-
cation of the free field functions. New approach should
therefore introduce the methods of description of short
distance singularities without nay reference to the free
field solutions. In this paper we introduce a class of ana-
lytic functions, constructed in accordance with the analy—;
tic properties of VEV in Wightman schemell/. These functi-
ons, similarly like in Kallen-Lehman spectral formula, can
be used for construction of spectral representation with
integrable spectral functions, describing. two-point fun-

ctions with noncanonical singularities.



Using the boundary prescriptions/1“3/ one can relate our
analytic functions with the two-point functions characteri-
zed by some standard nonintegrable Kallen-Lehmann spectral
functions. Some particular examp}es of such two-point fun-
ctions have been studied in the framework of distribution
theory by Stenmann/4/. Gﬁttinger/S/, Pffaffelhuber/6/, Git-
tinger and Rieckers/7/, and Vladimirov/8/. In this paber
we introduce larger classes of such functions, sufficient
for introduction the spectral decompositions of any commu-
tator function having the singularities 8 ?) and 2 »

(kwml,2,,..) and we use the tools of the theory of analytic
functions, what makes all operations unique anﬂ well de. -~
finedX). ' )

Inh last years one of the most fashionable subjects in
axiomatic field theory is to study the inequivalent renre-
sentations of canonical commutation relations/lo’lli. It
has to be stressed, however, that such method is justified

3
relativistic quantum field theory, therefore, one can not

. . . -1 . s .
if the wave renormalization constant 2 is finite. In

escape from the conclusion that the interaction modifies

the algebraic structure of the equal time limits. Because
the correct way of calculating the equal time limit leads
to one-to-one correspondence between the equal time singu-

larities and the singularities of the four-dimensional com-
ot Iam—

x) It has to be mentioned, however, that not all problems

of Loretnz invariant distributions can be solved by such
approach. In a full treatment of Lorentz-invariant distri-
butions the analytic methods have to be supplemented with
the discussion of so-called Gording mapping/9/ of invariant
four-dimensional distributions, and the discussion of inver-
se Garding ?a?ping. For an extensive treatment of these
mapping see/ 7/,



mutator function on the light cone X), we conclude that

studying of light cone singularities for at least the
lowest Green's functions represents a programme of classi-
fication of interactions in Wightman scheme. In this paper
we discuss the two point functions: the case of three
point function will be treated in other publication.

In this paper we discuss only the example of scalar
neutral Wightman field, but the results can be easily ex-
tended to the nonscalar field. Particularly interesting is
the case of vector field, because of recent discussions
about the validity of current algebra assumptions: in the
general framework of relativistic quantum field theory. In
our considerations we assume that only the ultra-violet
divergencies are present, i.e. Kallen-Lehmann spectral fun-
ction is locally integrable. It is interesitng to mention
that the infrared divergencies can be excluded formally by
means of the Wightman postulate of positiveness of metric
in the space of states/12/, »

The analytic representations, describing commutator
functions with the singularities G(B(x’)(k-o.h2.n) and
(x’):l(t -1,2..) and depending on the continuous para-
meter m aﬁalogous to the mass variable in the free field
case, are introduced in Sect.2. In Sect.3 we present the
connection between some standard nonintegrable spectral
functions and our analytic representations. In Sect.4

we introduce the numerical parameters- wave renormalizati-

x) The best example is provided by the free field case,
where the delta singularity on the light cone implies the
canonical commutation relations. The argument can be ex-
tended also to large class of other light cone singulari -
ties. The ambiguity, consisting in the presence of distri-
butions with point support x =0 » is nonphysical.



on constants, unrenormalized mass and -generalized wave re-
normalization constants - as characteristics of the light
cone singularity. In the last Section some general remarks

about the noncanonical singularities are given.

2. The Classes of Analytic Representations of Non-
canonical Two Point Functions

In Wightman formalism all two point functions (two
point VEV, commutator functions, causal propagator, etc.)
are the distribution valued boundary values of an analytic

function C(z’)(z’az“ 2t mx yiy )7 holomorphic in

Boon
a whole complex z? -plane (z?=s+ia) except the points
along the positive real axis (am0; s >0) . Such analy--
tic function 6(z%) is characterized by its discontinuity

across the cutX)

1 £ 0) - s
f(s)--z-—”—i-.lc(s+|0) G(s~i0)}, (2.1)

Using the boundary prescriptions for the two point
VEV/1/ one gets the following formula for the commutator
function

. P 3
G(x)=i<0 [[qs(.;’i.) v (= —;‘-:)]Io S 2n£(100§(x Yo (2.2)

X) The distributions as boundary va}ues of analytic fun-
ctions are extensively discussed in/5,8/ and /13-15/ Tpe
analytic function 6(z?) is called an analytic representa-
tion, generating the distribution £(s) . For a large class
of distributions £(s) one can write for G(z22) g Cauchy
representation 1e7ding to dispersion relations in coor-
dinate space 6,17 .



Because the commutator function is a tempered distribution,

we see that
E(x2) C S'(R+) (2.3)

and £G?)  should be real. This last condition implies

that one can write

C(z3)=C(z+Fz D, (z.4)

where C(z2) has a real discontinuity (2.1) and satisfies
the condition .
txz®=02"). (2.5)

The function F(z?) is an entire function in zzcomplex
plane. One can say that the function ¢(z?) determines the
algebraic structure of the theoryx), and F(z® depends
only on the representation. Finally, using the tempered-
ness assumption for the two point VEV we see that the fun-
ction G(s £i0) should be bounded for large positive as
well as negative values of s by a polynoiial.

The example of an analytical function, satisfying all
requirements mentioned above is provided by the analytic
continuation of free field VEV, defined as follows

w2 a2 '
Gylz%im 2)m : ——" (2.6)

87i mz

x) This determination is, of_course, a partial one. Only
for generalized free field C(z?) determines the algebraic
structure completely.

[
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The discontinuity (2.1) along the positive role. axis is
described by the functionX)

J (mA)
Easm e 2 {5(s)-0(s) 22 1 70
4n 2 mA (2.7)
where s’ » and the light-cone behaviour is determined
. . 2 .
by the singularity of G ,(z ;m 7 near the point
2 2 1 1 ..
Colz "5m ") am e R + finite terms (2.8)

We see that the light cone singularity is mass-inde-
pendent, and because it leads to the canonical commutation
relations it will be called a canonical singularity. The.-
interacting fields have, however, different singularities
on the light cone. In the following we shall assume that
the only singular poiht for the distribution (2.1) is the
light cone, s=0, and that the distribution £(s) for large

= is described by a real function, satisfying the con-
dition ’
|§(,>1<_£%.:_ (2.9)
The first requirement means that the main part of the per-
turbation propagates without delay along the light cone,
and the relation (2.9) determines the asymptotic behaviour

of the action with very large delay timeXX).

x) The analytic representation of &(s) is-—%: and 6(=) is
generated by - 1n (-z3) (see/5/ and/13/). =

xx) The value 3/4 of the inverse power in (2.9) can be jus-

tified by the requirement of positive-definiteness of the
metric in the space of physical states.



We shall consider in this paper the following two clas-
ses of light-cone singularitiés
!
fk(.)=8(“(-) k=0,1,2,.. (2.10a)

and
£ (s)=s—l f=1,2,3
¢ R 2.3 (2.10b)

The results can be generalized also to more general
cases, particularly to the case when ¢ is a continuous in-
dex.

a) 8%(a)  (k=01,20).

The simplest generalization of the formula (2.6) is to
introduce other Hankel functions of the first kind, with
the argument m:z . It can be easily shown that- only such
combination of Bessel functions and Nuemann functions sa-
tisfy the temperedness assumption for space-like distances
( =2 negative, imz- real and positive). We introduce the
following family of analytic functions, which can be used
for the description of the analytically contihued VEV:

6 (z%mM ()" € Fim?) . (2.11)

n dz 2

Using the formula

1
P ) . H”l(z)
() Jal=1" A
zdz z 2 (2.12)

one gets the following result

1
Cen” 2, H (mz)
G (:2;m2)= D .:.. n+1 .
prll T (2.13)

) . [tH)
Using the expression for the Hankel function H (mz) , one

gets

»—



- n 2 n
6 e e m ) {2y —fab 4 fa(~m2z D],

Lad 4 2 2
(2.14)
J,(mz2) —1 a o
S S nik - LZs  (mz™,
( mz) 7 kb (pg) Hn=k) 7 k=0
L ]
where y =0.577 (Euler constant),
n~k {n=k —~1)!
a -‘2 :
ng k k!
«n"“ C ntC, (2.15)
nik -2"*“ k!{k+n)! ~ :
c =1 +...l....;+ eaa .+ -L-: c =0
s 2 s o
and the relation b (-mn?:2%) = 2@ mz +i = has been used.
We obtain the following discontinuity:
'3 (s;ma)a 1 {c (s +i0;m 2)-¢C (s=~iO0;m2 )} =
n~1 2 i n=~1 . n=1
=1 2% —~km (2.16)
= ! L% ¢ .. -8("kl)(s)+

4¢"hﬂ Y

m.2 n f(s) Jomd) !
B L I

2 an {ma) ™

+ (~

The leading light-cone singularity, is mass-indepen-

dent and equal to -:t;~=8(ﬂis) . Putting mw=0 one gets
6 (e0) e S0P ar (2.17)
" 4 ? (3 m+
leading to the result obtained in/s-s/
£, (210 4;2:5“"(“. (2.18)

10



The formula (2.11) can be easily generalized. We introduce

G (‘zﬂgm’)n(z’)'c (z 2;m 2,

a (2.19)

where -n <r <n , The leading singularity on the light cone
for fi"(s; m? ) is independent onm? and proportional to

particularly interesting class one gets by the following

choice o
1 m3 k H (mz)
G (z2;m N =- ( ~enee) 2k
2k ~Dgkm1 4ni 4 z 2
(2.20)
(k =1,2,3..)

with leading singularity on the light-cone described by the

1imit w220

(2k-3)1
(z 2;0): .--.-1—.-

am 3 (, ByE+t (2.21)

¢ Bk 1gk~1

It will be seen in Sect.3 that the functions (2.20) corres~-
pond to the case of polynomial behaviour of the Kellen-Leh-
mann spectral function
b) s:e (€ =1,2,3...) &
In order to describe the singularities (2.10b)
we introduce the following aﬂalyticvfunctionx)
w

1 H' " (mz)

C 32,03 .
Gl(z s ) 4mi ‘z3 - (Z.ZZ)

Using the formula

H(;)(mz)= -i-=[)’ + -—l-jln(-m 3 N2l (mz)+
.4 2 . o

__ELE_ELLJ (mz) '
- P (2.23)

one gets

x).It can be mentioned that one obtains (2.22) from (2.19)
by putting n =0, r= -2 .

4
11



. -
§ G l(s -&-iO;m’)—Gl(a—iO;m2 )} =

i . (2.24)

»

1 -1 1 2
R ——-—-;:S+ Jo(ml\)—‘i—?:(lnm -2y + h4)6(s)

We see that the function (2.19) does not allow to perform
thq+limit w?+0 . The logarithmic term, which becomes in-

finite with vanishingm ? , occurs in the solutions deriva-
tive coupling models in two dimensions/18,19/ and four di-
mensions/20.21/. In order to get only the singularity st

one should subtract from the function (2.19) the following
"counterterm"

[tn ma-i-’Z()'—an)]Go(z2 i),
(2.25)

where the mass pg? is in general case not related to the
mass and pafticularly can be chosen equal to zero.

In order to get the singularities (2.10b) with f=1,23.,
one should introduce the following analytic functions

[

-C 2; 2 = —-—-—-—d : & 3 3 .
g (2ham M= — ) C G ia? ‘ (2.26)
Using the formula
. . . o)
— ) Ho (z) = (1) - (2.27)
one gets
€, (:3m?)m Ay EzX
t awi =t
[ X :
s L (22 1@, (2.28)
w0 nl 2 n :

12



The formula (2.28) implies the following leading light-co-
ne singularities

~ ] -1
€ GimPlatcd (2 -ntaY -
4 47 3 +
(2.29)
' -1
- - {hmn3 +2(y ~h2)+ ¢ }é (s) u 0(s Lt ).
4 =1 +

Introducing suitable counterterms (compare with (2.25))

one can cancel out all terms with delta functions.
Another way of introducing the light-cone singulari-

ties of type (2.10b) is to multiply the functions cnéﬁ.m")

by the function fa (~22 ), . Let us consider for exam-
ple A
an (z?m3 ) fa(—23 )Go (22 ;m2), (2'30)

The discontinuity of (2.30) is given by the formula

£ (o 3, 1 i -l—ln ..37 J,(mk) !
0o °F W PP ST T (2.31)

The differentiation of (2.30) with respect to :? leads to
analytic functions with the discontinuity £(s) having sin-
gularities only of the type (2.10b). '

3. The Analytic Representations and Nonintegrable
Kallen-Lehmann Spectral Functions

The two point functions are usually described by
means of the spectral function p(x?) which represents
a Lorentz-invariant four-dimensional Fourier transform of
the distribution £(x?) . In this Section we shall find
the analytic representations, corresponding to some stan-
dard choices of nonintegrable spectral functions.

$

13



Let us write the Kallen-Lehmann spectral representa-

tion in complex coordinate space

Gz Ve fp k6,7 xNax T, (3.1)

We shall consider (3.1) for =? off the real axis, i.e.

for z<A +in, where = lies in upper half plane (q>o);The

function ¢ (z? ;x?) behaves for large * like ¢« ™" and the

integral exists for all locally integrable mx’)cs’(n+)'
Now we shall introduce the following operator, acting

on complex variables =z

[
9 9 ,2)Y 2 d 3 2
3. : az# f(z2) D. f(z 2)we -.4( —d-;-;) [zf(z )] . (3.2)
B
Using the identity
d 3 (¢))
z(-—z——d:——-) zHl(mz)+m2H‘ (mz)=0 (3.3)
one gets
(3, —x’)Go(zagxa)=0 - (3.4)
and
n bad [4
E]'G(zz):f(xz) p(N)co(z’;x’)dx’ . (3.5)
[}

Using the formula (3.5) one can alwéys relate the spectral
function p(x?) which is locally integrable and belongs toS(R¢
with a function having a Hankel transform on the real axis.

We introduce in general for 7 >0

"~ oo (8] ¥%
: B(z)zofg(x)ﬂl (kzXkz) dx. » (3.6)

CIf g(xk)CL (0,=) the transform (3.6) necessarily exists
also if 7 =10 . Using (2.6) and (3.6) one can write
(3.1) as follows

14



Gz 2)m =L (2},
: PERIE Y (3.7)

.where
g(K)-p(KZ)K 3/3 .
(3.8)

Our method of determining the analytic representation for
nonintegrable spectral functions will be based on the fol-
lowing two steps: e ) We take from the tables of integral
transformsX) the Hankel transform (3.6) for

()
g (K)-pn.(xz)xa/z-,fu——_':.___, (3.9)

i x 3

where is chosen sufficiently large,.

B) We use the formula (3.5).
We see, therefore, that every spectral function with gi)
having the real Hankel transform (3.6) generates the fami-
ly of analytic representations for all two-point functions
with the spectral functions of the form g(x)(x ?)*

We shall consider below two such families:

a) Pl =Bk *em®)(x )% (ka=1,0,1,..) .

Let. us consider firstly k=-1 , From (3.8) follows that

~b%
one should find the Hankel transform (3.6) with glk)=0(x-m)x |,
One gets/zs/

1 © a5 (D %
A 2" im? e TS TP PP Rl P
- 4riznm ! (3.10)

1 )

[T ;| (mz).
4mi 22 o

x) See, for example,/23/.

15



We see, therefore, that the analytic function (2.22)
describes the two-point functions characterized by loga-
rithmically divergent wave renormalization constant. Be~

cause
oo dK,
A (z’;mz)_f —C (z3;k3%)
-1 2 K’ o

(3.11)

it is clear the origin of the term hm? in (2.24), des-
cribing the infrared divergence of the wave renormaliza-
tion constant.

The results for k=01 ,... one gets using the rela-
tion (3.5). We have

oo k ' k+1
Ak(z’;-’)--{ dx? (x ) - Cn(z’;x’h-D . A-_l(z2 im 2,

(3.12)
d

Using the formula [, —tz? (;§1—)2 8 =y one gets for

the most interesting cases k=0 and kel

A (27 ;mDm - L TR
° ’ 4gisd 3 (3.13a)
and
2 3
A (z’ ;-,)--— - Ilu)(-z)-—-—-—— H (mz)

1 4mi 7 ¢ i 23 3 (3.13b)

{
We see that for k=-! and k=0 e obtained up to some con-
stant factor the analytic functions (2.20). For k21 one
gets also some additional terms proportional to the fun~
Ctions G, @) G .\ (=) e €y 2)ee G Gae)
All these functions contribute to the leading light cone
singularity, which can be obtained if =+ 9% . For example,
for k=1 we get, using the formula

ﬂ::) (z:—;i-(;—z ) TN (a—=D1!

16



that
A (z 2;0)-——8-....,_—1......

! 2 gt (3.14)
and both terms in (3.13b) contribute to the result (3.14)
b) pix %) w0k 2-m? Yk ?) “fax 2 k==1,0,1,, .
Firstly we shall consider the case k=~1 . One gets
after somewhat tricky calculations the following estimate

atz=0 X):

be 5, 1 2 fex? %
A-l (z%im "= . 7z n{ . m H 1 (xzXxz) dx =
i (3.15)
3 Enaz 2 ol fnz? )
81” z 2 * z 3

and the discontinuity (2.1) has a following leading singu-

larity
foe R -1 .
'3 i m?)=3ts s 40(a” ). ’
- 8a + * (3.16)

Applying the operator (3.2) one gets

&, o
A !: (z ’;m’)- J(x3)x ZnKsGo(z’;xz)dxz -

Mg

(3.17)

en " 2 e ? (e
- il P itz 0t )
a? (z 3) k+ 2 = 2D

x) A complete formula for A%: will be given in the se-
cond part of this paper.



and one can check easily that the leading singularity is
of a type (2.10b).
Finally, it should be stressed that even when

va(K’)K”dK’(no (3.18)

what assures that the Hankel transform (3.6) exists for

7=0 , the function ¢ Jz;xa) cannot be expanded under
the integral into the powers series, because the coeffi-
cients of consecutive powers will not exist. If we, never-
theless, use such method, it is wasy to see that the dif-
ferentiation (3.5) will nof produce any noncanonical sin-
gularities. Indeed, ‘the terms occuring in power expansion
of 6, (z%;m?) ° are %; » tz? (" (xedl) and (= H*, Be-
cause

(z3)k med kK (k+1)(z 3) k-t
O, +e (3.19)

k - k
O] 22 %) metfk(z ) 420102 2 4kGa)laz?  HET )
-

the differentiation (3.5) will again reproduce only the
‘terms occuring in 6, (z?sm ?) . We see, therefore, that
noncanonical terms can be easily lost if we use unjustifi-

ed mathematics.

4. Remarks about the Renormalization Procedure

It has been mentioned in Introduction that the wave
renormalization constant measure thg_modification of free
field singularities.One introduces the cutt-off depéndent
wave renormalization constant QWA’), where

18



t a2 A
z: (A7) = fpix Hax? (4.1)
0

and one studies the limit

-1 . -1 2
Zsﬂzlm Za(A )- (4.2)

Alao
Different types of infinities correspond to different ty-
pes of noncanonical singularities.

The wave renormalization constant can be, however,
defined by means of the analytic representation G(z?)as
follows

-1 G(z%)

z = {im :
3 ,’-.o Go(zz) ’

(4.3)

where the function 6,(z®) can be characterized by any

mass. Similarly, one can introduce the unrenormalized mass

parameter mz by means of the following limit

2 s [Je(=2)
m = fim d
230 G (22) (4-4)

]

It is easly to see that for the free field G(z?)=G (z?;m?)

one gets m?=m? , and in general case
g ; g
‘
3 b
m 2 -/-\fzim J x¥p(x Hax® (4.5)
-+ 00

These two characteristics of light—cone singularity comes
out from the comparison with the free field case. It is
possible, however, to introduce generalized wave-renormas
lization constants z;:n describing the light-cone sin-
gularity compared with the singularities .of the analytic
functions G, (z%;m?) for 220 .

We defineX)

-1 -1
3;0 3

X) Parti%ularly, z

]
N
.

19



2
e LA L (n =0,1..), (4.6)
3in 240 ¢ n(?)

It follows from the postulate of positive metric in the

space of physical states, that 1;; 2! . If ‘;:""
it can be found however, always such ® that i:n<~-

5. Conclusions

In this paper we have introduced new class of basic
two-point functions, describing noncanonical two-body for-
ces, more singular in static approximation than the Yuka-
wa term. This modification of /r singularity is caused
by the exchange of infinite number of quanta with very
large momenta. In usual appraoch such process leads to ul-
traviolet divergencies and the necessary of infinite renor-
malization. In our approach we introduce some objects, cha-
racterized by the continuaus mass spectrum, and formed out
of infinite number of quanta. These objects X) are chosen
~in such a way that the "one particle exchange" approxima-
tes in a correct way the short distance singularity for
‘complete two-body forces. i

The presence of noncanonical forces modifies the in-
teraction at very small distance in such a way that the
notion of charge and mass for these distances are not valid.
Indeed, the charge and mass can be defined only under the
assumption that the interaction has ( in static approxima-
tion) the Yukawa form. One defines the unrenormalized, pa-

rameters as follows

x) In[24/ the free field with polynomial spectral functions
have been called the "inverse multipole field".

20



e’o =tim (Vi) ) (5.1)

r =0

2
m? = fim
© ,40 92

AV(e)r), (s 2)

The formulasl(S.l),(S.Z) give infinite results because the
Yukawa law for very small (we-call them suBmicroscopic)x)
disEance is modified. v :

If we consider two-body forces one can always split
them into two’ parts: with 1/r singularity (canonical
terms) and with, the singularity stronger than 1/r (non-
canonical terms). The. submicroscopic distances are defined
by the requirement that the effects of noncanonical terms
cannot be neglected. The validity of perturbations expan-
sion is strictly connected with the effects of noncanoni-
cal terms of above classification and cannot be used for
submicroscopic distances. Using first orders of the pertur-
bation theory one can guess, however, that the submicrosco-
pic distances in QED are indeed beyond the range of phy-
sical measurements. One can calculate/17,25/ that the non-
canonical terms,. occuring in the second order of perturba-
tion theory in QED can be neglected if

a
;;-& —6: «1, . (5.3)
where M, denotes the electron mass, and A= %- describes

the cut-off parameter corresponding to the penetration
3 1

distance.= . Using the value a = 4; ~——— one obtains
ta A« 1000
M, (5.4)

X) gee /17/, Sect. 5.

21



We see easily from (5.4) that it is not possible to detect
scattering experiments} the modification of the Coulomb
law singularity, and particularly, the Pauli-Villars regu-~

larization procedure, removing noncanonical terms, can be
usedX). To the contrary, it is easy to check that the esti-

mate for strong interactions leads to the range of submic-
roscopic distance overlapping with the values of scattering
parameters in present high energy experiments. We see, the-
refore, that the convertional perturbation expansion cannot
be used, and some other approximations, suing perhaps the
propagators introduced in this paper, should be developed.
The author is indebted to Professors R.Haag, G.Kallen,
and R.F.Streater for helpful discussions at the V-th Winter

School -of Theoretical Physics in Karpacz.
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