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1. Introduction 

The interaction modifies the canonical light cone sin­

gularity of free two-point functions. This modification is 

described formally by the wave renormalization constantz-1
• 
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Such description, however, becomes mathematically meaning-

less if z;1 is infinite. Treating the results of per-

turbation theory as a guide, one should expect that z;
1 

in all four-dimensional nontrivial examples of interacting 

local fields is infinite, and it is necessary to look for 

another methods of describing the short-distance behaviour 

of two-point functions. 

The renormalization factor describes the modifi-

cation of the free field functions. New approach should 

therefore introduce the methods of description of short 

distance singularities without nay reference to the free 

field solutions. In this paper we introduce a class of ana­

lytic functions, constructed in accordance with the analy­

tic properties of VEV in Wightman scheme/l/. These functi­

ons, similarly like in Kallen-Lehman spectral formula, can 

be used for construction of spectral representation with 

integrable spectral functions, describing-two-point fun­

ctions with noncanonical singularities. 
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Using the boundary prescriptions/1-3/ one can relate our 

analytic functions with the two-point functions characteri­

zed by some standard nonintegrable Kallen-Lehmann spectral 

functions. Some particular exampies of such two-point fun-
, . 

ctions have been studied in the ·framework of distribution 
theory by Stenmann/4/. Guttinger/5/, P£faffelhuber/6/, Gut­
tinger and Rieckers/7/, and Vladimirov/8/. In this paper 

we introduce lar~er classes of such functions, sufficient 

for introduction the spectral decompositions of any commu­

tator function having the singularities Be.., (x 3 l and (x 3 l -:;:t 
<k-1,2, ••• > and we use the tools of the theory of analytic 

functions, what makes all operations unique and well de.·­
finedx). 

Ih last years one of the most fashionable subjects in 

axiomatic field theory is to study the inequivalent renre­

sentations of canonical commutation relations/10,111. It 

has to be stressed, however, that such method is justified 

if the wave renormalization constant z -1 
a is finite. In 

relativistic quantum field theory, therefore, one can not 

escape from the conclusion that the interaction modifies 

the algebraic structure of the equal time limits. Because 

the correct way of calculating the equal time limit leads 

to one-to-one correspondence between the equal time singu­

larities and the singularities of the four-dimensional com-
' 

x) It has to be mentioned, however, that not all problems 
of Loretnz invariant distributions can be solved by such 
approach. In a full treatment of Lorentz-invariant distri­
butions the analytic methods have to be supplemented with 
the discussion of so-called Gording mapping79/ of invariant 
four-dimensional distributions, and the discussion of inver~ 
se G~rding ianping. For an extensive treatment of these 
mapp~ng see 77. 
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mutator function on the light cone x), we conclude 

studying of light cone singularities for at least 1 

lowest Green's functions represents a programme of 

fication of interactions in Wightman scheme. In th: 

we discuss the two point functions: the case of th1 

point function will be treated in other publicatioJ 

In this paper we discuss only the example of ! 

neutral Wightman field, but the results can be eas: 

tended to the nonscalar field. Particularly intere! 

the case of vector field, because of recent discus! 

about the validity of current algebra assumptions: 

general framework of relativistic quantum field th« 

our considerations we assume that only the ultra-vj 

divergencies. are present, i.e. Kallen-Lehmann spec1 

ction is locally integrable. It is interesitng to 1 

that the infrar~d divergencies can be excluded fori 

means of the Wightman postulate of positiveness of 

in the space of states/12/. 

The analytic representations, describing com 
functions with the singularities Bc..,<x 1 l (k.O,I,2, .. ) 

-1. 
<" 2 > < t - 1. 2 ... l and depending on the con t inuou! 

+ 
meter ~ analogous to the mass variable in the fr« 

case, are introduced in Sect.2. In Sect.3 we prese1 

connection between some standard nonintegrable spec 

functions and our analytic representations. In Sec 

we introduce the numerical parameters- wave renorm~ 

x) The best example is provided by the free field c 
where the delta singularity on the light cone implj 
canonical commutation relations. The argument can 1 
tended also to large class of other light cone sinJ 
ties. The ambiguity, consisting in the presence of 
butions with point support "~ o , is nonphysical. 
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mutator function on the light cone x), we conclude that 

studying of light cone singularities for at least the 

lowest .Green's functions represents a programme of classi­

ftcation of interactions in Wightman scheme. In this paper 

we discuss the two point functions: the case of three 

point function will be treated in other publication. 

In this paper we discuss only the example of scalar 

neutral Wightman field, but the results can be easily ex­

tended to the nonscalar field. Particularly interesting is 

the case of vector field, because ~f recent discussions 

about the validity of current algebra assumptions: in the 

general framework of relativistic quantum field theory. In 

our considerations we assume that only the ultra-violet 
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that the infrarad divergencies can be excluded formally by 
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functions with the singularities 8c..,(x 2 > (lr.-0,1,2,-> and 
-l 

(x 2 > ( t -1.2- > and depending on the continuous para-
+ 

meter ~ analogous to the mass variable in the free field 

case, are introduced in Sect.2. In Sect.3 we present the 

connection between some standard nonintegrable spectral 

functions and our analytic rep~esentations. In Sect.4 

we introduce the numerical parameters- wave renormalizati-

x) The best example is provided by the free field case, 
where the delta singularity on the light cone implies the 
canonical commutation relations. The argument can be ex­
tended also to large class of other light cone singulari -
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on constants, unrenormalized mass and·generalized wave re­

normalization constants - as characteristics of the light 
cone singularity. In the last Section some general remarks 

about the noncanonical singularities are given. 

2. The Classes of Analytic Representations of Non­

canonical Two Point Functions 

In Wightman formalism all two point functions (two 

point VEV, commutator functions, causal propagator, etc.) 

are the distribution valued boundary values of an analytic 

function G < z ~l < z ~ .. z z P. , z - x + iy l l-a holomorphic in 
p. p. p. p. 

a whole complex z ~ -plane (z 2 =s +io l except the points 

along the positive real axis <n•·O; s ~ o l . Such analy­

tic function G(z
2

l is characterized by its discontinuity 
across the cutx) 

e (s)- ..L., G(s +iO)-G(s-iO) I. 
2 17 i (2.1) 

Using the boundary prescriptions for the two point 

VEv/1/ one gets the following formula for the commutator 
function 

G ( X) :j < 0 1£ ¢> (...!..} • ¢> (- ..!. ) 11 0 ">- 2rrdx ~ e (x 2 
) • 

2 2 0 (2.2) 

x) The distributions as boundary values of an~l~tic fun­
ctions are extensively discussed in/5,8/ and /1 -15/, The 
analytic function G(z 2 l is called an analytic representa-
tion, generating the distribution e<s > • For a large class 
of distributions e<s> one can write for G(z~) a Cauchy 
representation, le~ding to dispersion relations in coor­
dinate space/lo,l7/. 
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} 

Because the commutator function is a tempered distril 

we see that 
e<x 2 ) C S'(R+) (2. 

and e (x 2 ) shc.uld be real. This last condi"tion impli 

that one can write 

G(z 2 ).,G(z 2 l+F(z 2 ), (2, 

where 'G (z 2 > 

the condition 

has a real discontinuity (2.1) and sat: 

G*(z 2 ) .. G(z 2 * ), (2. 

The function F(z 2 > is an entire function in z 
2 complt 

plane. One can say that the function G(z 2 > determinel 

algebraic structure of the theoryx), and F(z
2

l depe1 

only on the representation. Finally, using the tempe1 

ness assumption for the two point VEV we see that tht 

ction G(s ±iOl should be bounded for large positivt 

well as negative values of s by a polynomial. 

The example of an analytical function, satisfyi1 

requirements mentioned above is provided by the anal) 

continuation of free field VEV, defined as follows 

m2 

G(z
2
;m

2
'•-

0 817i 

If!'<mz) 
-----·· (: 

mz 

xJ This determination is, of course, a partial one. ( 
for generalized free field G(z

2 > determines the algt 
structure completely • 

7 



nstants, unrenormalized mass and generalized wave re­

lization constants - as characteristics of the light 
singularity. In the last Section some general remarks 

the noncanonical singularities are given. 

2. The Classes of Analytic Representations of Non­

canonical Two Point Functions 

In Wightman formalism all two point functions (two 

VEV, commutator functions, causal propagator, etc.) 

he distribution valued boundary values of an analytic 
ion G(za)(zaaz z~',z •x +iy )l-a holomorphic in 

p. p. p. p. 
le complex z a -plane < z 2 =s +iu l except the points 

the positive real axis (u •. O; s:!. 0) • Such analy-

unction G(z
2

l is characterized by its discontinuity 
s the cutX) 

e<sl• - 1-!G(s+iO)-G(s-iO)}, 
2 "i (2.1) 

Using the boundary prescriptions for the two point 

I one gets the following formula for the commutator 
ion 

G(xl=i<O![cf>(....!..),cf>(-..!.l]!o ">a2rrdx >e<x 2 l. 
2 2 0 (2.2) 

e distributions as boundary values of an~l!tic fun­
s are extensively discussed in/5,8/ and /1 -15/. The 
tic function G!z 2 l is called an analytic representa-
generating the distribution e<sl • For a large class 

stributions e<sl one can write for G(za) a Cauchy 
sentation, le~ding to dispersion relations in coor-
e space/lo,l7/. 

6 

.,.: 

\! 

Because the commutator function is a tempered distribution, 

we see that 
e(x2) C S'(R+) (2. 3) 

and e (x a) should be real. This last condi"tion implies 

that one can write 
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the condition 

has a real discontinuity (2.1) and satisfies 
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The function F!z 2 l is an entire function in z 
2 
complex 
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algebraic structure of the theoryx), and F(z
2 l depends 

only on the representation. Finally, using the tempered­

ness assumption for the two point VEV we see that the fun-

ction G(s ±.;o) should be bounded for large positive {IS 

well as negative values of s by a polynomial. 

The example of an analytical function, satisfying all 

requirements mentioned above is provided by the analytic 

continuation of free field VEV, defined as follows 

m2 
G (z 2 ;m a).-

o Brri 

If!'< mz) 

---~-'· (2.6) 
mz 

x) This determination is, of_course, a partial one. Only 
for generalized free field G(z 2 l determines the algebraic 
structure completely. 
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The discontinuity (2.1) along the positive role axis is 
described by the functionX) 

2 I 2 J (mA) 
~(s;m ). --lll<s)- lJ(s)...!!... 1 I, 

4tr 
2 2 m A (2.7) 

where s•A
2 

, and the light-cone behaviour is determined 

by the singularity of G 0 (z
2 

;m 
2 

> near the point 

2 2 I 
G (z ;m ) ••--;-

0 4tr --,-
z 

+ finite terms (2.8) 

We see that the light cone singularity is mass-inde­

pendent, and because it leads to the canonical commutation 

relations it will be called a canonical singularity. The 

interacting fields have, however, different singularities 

on the light cone. In the following we shall assume that 

the only singular point for the distribution (2.1) is the 

light cone, "= o, and that the distribution ~(s) for large 

s is described by a real function, satisfying the con­
dition 

A 
l~<sl I< 5 ~ ·• (2.9) 

The first requirement means that the main part of the per­

turbation propagates without· delay along the light cone, 

and the relation (2.9) determines the ~symptotic behaviour 

of the action with very large delay timeXx). 

x) The analytic representation of 8(sl is-~ and 8(sl is 
generated by - ln (-z2) (see/5/ and/13/). z 

xx) The value 3/4 of the inverse power in (2.9) can be jus­
tified by the requirement of positive-definiteness of the 
metric in the space of physical states. 

8 

~ 

We shall consider in this paper the following 1 

ses of light-cone singularities 

and 

(k) I 

~k (s)a 8 (a) k .6,1,2,,_ 

-f 
~ (s)~" 

f + 
l- 1,2,3 ••• 

The results can be generalized also to more ge1 

cases, particularly to the case when f is a contin1 

dex. 
(k) 

a) 8 (s) (k =0,1 ,2". ). 

The simplest generalization of the formula (2.1 

introduce other Hankel functions of the first kind, 

the argument mz • It can be easily shown that- onl: 

combination of Bessel functions and Nuemann functio: 

tisfy the temperedness assumption for space-like di 

( z 2 negative, imz- real and positive). We introduc 

following fami~y of analytic functions, which can b 

for the description of the analytically continued V 

G (z 2 ;m 2 l=(_!_)n G (z 2 ;m 2 ) 
D d Z 2 0 

Using the formula 
(I) 

d D 

<-> 
zdz 

H(l)(t) 

!___ 1=<-nn 
z 

H (z) 
D +I 

z n+l 

one gets the following result 
. D I 

G ( 2 2 ) (-I) • 2 n+l H ( m z) 
a z ;a = --<-) a+l 

4tr" 2 -----------------
1 (mzl n+l 

(I) 

Using the expression for the Hankel function Hn (mzl 

gets 

9 
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i 
•·I 

I 

I 
I 

(-l)D m 2 D 
G (z 2 ;m 2 l= -·<-l 1[2y-fn4 + fn (-m2z 2)). 

-
1 4fT 2 2 

J n (mzl ..-1 a , _____ ,_,_I_, l: Dlk I oo 
- l: b 2 " looO n;k ( m z ) k 

( mz) n fT loooD ( mz) 2(n-k) 

where y =0. 577 (Euler constant), 

a 
Dlk 

b 
n&k 

n-k (n -k -Il! 
- 2 k! 

k C +C 
(-1) kf<t D 

~k k !(k+n)! 

c =I +-L+ ·----. + • 2 " 
c =0 

0 

and the relation t.. (-m 
2

z 
2

) - 2 t.. mz + i " 

We obtain the following discontinuity: 

t (s;m
2

),. _I_,I G (s+iO;m 2 )-G (s-iO;m2 ll 
n-l 2tr i n-l n-1 

..-1 (-ll k m 2k (n-k-1) 
l:----8 (sl+ 

4fT 2 looO 4 k kl 

m2 n 6(s) 
+ <--,) -··· 

2 4fT 2 

J n (m A) 

G.A):r 

(2.14) 

(2.15) 

has been used. 

(2.16) 

The leading light-cone singularity, is mass-indepen-
dent and equal to .....1-.. s<n>.(,. l . Putting m•n one gets 

4,2 
n! G n ( z 2 ;0.) • ..t!2..:'+1 

4fT 2 (za,m+1 

leading to the result obtained in/ 5- 81 
e (s ;0)., _I_,[)cn> (s), 

D - 4fT 2 

10 

(2.17) 

(2.18) 

~ .. 

\I 
A I. 

lj 
''I 

\ I, 

The formula (2.11) can be easily generalized. We 

G (z2;m2)a(z2)' G (z 2 ;m 2 ), 
n,r 

where -n $. r ~ n • The leading singularity on the l 

for e (s 1 m 2 ) is independent On m 
2 and proportiC 

n&r 

particularly interesting class one gets by the fo: 

choice 
I m 2 k 

G (z 2 ;m 2 >=- -( -> 
B (l) (mz) 

2k 

2k -1&k-1 4fT i 4 z 2 

(k =I,2,3.-l 

with leading singularity on the light-cone descril 

limit m 
2 

.. o 

G 2k-1&k-1 (z 
2 

;Ol,. 
417 ll 

( 2k-3 lt -(z ll)k+l 

It will be seen in Sect.3 that the functions (2.2 

pond to the case of polynomial behaviour of the K 

mann spectral function 
. f b) .. - (f-I,2,3.-l. + .. 

In order to describe ~he singularities (2. 

we introduce th& following a~alytic functionx) 

G (z2 '"2 
1 

Using the formula 

1 

>--
4 "i 

B (!) (m z) .. 
z2 

B(1)(mzl= ..!....[y + ..!.t..(-m 2 z 2 )-fn2] J (mzl + 
0 " 2 0 

2. oo (-l)n 
--1.-l: - J (mz) 

" ...0 n lin 

one gets 

x)~It can be mentioned that one obtains (2.22) f 
by putting n-o. r•- 2 ' 
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• I ., • e (s;m 2 ). -IG (s+i0;m 1 )-G (s-iO;m2 ll,. 
1 2rri I 1 

(2.24) 

I -1 I 2 +,. _,g J (rnA)- -::r<fn m -2y + fn4)8(s) 
4 rr 2 + 0 4rr 

We see that the function (2.19) does not allow to perform 

the limit m 2 ~o • The logarithmic term, which becomes in-
·-t-

fini te with vanishing m 2 , occurs in the solutions deriva-
tive coupling models in two dimensions/18,19/ and four di­

mensions/20.21/. In order to get only the singularity s-1 
+ 

one should subtract from the function (2.19) the following 
"counterterm" 

[ fn m 2 + 2 ( y -ln 2) ] G 
0 

( z 2 ; p. 2), 

(2.25) 

where the mass p. 
2 is in general case not related to the 

mass and particularly can be chosen equal to zero. 

In order to get the singularities (2 .lOb) with f= 1,2,3 •• 

one should introduce the following analytic functions 

• d f'-1 
2 2 "' a 2 Gf(z ;m ),.,(_,) G(z,m ). 

d z 2 1 

Using the formula 

one gets 

d D D 

( - > 'H < z > .. <-0 
z dz 0 

If0<z) 
D -· z D 

.. f-t (f- I)! 
G (z 2 ;• 2) • --l..--.(-1) -

l 4•i (z2)f 

I-t (1) 
l: .!... ( ....&.~...) 8 

H (m z ) • 
- nJ 2 n. 

12 

(2.26) 

(2.27) 

(2.28) 

'i) 

I 

--I , I 

The formula (2.28) implies the following leading 1. 
ne singularities 

• I f-1 -1. e ( s ; m 
2 

) = -·(-I) ( f -U ! s -
f 417 2 + 

1 cf-1> -l+t 
_,-lfnm 2 +2(y -fn2)+c 18 (s) ·Of- O(s ). 

4 rr 2 f -t + 

Introducing suitable counterterms (compare with (2 

one can cancel out all terms with delta functions 

Another way of introducing the light-cone_ si1 

ties of type (2.10b) is .to multiply the functions G 

by the function 

ple 
fn (-z 

2 
). . Let us consider fo: 

G fn ( z 2 ;m 2 ) • fn(-z 2 ) G ( z 2 ;m 2 ) • 
0 0 

c: 

The discontinuity of (2.30) is given by the formull 

fn 2 J 
1
(m A) 

e < s , m 2 
> .. -L.1 s -t - fn .. ...!.. ·I • 

0 417 2 + + 2 m A c: 

The differentiation of (2.30) with respect to z
2 14 

analytic functions with the discontinuity e<s> hav: 

gularities only of the type (2.10b). 

3. The Analytic Representations and Noninteg1 

Kallen-Lehmann Spectral Functions 

The two point functions are usually describ4 

means of the spectral function p(K
2 l which repre~ 

a Lorentz-invariant four-dimensional Fourier transJ 

the distribution {<x 2
> • In this Section we shall 

the analytic representations, corresponding to som• 

dard choices of nonintegrable spectral functions. 

13 



I "' '" 
)= -1 G (s +i0;m 2 )- G (s-iO;m2 ) I ,. 

211i l I 
(2.24) 

-1 I 2 
S J (m .\)- -:-:r<l'n m -2y + l'n4l<'i(s) 

+ 0 411 

the function (2.19) does not allow to perform 
2

40 • The logarithmic term, which becomes in-

vanishingm 2 
, occurs in the solutions deriva­

ng models in two dimensions/18,19/ and four di­

.21/. In order to get only the singularity s;t 
subtract from the function (2.19) the following 

~· 

[ fn m 2 + 2 ( y -ln 2) ] G 
0 

( z 2 1 p. 2 ), 

(2.25) 

ass p. is in 

rticularly can 

er to get the 

general case not related to the 

be chosen equal to zero. 

singularities (2.10b) .with f..,1,2,3,. 

introduce the following analytic functions 

d l'-t 2 
lm 

2
)., <-> c"" (z ~m 2 ). 

d z 2 I (2.26) 

ormula 

d D D 

- l 'H ( z l ~ (-I) 
z dz 0 

If1>(z l 
D 

z D (2. 27) 

f-t (f l) I 
(z 2 ;m 2) • --1._.(-l) --=--.:. 

411i (z2)f 

.l... (-ILL.,)• H(l)(mz), 
nJ 2 

(2.28) 

12 

.,.. 

·;~ 

'I 
'·I 

t 

The formula (2.28) implies the following leading light-co­
ne singularities 

• ' 1 f-1 -l 
{ ( s I m 

2 
) "' -·(-I) ( f -1) ! a 

' t 411 2 + 

1 <f-t) -l+t 
-·-·fl'nm 2 +2(y-f'n2)+c 16 (a)'>~-O(a ), 

4 II 2 l'-t + 

(2.29) 

Introducing suitable counterterms (compare with (2.25)) 

one can cancel out all terms with delta functions. 

Another way of introducing the light-cone_ sing~lar1-
ties of type (2 .lOb) is to multiply the functions G (z 2 ;m ll ) 

D 

by the function 
pie 

fa (-z 
2 

). • Let us consider for exam-

£. (2.30) G (z 2 am 2 ) • fn(-z 2 )G (z 2 1m 2 >. 
0 0 

The discontinuity of (2.30) is given by the formula 

l'n 2 1 -1 .. 
2 J 

1
(m A) 

e <s;m >=-Is -fns - "· 0 411 2 + + 2 mA. (2.31) 

The differentiation of (2.30) with respect to z 2 leads to 

analytic functions with the discontinuity e<s> having sin­
gularities only of the type (2.10b). 

3. The Analytic Representations and Nonintegrable 

Kallen-Lehmann Spectral Functions 

The two point functions are usually described by 

means of the spectral function p(K 2 ) which represents 

a Lorentz-invariant four-dimensional Fourier transform of 

the distribution e<x 2
> • In this Section we shall fin~ 

the analytic representations, corresponding to some stan­

dard choices of nonintegrable spectral functions. 

~ 
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Let us write the Kallen-Lehmann spectral representa­

tion in compl~x coordinate space 
00 

G(z 2 ) =j p (K2 )G
0

(z 2; K2)dK 2 (3.1) 

We shall consider (3.1) for z 2 

for z .. ;;.. + i'l 
1 

where z lies in 

function G 
0
(z 2 IK 2> behaves for 

integral exists for all locally 

off the real axis, i.e. 

upper half pla~e <71>0l, The 

large K like e -ICfJ and the 

integrable p(K 2 lCS'(R )' 
+ 

Now we shall introduce the following operator, acting 

on complex variables z 
p. 

a a ., d ~ 2 __ ,f(z2l•D l(z2),.-4(-·) [zf(z )], 
a. a.P. • dz 2 (3.2) 

p. 

Using the identity 

d 2 (I) 2 (1) 
z(-) zH (mz)+m H

1 
(mzl=O 

z d z I 
(3.3) 

one gets 

<D. -x2)Go(z2;K2 ) .. O (3.4) 

and 
2 00 f 0 G(z ) .. J(K 2) p(K 2)G (z 21K 2)dK 2 

z 0 0 
(3.5) 

Using the formula (3.5) one can alwJys relate the spectral 

function p(K 2 l which is locally integrable and belongs toS<Ilt 

with a function having a Hankel transform on the real axis. 

We in·troduce in general for 'I > o 

• oo (I) li 
g(zlcfg(K)H (Kz){Kzl dx, (3.6) 

If 8 <Kl c L 
1
(o, oo l 

also if 'I • o 22 

(3.1) as follows 

~ 

0 I 

the transform (3.6) necessarily exists 

. Using (2.6) and (3.6) one can write 

14 

2 1 .. G (z )., J g(z), 
41ri z 3 ~ 

where 
g ( K ) • p ( K 2 ) K 3/2 0 

Our method of determining the analytic representat: 

nonintegrable spectral functions will be based on ~ 

lowing two steps: a ) We take from the tables of i1 

transformsX) the Hankel transform (3.6) for 

g re ( K) • p (K 2) K 3/2 . "• -
8/2 

p(K 2 )K 
(K ~)n 

where is chosen sufficiently large,. 

~) We use the formula (3.5). 

We see, therefore, that every spectral function wi· 

having the real Hankel transform (3.6) generates tl 

ly of analytic representations for all two-point f1 

With the Spectral functiOnS Of the form g(K)(K 2) n 

We shall consider below two such families: 

a) p(K 2 )=0(K 2-,m2 )(K 2
)k (lts-1,0,1,,.,) • 

Let us consider firstly It .. -1 • From (3. 8) fol101 

one should find the Hankel transform (3.6) withg~l 

One gets/ 23 / 
2 ~ 1 00 -K (I) li 

A (z ;m ). JfK 1f·1 (Kz)(Kz) dK • 
-I 41riz 32 m 

------, H(l) 4wi z2 0 (mz), 

x) See, for example,/23/. 
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Let us write the Kallen-Lehmann spectral representa­

in compl~x coordinate space 
DO 

G(z 2 l=jp(K2 lG 0 (z 2 ;K 2 )dK 2 • (3.1) 

11 consider (3.1) for z 
2 off the real axis, i.e. 

z =A. + i., where • lies in upper half plane <.,> Ol. The 
I 

tion G 
0
(z 2 

;K 
2

) behaVeS fOr large K like e-«ff and the 

al exists for all locally integrable p(K 2 l c s '(R )• 
+ 

Now we shall introduce the following operator, acting 

the identity 

p. 

f(z 2 )c- 4( ...:._)
2 

[ zf(z 2 )]. 
d z 2 

d 2 (I) 2 (I) 
z(~) zH

1
(mzl+m H

1 
(mzl=O 

<Oz -K
2 lG

0
(z 2

;K
2 l=O 

2 DO f 
G(z l=f(K 2 l p(K 2 )G (z 2 ;K 2 )dK 2 • 

0 0 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

the formula (3.5) one can always relate the ~pectral 

ion p(K
2 

l which is locally integrable and belongs tos<~ 

having a Hankel transform on the real axis. 
roduce in general for ., > o 

.. DO (I) IS 
g(zl=fg(K)H (Kz)(Kzl dx. 

0 I (3.6) 

K) c L 1 <o, DOl the transform (3.6) necessarily exists 

if "'• o 
22 

• Using (2.6) and (3.6) one can write 
as follows 

14 

.... 

2 I • G (z )., / g(z), 
4rri z 8 2 (3.7) 

where 
g ( K ) • p ( K 2 ) K 8/2 • 

(3.8) 

Our method of determining the analytic representation for 

nonintegrable spectral functions will be based on the fol­

lowing two steps: a. ) We take from the tables of integral 
transformsX) the Hankel transform (3.6) for 

g rec ( K) • p (K 2) K 3/2 
rec • 

a/2 
p(K 2 )K 

(K 2)
0 (3.9) 

where is chosen sufficiently large,. 

~)We use the formula (3.5). 

We see, therefore, that every spectral function with g(~) 

having the real Hankel transform (3.6) generates the fami­

ly of analytic representations for all two-point functions 
With the Spectral fUnCtiOnS Of the form g(K)(K 2 ) 0 

a) 

Let 

one 

One 

We shall consider below two such families: 

p ( K 2) =8 ( K 2 -•m2 ) ( K 2) k (lt .. -1,0,1,."). 

us consider firstly It= -I • From (3. 8) follows that 

should find the Hankel transform (3.6) with g(K) .. 8(K-m)K-~ 
getsl 231 

2 2 l DO -K (I) K 
~ (z ;m )• 7/K H 1 (KzHKz) dK • 
-t 4rr i z 8 2 m 

(3.10) 

. u<t> .a· 0 (mz). 

x) See, for example,/23/. 

~ 
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I 
We see, therefore, that the analytic function (2.22) 

describes the two-point functions characterized by loga­

rithmically divergent wave renormalization constant. Be~ 
cause 

2 2 ~- d I( 
2 

2 2 
A (z ;m l= f -- G (z ; K. 

-t -2 I( 2 0 

(3.11) 

it is clear the origin of the term ~- 2 in (2.24), des­

cribing the infrared divergence of the wave renormaliza­
tion constant. 

The results for 

tion (3.5). We have 

k .o,t ' ... one gets using the rela-

2 2 .... 22. k+l 2 2 
A ( z ; • ) • j dK. 2 (K. 2 ) • G ( z ; 1< -, "'0 A ( z ; m ) • 

.. • 0 2 _, 

Using the formula 0 =-•z 2 
< -:4 l 2 ..:a~ 

• dz dz 

the most interesting cases k -o and k • 1 

A o(z2 ;.2)•-

and 

•' . (I) 
-~H (.,z 
,, i z 2 2 

:1 2 .2 (I) .• 
A (z ;• l•--H <•zl• ----

t '" i ,.' c "i z a 

(I) 
H (,.,. ) • 

3 

I 

(3.12) 

one gets for 

(3.13a) 

(3.13b) 

We see that for k•-• and k -o we obtained up to some con-

stant factor the analytic functions (2. 20). For k ?:,I one 

gets also some additional teras proportional to the funN 

ctions G~l&O (.z), G t+!l;l (-) ••• G ~l+lt I (•zl- G 2ttt-l (•z ), 

All these functions contr~bute to the leading light cone 

singularity, which can be obtained if 

for k•l we get, using the foraula 
(I) . i I -. 

H (z) •--(..,....,.) (a-0! 
D ..0 rl ~ 

16 

~ 

.... 0 • For example, 

that 
A (z 2 ;0). --

8
-. ,-2._ 

I 2 4 
71 z 

and both terms in (3.13b) contribute to the result 

b) p(K 
2

) a0(K 
2
-m

2 HK 2 ) kfnK 2 k=-1,0,1, .. • 

Firstly we shall consider the case k=-1 • Q 

after somewhat tricky calculations the following es· 
at z "' o x): • 

foe 2 , m 2 ) • - -~-~----a72 
A (z • 471iz 

_, "" fo K 2 (I) ~ f ---;r-H 
1 

(Kz)(Kz) dK • 
m K 

3 

"'8;T 
fn 2z 2 fn z 2 

- ................. ~. + 0 ( ---;-r 
z 

and the discontinuity (2.1) has a following leading 

larity 
foe 2 

~ .(s; m _, = ..l!...tn s .. _, + 0 (" ''1 

871 + + 
) . 

c 

Applying the operator (3.2) one gets 

fo,. 2 "" lL 2 2 2 
A ( z ;m 2 ) • f ( K. 2 ) k fnK. l> ( z ; K. ) d K a 

k 0 
m2 

0 
,. 2 

(-1) k 3.4 k-1 • :(k!) (k +0 - fn z 2 + O( __ 2_(k_+_2):-

z 712 (z 2) t + 2 

x) A complete formula for A~~ 
cond part of this paper. 

will be given in t 

17 
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We see, therefore, tha~ the analytic function (2.22) 

es the two-point functions characterized by loga­

ally divergent wave renormalization constant. Be~ 

2 2 dK
2 

2 2 
~ (z ;m l=f --G (z JK 

-1 ID 2 /( 2 0 

(3 .11) 

clear the origin of the term &. 2 in (2.24), des­

infrared divergence of the wave renormaliza­

tant. 

for 

We have 

k .o.1 , .•• one gets using the rela-

2 ... k 22. k+l 2 2 
m ) • ( dK 2 (K 2 ) • G O ( z I K I •0 fl. ( Z JID ) o .. ~ 2 -· 

2 d 2 d the formula 0 --•z < -:--r) ..;a --; 
" dz dz 

st interesting cases k -o and k- 1 

A. 0 ( z 2 ,. 2). -
,.2 -H(U( 

---- IDZ 
.,. iz 2 2 

2 ., 2 (I) • a 
;• l·--H (mzl·----

4 .. i z 2 4 rri z 1 

(I) 
H (.,z) • 

3 

(3.12) 

one gets for 

(3.13a) 

(3.13b) 

that for k•-1 and k -o we obtained up to some con­

actor the analytic functions (2. 20). For k?!, 1 one 

so some additional terms proportional to the fun~ 

Gk+l~ (,.z), C k+Z;I (-) ••• G k+l+l; I (azl- G 21<;k-1 (.,z ), 

se functions contri~ute to the leading light cone 

ty, which can be obtained if • .. 0 • For example, ... we get, using the formula 
(I) . i I -.. 

H {z) •--(-z) (a-1)! 
D - 8' 2 

16 

..... 

that 
A 2 ) 8 I 
Ll 1(z ;0 • --··-

11 2 z 4 (3&14) 

arid both terms in (3.13b) contribute to the result (3.14) 

b) p(K 
2

) .. O(K 2 -m 2 )(K 2 ) k&K 
2 kz-1,0,1.,, • 

Firstly we shall consider the case k=-I . One gets 

after somewhat tricky calculations the following estimate 
at z ,. o x} : • 

flo,. ll 
2 

) - -~~--~372 A. (z ;m 4n-iz -I 

'"' fn" 2 (I) ~ 
-f ---;r-H 

1 
(KzHKz) dK • 

m K 

(3.15) 
3 fn

2
z 

2 
&z 2 

"' ;;-:"T 2 + 0 ( ---r-
Bn- z z 

and the discontinuity (2.1) has a following leading singu­

larity 
flo., 2 

~ .(s; m 
-I 

= ...!..& " "-1 + 0 (.. . •• 
8n- + + 

) . 
(3.16) 

Applying the operator (3.2) one gets 

floc 2 "" a. 2 2 2 
fl. (z ;m 2 )-/(K 2 )kfnKli (z ;K )dK • 

k 0 
m2 

(3.17) 
2 

k k-1 '(k!) (k+l) & ll + 0( ----( I) 3.4 • . - z z 

,,. 

"2 (z 2) k + 2 

x) f .. to,. A complete ormula for '-' _1 will be given in the se-
cond part of this paper. 
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'' i 

and one can check easily that the leading singularity is 
ot a type (2.10b). 

Finally, it should be stressed that even when 

fp (K ~ ) 1t K d 1t ~ < oo {3.18) 

what assures that the Hankel transform (3.6) exists for 
q-o , the function G 0 (zJK~) cannot be expanded under 

the integral into the powers series, because the coeffi­

cients of consecutive powers will not exist. If w~, never­

theless, use such method, it is wasy to see that the dif­

ferentiation (3.5) will not produce any noncanonical sin­

gularities. Indeed, "the terms occuring in power expansion 
of G0 ( z ~Jm ~) are..!.; , lnz~ (z 2 )k (k..O,I .. ) and (z 2 ) It. Be-

z 
cause 

0 ..L- 0 
• z 2 

0 (z 2 )k •·-4 k (k+l)(z 2) k-1 

• (3.19) 

k k-1 2 k ~ 2 k -I 0 foz2(z ~q •-4lk(z 2) +2(k+ll(z ) ·+k(k+l)foz (z ) I 
• 

the differentiation (3.5) will again reproduce only the 
terms occuring in G0 < z 2 J m 2 ) We see, therefore, that 
noncanonical terms can be easily lost if we use unjustifi­
ed mathematics. 

4. Remarks about the Renormalization Procedure 

It has been mentioned in Introduction that the wave 

renormalization constant measure the modification of free . 
field singularities.One introduces the cutt-off dependent 
wave renormalization constant 

18 

~ 

z-
1 

<A2 
) , where a 

-t 2 
z <A l 

a 

A2 

fp(K 2)dK2 
0 

and one studies the limit 

z -
1 = lim z -I (A 2 ), 
3 2 3 A .... 

Different types of infinities correspond to diffe1 

pes of noncanonical singularities. 

The wave _renormalization constant can be, h< 

defined by means of the analytic representation G( 

follows 
-1 

z - lim 
z 2 .... o 

G( z 2 ) 

G (z2) ' , 
0 

where the function G 0 (z
2 l can be characterized b) 

mass. Similarly, one can introduce the unrenormali 

parameter m 2 by means of the following limit 
0 

m 
2 ~ "J'im 

[}:(z2) 

0 z 2 .... 0 G ( z 2 ) 
0 

It is easly to see that for the free field G(z
2

l=G 

one gets m 2 = m 2 
0 

, and in general case 

2 A2 2 
m • lim f K2p(K 2 )dK 

o A2 ... ~ 

These two characteristics of light-cone singulari, 

out from the comparison with the free field case. 

possible, however, to introduce generalized wave-: 

lization constants z :-1 describing the light-c 
ol n 

gu1arity compared with the singularities of the • 

functions Gn (z
2 

;m 
2

) 

We defineX) 

x) Particularly, -1 z 
a1o 

for z 2 
.. o 

-t = z 
3 
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can check easily that the leading singularity is 

it should be stressed that even when 

fp (I< 2 ) I< li d I< 2 < 00 (3.18) 

es that the Hankel transform (3.6) exists for 
function G 0 (z;~~: 2 l 

into the powers 
cannot be expanded under 

series, because the coeffi-
consecutive powers will not exist. If we, never­

use such method, it is wasy to see that the dif­

tion (3.5) will not produce any noncanonical sin­

es. Indeed, 'the terms occuring in power expansion 
2 J m 2 ) 

.. 0 

l are­
z2 

, lllz
2 

<z 
2 >t (k..O,I"l and <z 2 >.,. Be-

(z 2 ) k • -4 k ( k + l )( z 2 ) k-t 

(3.19) 

fnz 2 (z 2)k m-4lk(z 2)k-t+2(k+l)(z 2 )k ·+k(k+l}fnz 2 (z 2)k-t J 

again reproduce only the 
ing in G0 ( z 

2
1m 

2 
l • We see, therefore, that 

• 1 
can be easily lost if we use unjustifi· 

Remarks about the Renormalization Procedure 

has been mentioned in Introduction that the wave 

zation constant measure the modification of free 

arities.One introduces the cutt-off dependent 
rmalization constant ;'<A2 l, where 

8 

18 

... 

-t 2 <A 
A2 

fp(K 2)dll: 2 

0 

and one studies the limit 

z -t ,. lim z -I (A 2 ), 

A 2_."" a 

(4 .1) 

(4.2) 

Different types of infinities correspond to different ty­

pes of noncanonical singularities. 

The wave _renormalization constant can be, however, 

defined by means of the analytic representation G(z 2 >as 

follows 
-I 

z -lim 
z 2 .... o 

G( z 2 ) 

G (z 2) • , 
0 

(4.3) 

where the function G 0 (z
2 l can be characterized by any 

mass. Similarly, one can introduce the unrenormalized mass 

parameter m 2 by means of the following limit 
0 

[JG(z2) 

G ( z 2 ) 

m 2 ~··£im 
(4.4) 0 z ~..,. 0 

0 

It is easly to see that for the free field G(z 2 l=G 0 (z 2 1m 2 l 

one gets m 2 ::!!:: m 2 
0 

, and in general case 

2 A2 2 
m •lim J ~~: 2p(K 2 )dl< 

o A2 .. ~ 
(4.5) 

These two characteristics of light-cone singularity comes 

out from the comparison with the free field case. It is 

possibl'e, however, to introduce generalized wave-renorma:!' 

lization constants z;:. describing the light-cone sin~ 

gularity compared with the singularities of the analytic 

functions c. (z
2 

1 m
2

) 

We definex) 

x) Particularly, z -I 
~ 3;0 

for z 2 
... o 

-I = z 
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I 

I 
i 

I I 

I I 

~-I • fim a, a • 2.oo 

G (z 3
) 

G (,.?) 
D 

(a .. o,1_. l. 

It follows from the postulate of positive 

(4.6) 

metric in the 
space of physical states, that z ~ ~ 1 • If z .-;: • .. 

it can be found however, always such n that z-1 <•. 
, ~D 

5. Conclusions 

In this. paper we have introduced new class of ba~ic 

two-point functions, describing noncanonical two-body for­

ces, more singular in static approximation than the Yuka­

wa term. This modification of 1/r singularity is caused 

by the exchange of infinite number of quanta with very 

large momenta. In usual appraoch such process leads to ul­

traviolet divergencies and the necessary of infinite renor­

malization. In our approach we introduce some objects, cha­

racterized by the continu~us mass spectrum, and formed out 

of infin~te number of quanta. These objects x) are chosen 

in such a way that the "one particle exchange" approxima­

tes in a correct way the short distance singularity for 
complete two-body forces. 

1
. 

The presence of noncanonical forces modifies the in­

teraction at very small distance in such a way that the 

notion of charge and mass for these distances are not valid. 

Indeed, the charge and mass can be defined only under the 

assumption that the interaction has ( in static approxima­

tion) the Yukawa form. One defines the unrenormalized, pa· 
rameters as follows 

xJ In/24/ the free field with polynomial spectral functions 
have been called the "inverse multipole field". 

20 

_.. 

.,
2 =tim ( v1rlr ) 
0 ... o 

a3 
,. 3 • tim -·(V(r) r l. 

0 ... o a r 3 

The formulas (5 .1), (5. 2) give infinite results becat 

Yukawa law for very small (we call them submicroscoJ 

distance is modified. 
If we consider two-body forces one can always 

·them into tw~parts: with 1/r singularity (canonic 

terms) and wit~ the singularity stronger than 1/r (1 

canonical terms). The submicroscopic distances are c 

by the requirement that the effects of noncanonical 

cannot be neglected. The validity of perturbations c 
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G ( z 2
) 

(4 .6) • fim 
zl40 G (z2) 

( D -=:0, l ... ). 

n 

from the postulate of positive metric in the 
physical states, that z;~ ~ 1 • If z,-;: ... 

found however, always such n that z-1 <oo. 
. ~n 

5. Conclusions 

this paper we have introduced new class of basic 

functions, describing noncanonical two-body for­

singular in static approximation than the Yuka­

singularity is caused 
ange of infinite number of quanta with very 

ta. In usual appraoch such process leads to ul­

divergencies and the necessary of infinite renor­

. In our approach we introduce some objects, cha­

by the continuous mass spectrum, and formed out 
number of quanta. These objects x} are chose"n 

way that the "one particle exchange" approxima­

n~~oct way the short distance singularity for 
-body forces. 

presence of noncanonical forces modifies the in­

at very small distance in such a way that the 

charge and mass for these distances are not valid. 

charge and mass can be defined only under the 

that the interaction has ( in static approxima­

Yukawa form. One defines the unrenormalized, pa· 
follows 

the free field with polynomial spectral functions 
called the ''inverse multipole field". 
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by the requirement that the effects of noncanonical terms 

cannot be neglected. The validity of perturbations expan­
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cal terms of above classification and cannot be used for 

submicroscopic distances. Using first orders of the pertur­
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We see easily from (5.4) that it is not possible to detect 

scattering experiments; the modification of the Coulomb 

law singularity, and particularly, the Paull-Villars regu­

larization procedure, removing noncanonical terms, can be 
usedx). To the contrary, it is easy to check that the esti­

mate for strong interactions leads to the range of submic­

roscopic distance overlapping with the values of scattering 

parameters in present high energy experiments. We see, the­

refore, that the convertional perturbation expansion cannot 

be used, and some other approximations, suing perhaps the 

propagators introduced in this paper, should be developed. 

The author is indebted to ProfesSors R.Haag, G.Kallen, 

and R.F.Streater for helpful discussions at the V-th Winter 

School ·of Theoretical Physics in Karpacz. 
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