








but we extend the formalism so, that it allows to t:
into account also the strength of interaction of the in
vidual states with the state of decay products.

We shall suppose that the Hamiltonian of the whi
system is in general non-hermitian and derive at fi:
the general form of the time dependence for all probabi
ty amplitudes. Then we derive the general relations b
ween the various matrix elements of the Hamiltonian.
the requirements of time-reversal invariance and of rea
ty of all interaction parameters are added, it can
shown, that only two real parameters, i.e. the mass
rameter M and the decay parameter I' , are :ft as fr
Thus in a different way, starting from more general :

sumptions, we come to the same result as in paper/l/

2. The Time Dependence of Probability Amplitude

Consider a particle existing in two different sta
| s® > (a=1,2) | which change mutually one into the oth
Let this particle decay spontaneously and the behavi¢
>f the whole system in the time t 20 be described acco
ing to general laws of quantum mechanism by the equati

~{H t a 2 B
e |s >=Za ét)]s >+2 fe Lt,A,r) (A, r)>dr, (D
Bt @ Ar a

—-1H
e t|'<;15()t,r)>’sad(t,)«,r)li;ﬁ()«,nt)> r>0, (2)

there the parameter A represents all labels of the st:
>f the decay products and r describes the time evolut:
>f this state. The parameter r has a continuous sp¢
trum; it has the dimension of time and determines 1

listance of the individual decay products from the cen
»f mass.



Let us suppose further that the following conditions
are fulfilled

<salsﬁ>=3 (3a)
a

R

<s®*|p (A,r) > =0, (3b)

<HA, 1) | A, 1) >=8,,8(r=1") (I

and

a 0 =8 (4a)
a

From the equation (2) it ¢ so follows immediately

d(0,A,r)=1 . (4c)

With the help of equation (1), (3ab) and (4a) we get
the relations

2
a (t+t’ )= 2 a (1) ) (5
ay gt B "By

and for the system with double-pole behaviour we can write

/3/)

(see

~1put -t
a,(t)=e (1+ yt), a, (th=e I“y(t,

(6}

- 1t =
-a, (t)=e -fz-vt, a22(t)=em(l-—yt ),

where the parameters p, y.c¢ are so far entirely arbitra
ry constants.

By similar procedure which led to relations (5) and (6
we can get also the general form of time dependence o



ability amplitudes 4 and ¢, . From the relation(2)we
in
dlt+t 7, A, 7)=d(t A, r)d(t ", A, r+t). (g

.f we write

-1é@, A0
d(t,A,r)=e (8)

>t after interchanging t and t°’
EG A, =8 A, et =607, Mr)=EG A, e,

an be proved that this equation may hold for arbitrary
. T only if both sides of it are identically equal

ero; £(t,Ar) is independent of r . Then according
quation(7) it holds

E(+t,A) =60, M+€E07,Q)

herefore

-1€e

d(t,A,r)=¢ s 9)

e ¢ may depend only on the parameter A . Differen-
ing eq.(2) according to twe obtain with the helplof (9)

HigA, r}>=fldp( A,r)> (r>0); (10)

we may replace the A by a pair of parameter (£.A),

w

A labels all degenerate states belonging to the same
of ¢ .

We derive now the time dependence of the integral
itudes of the decay states. Using the equation (1)
with the help of eq. (5) we obtain

w

’ A,r)>dr =X S A BN, r > dr
t+t", A, 7 (A, r)>dr ﬁ)«’{a“ﬁ(t)c (% A, 1) (A7 +

+§fca(;,)«,r ) e=tHt” |(A,r)>dr, an
r






ity c,(t) means the amplitude of the proba-
e system, which at time t=0 1is in the state

be at time '>0 in some of the states of the
Therefore

lc WP <1
a =
every t . Writing now

p.=M—iI;_ 17

eal and eliminating the trivial case T =0,

r
lm(f—p.)= —2—> 0, (18)

ce the total-energy distribution of decay
lations

D2 & =] c (e)]® mt k-],
1 1 4

2 2 . 3 (192
D2 (£) =]C (=)] =4“P1K+L| .

D, and D, are real functions of ¢ , ful-
.ations

D,(&) >0, Dz(f): 0, (19b)

Spidé =fD2ata1. (19¢)

;e =0 it holds identically

K=L=D=D,=0 (20a)

ymdition

2

3
laall +laa2| =1

y = 0 . (20b)






introduced

<sa|H|sB>=G#3, (27
<SS H|G (A, r)>ag ()5 (r), (28)
a
S e (t,A, 0)=X (t). (29)

Aa a

e summation over the variable ¢ has been
ttegration; p( &) is the density of terms.
he relation (26) we have used eq.(3ab) and

<sy|Hl¢(A,r)> =0 (r>0),

from the relations (10) and (3b). At the
have supposed that the quantity g, depends
arameter ¢ (and not on A ). The explicit
2 of the matrix elements in eq. (28) repre-
e first assumption, which limits the appli-
equations (1-4).

to solve equations (26) we have to mention
al properties of the coefficients e (1,A,r)
on (1). With regard to equations (2) and (9)
1e relation

~1&r°
Jme c (t=r",A,7r=7") (r’<r ),
a

limit r’=r may be rewritten as

~t1ér
ca(t,)t,f)ae ¢ ca(t-—r,/\,o). (30)

help of equations (13), (4b) and (30) we can

t
C (t)= fEelf' e (t—=r, A, 0)dr
a o° A a
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or ~tft t 1€y
Ca(t)=e of%:\e ca(y,k,O)dy,

Differentiating this equation according to: and using(29)

we get

3 Ca

X (t)=
a dt

+ i&cC (v, (31)
a

Solving now the equation system (26)we obtain with the
help of (6), (31) and (16)

GaB=y5#3+iF#3+ifgang(f)df, (32)
where
Y
Y -
F = ( ) (32a)
of €7 =Y
and the quantities g, e defined by (25).

The equations (32) together with the (25) represent
the general relations between the gquantities Gaﬁ.ga(f)
and g, (&) , i.e. between the matrix elements of the non-
hermitian hamiltonian ® . If we now demand the whole
description to be invariant under the time reversal, we

obtain

(;12=Gﬂl N ga(£)=2A—ga(§)=Ea(f)P'(f), (33)

where p’ (£€) is the number of all degrees of freedom for a

given ¢ . From the (32) and (33) it follows immediate-

1
y € =4+ i ; (34)

the matrix F defined by the (32a) is symmetric (see

alSO/S/\- The other complex parameters. i.e. u.v. K (&)
and L(®,are so far quite arbitrary.
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4. The Strength of Interaction and the Energy

Distribution

The behaviour of the system is of course to a lar
egree dependent on the strength of communication of t
ndividual internal states with the state of decay pr
icts. If we assume, that the state of decay products
lentical for both internal states, and that only the a

ylute value of the interaction parameters g, may be di
iTent; we may write

g, (x)=1q ga(x), (35)

lere 7 is a real constant. Further it is justified -
ppose that the interactions are either real or imaginar

assume similarly as in paper/l/, that it holds

Img =0, (36a)

ImGH-O. (36b)

the other hand we have to admit that at least some c
e parameters ¢, is complex. The relations (35) and (3¢

present the second rincipal limitation, which we hav
ed.

Then from the (25), (36), (36a),.(21) and (19a) w
tain
ga(nti)

K(x)= ——-I-:,
x 4+ i

2

1+i 2i
L (x) = K (x) (2 o 21y

l:iﬂ x+i;

(37)
3

2 T
g,(x)=+ D (x) I AT
2 - Z,(x)
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To do this we shall suppose that the parame
constaht, i.e. independent on x . This assump
valent to the condition ' M | We obtain the

() 8,7
Pyix) = —=—T17"

x + —

)
and from the (37'), (19c) and (43) also
r

Yy = ——

2

which is identical with the condition derivec

For.D,h) we get

2‘x|

Dl(x) .

Da(x) =

From eq. (19c) it follows that the parameter
ction of T and m,( m, being a minimal a
lue of the parameter £ ). Supposing

<< M =m,

we obtain from (19c)
- sV

n

Eq

and hence also

. . 1

We may therefore summarize the result

As the consequence of our limiting conditi
1ternal state can directly communicate wit
acay products. The decay properties are tl
y one real parameter I' which is the o1
apart of M , of course) 1ieft as free. Ii
nternal state communicates directly with t
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