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I. 

/1-7/ In refs. , three-<iimensional equations of Lippmann-Schwin-

ger and Schrooinger types for a system of two relativistic scalar 

particles with equal masses have been obtained and investiga-

ted. It was seen that these equations can -be interpreted as gene­

ralizations of the corresponding nonrelativistic equations in the 

spirit of a Lobachevsky geometry realized on the upper sheet of 

the hyperboloid 

-+2 
p = m 2 

(1.1) 

For example, the obtained relativistic equation, which plays 

the role of the Lippmann-Schwinger equation in the centre of mass 

system (c.m.s.) is written in the form: 

"' 
1 

dO-+kA(k, ;) 
,..,. -+ m -+ .... - -+ -+ (1 2) 

A ( p,, q) = -- V ( p , q ; E ) + --
3 
f V ( p , k ; F: ) , • 

417 q ( 2 11 ) q 2 E - ' 2 E + i€ 
q k 

where 
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j 2 ... 2 
E • m +q , 

Q 
j 2 ... 2 

F. "' m +k , k 
j 2 ... 2 

E "' m + p 
I> (1.3) 

... 
d n it= 

d k 

/1 + 
k2 
m2 

v ( p, ... 
q ; E 

Q 
is the "quasipotential" 

l a tivis tic ela stic scattering amp litude o ff the 

x/, A <1. <fl is the re­

ener g y shellxx/, w hile 

the pro per Lip p mann-S chwing er equation for the nonr ela tivis tic 

amplitude> A <1.'1t> in frie ~qual mass c a s e has the form: 

- ... m "' 1 A< p . q l = - -- vqr ;q l + - I 
4 rr (2tr )3 

,..J ... ... .. ..... .. 
V (p , k) d k A (k ,q) (1.5) 

2Eq - 2Ek+it 

E 
Q, E " and E a r e the n o nrela tivistic energies: k 

... 2 p 2 k2 (1.6) E = _q_· 
' E = - ' 

E = 
~ Q 2m p 2m k 

x/ We b orrowed thi s terminology from the quas ipote ntial a pproach 
to qua ntun field theory of Logunov and T avkhelidze/8/, to which 
the idea o f present formalism is c l ose, 

xx/ On the energy shell, E = E , thi s amplitu d e i s n o r malized t o 
p Q 

the differential cross - section : 

_j_£:_ = I A (p ,q) 1
2 (1.4) 

d O 

4 

j 

I 
J 

( 

l 

and V('p,t) 

tial. 

is the Fourier transform of the interaction poten 

The geometrical analogy between equations (1. 2) and ( ~ 

turned out to b e far-rea ching and fruitful. It allowed us to ap) 

roach correctly the conce pt of rela tivistic 

tain useful • relations a nd results. 

-; -space and to < 

The principal aim of the present article is to obtain a r · 

vistic generalization, a s simple as (1.2), of the Lippmann-Sch11 

ger equation in the unequal mass case. 

As it is known, to pass in (1.5) to the unequal mass c.: 

it is sufficient to replace the parameter m in this equation b~ 

twice the reduced mass: 

m -+2p... m +m2 
l ' 

(1.~ 

~ 

Doing this, we get the equation: v 

( ... ... > ,.,. .. < ... ..;> 1 I A p , q '"' - - V p ·, q + -
4rr (2n')8 

tt::l .... ... ... ... . ... 

V( ~ k) d k A ( p1; q ) 
(1.E k2 q2 

+ i l 
2p. 2p. 

However, in the relativistic case the aplication of the procedt 

(1. 7) to eq. (1.2) for obtaining the equation we are looking fot 

does not make sense at ali. To make this point clear, let us 

call how the concept of reduced mass arises in the nonrel.: 

vistic theory. 
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and V('p,t) 

tial. 

is the Fourier transform of the interaction paten-

The geometrical analogy between equations (1.2) and (1.5) 

turned out to be far-reaching and fruitful. It allowed us to app-
... 

roach correctly the concept of relativistic 

tain useful , relations and results. 

r -space and to ob-

'l'he principal aim of the present article is to obtain a relati-

vistic generalization, as simple as (1.2), of the Lippmann-Schwin­

ger equation in the unequal mass case. 

As it is known, to pass in (1.5) to the unequal mass case 

it is sufficient to replace the parameter m in this equation by 

twice the reduced mass: 

m ... 2 p. .. (1. 7) ' 
m + m 

I , 2 

Doing this, we get the equation: 

-+ -+ 1L .. -+ ..; 1 
A ( p I q ) = - - v ( p ·, q ) + -- J 

4rr (2tr )8 

It=' ..... .... ... ... ... 

V( ~ k) d k A ( p1; q ) 
(1.8) 

+ i ( 
2p. 2p. 

However, in the relativistic case the aplication of the procedure 

(1. 7) to eq. (1.2) for obtaining the equation we are looking for 

does not make sense at all. 'l'o make this point clear, let us r E' ·-

call how the concept of reduced mass arises in 

vistic theory. 

5 

the nonrelati 



Let 
... 2 k:l 
k I 2 

E a---+---
2m 1 2m

2 

... 2 m v 
I I 

2 
+ 

... 2 
m 2 v 2 

2 (1.9) 

be the total energy o f two free nonrelativistic particles in an ar­

bitrary reference system. Let us introduce the vectors of the total 

momentum 

... 
K .. k + k 

I 2 

and the relative momentum 

... ... 
m k - m k 

2 I I 2 1 .. = p. ( ~I - y2 ) ' 
m + m 

I 2 

Performing a Galilei tra nsformation 

... 
v 

I 

... 
v 

2 

... 
k 

=- + 
m I 

... 
k 

= ---+ 
m2 

w e shall h a ve instead of (1.9): 

f<2 
E • 

2( m 
1 
+ m 

2 
) 

... 
In the c.m.s. K .. 0 and 

... 2 
k 

E • 
2p. 

6 

... 
K 

m I+ m 2 

... 
K 

ml + m 2 

k2 
+ ~ 

( 1.10) 

.(1.11) 

(1.12) 

(1.13 ) 

.I 

. I 

The difference of two none-particle" energies of the 

gives rise to the energy denominator of the equation 

emphasize, that the momentum of the "effective partie 

the two-body system is the relative momentum k wl 

because of the formulae: 

... l 2 2 
kap.(~ -~) 

I 2 

.. :~ 
ap.v 

is an invariant under Galilei transformations • 

In the relativistic case the 4-momenta of the tv\ 

les can be written in c.m.s. in the form: 

.. 
, k ) , k .. ( J m 2 + k2 

I I 

I 2 .. II .. 
k 

11
• ( y m 

11 
+ k , -k ) • 

·The total energy in the same reference system 

rrn2+ k_2 + J mil+ kll a..[S 
I 2 k 

When m 1 ·m 2 =m we have: 

2}m;+k 11 .. Vs_. 
t.: \ k 

The energy denominator in equation ( 1. 2) is evi 

ference between expressions of the type (1.17). 

Eq. (1.16) and (1.17) imply that independently o 

masses are equal or not, the total energy of two rel< 

ticles in c.m.s. can not b e regarded as the . ene r g y c ... 
tive rela tivis ti c oarticle with mome ntum k • Howe' 
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'!'he difference of two "one-particle" energies of the type (1.13) 

g ives rise to the energ y denominator of the equation (1.8). Let us 

emphasi ze, that the momentum of the "effective particle" replacing 
... 

the two-body system is the relative momentum k whose length, 

beca use of the formulae : 

... l :1 :1 
ka/L(~ -~) 

I :1 
(1.14) 

is a n invariant under Galilei transformations. 

In the relativistic c a s e the 4-momenta of the two free partic­

les can be written In c.m.s. in the form: 

... 
' k ) ' 

(1.15) 

·'!'he total energy in the same reference system is 

(1.16) 

When m 1 am 2 = m we have: 

2Jm~ +k 2 "'Vs_ ~ 
t i l k (1.17) 

-~ 

'!'he energ y denominator i n equation ( 1. 2) is evidently a dif­

ference betw een expressions of the type (1.17). 

Eq. (1.16) and (1.17) imply that independe ntly ot· ·whether the 

masses are equal or not, the total energ y of tw o relativisti c par­

ticles in c . m.s. can not be regarded as the energy o f some effec-... 
tlve relativistic oarticle with momentum k • However, the fact 
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that in the equal mass case the total energy (L17) is proporti~ 

nal to the energy of a single particle, allovvs us to consider the 

energy denominator of the relativistic Lippmann-Schwinger equation 

(L2) as "one-particle" and as a result to reduce the relativistic 

two-body problem in this case to the problem of motion of a par­

ticle with mass m In a quasipotential field. It is clear that if we 

succeed in writing (1.16) as an expression proportional to the 

energy of a relativistic particle with mass m' (which reduces to 

m when m 1 -m 2 -m ), then also in the unequal mass case the re­

lativistic two-body problem will become equivalent to the one-par­

ticle problem. Moreover, in such a case if would be possible to 

apply th~ mathematical methods which we used earli,er in the prob­

lem of particle s with equal masses. 

If we denote by t' the momentum of the "particle,. with 

mass m' , we shall have, in accordance with our assumption: 

Ysk .. J m\ + k 2 
+ j m 

2
:1 + k 2 

• const ./m ' 2 
+ k' 2

• (L18) 

... , 
The phy sical meaning of the quantity k , which we shall 

call the relativistic relative momentum of the system of two par­

ticles with unequal masses will be clarified in detail in Secti -

on IlL 

In tre next section we shall find the three-dimensional qua­

sipotential type equation for the relativistic scattering amplitude 

in the case m 
1 

.; m 
2 

, which later will be the basis for obta.ining 

an exact geometrical analogue of the Lippmann-Schwinger equa­

tion (La). 

8 

II. Equation for the Relativistic Scattering Am] 

in the Unequal Mass Case 

Let T( s , t) be the invariant elastic scattering 

two scalar particles with masses m1 amd m2 conn 

differential cross-section by the relation: 

du 

dO 

IT( s, t) 1
2 

(8~r) s 

/1-3/ According to this amplitude off the ener~ 

fies an integral equation, which can be represented 

the following manner: 

) ) ' .r1 ~"-~ r" "'" -~~- =- -~ y + 

f..t. '}.(, t2. ,..~ t:z 

The single continuous line corresponds to a particle 

the double line to a particle with mass m2 , and the 

a spurious "quasiparticle" with a fourvelocity A P a1 

or )C' • 

When )I(= 0 the solutions of the equation (2. 2 

coincide with the amplitude T ( s , t) • The energy-rna 

vation on the shall x .. 0 is governed by four-dime 

functions of the form 

8 ( A )C 1 + q I+ q 2 - p 1- p 2 ) , . 8 ( A)c -N< , +kl + k 2 - pI • 
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IL Equation for the Relativistic Scattering Amplitude T(~ ,4> 
in the Unequal Mass Case 

Let T(s ,t) be the invariant elastic scattering amplitude for 

two scalar particles with masses m
1 

amd rn
2 

connected with the 

differential cross-section by the relation: 

du 

dfl (2.1) 

/1-3/ 
According to this amplitude off the energy shell satis-

fies an integral equation, which c a n be represented graphycally in 

the following manner: 

t1 (2.2) 

The single continuous line corresponds to a particle with mass rn 
1 

, 

the double line to a particle with mass rn 2 , and the dotted line to 

a spurious "quasiparticle" with a fourvelocity A 
11 

a nd mass X 

or )t' • 

When .)(aO the solutions of the equation (2,2) T(A}c,p
1

,p
2

,qfq
2

) 

coincide with the amplitude T ( s , t) • The energy-momentum conser-

vation on the shall JIC ... 0 

functions of the form 

is governed by four-dimentional 8 -

8 ( A >c I + q I + q 2 - P I- P 2 ) , . 8 ( A)c -AX , +k I + k 2 - P 1 - P :a ) etc. 
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If the vector A Is . chosen to be colllnear with the total energy-
P. - /1 2/ 

momentum vector of the incoming particles ' 

A • 
ql + q J (2.3) 

J ( ql ... qJ )J 

then because of the energy-momentum conservation this vector 

will be also collinear with the vectors ( p 
1 

+ pJ/ J ( p 
1 

+ p / arxi 

( k 1+ k2)//( k 1 + k2 )
2 

• Therefore, as a result of this choice, the 

4-veloclty of the considered colliding-particle system will be a 

conserved quantity: 

q 1 + qa 

J<q + q )2 
l 2 

P a + P a 

J(p + P f 
I 2 

. k 1 + k 2 

j(kl + k )2 
2 

Taking into account (2.4) we can write the function 

T( AX, P 1 , P 2 • q 1' q2) as: 

where 

T ( A-,t, pI I p 2 I q l)q 2) - T( s p I 

2 

Sp•<P l +P:~) 

2 

s -(q + q ) 
q I 2 

t -< p - q ) 
pq I . I 

2 

S ) I 
pq (j 

(2.4) 

(2.5) 

(2.6) 

I n a similar manner invariant variables are introduced in 

the "quasipotential". 

1.0 

/1-3/ A pplying the diagram techniques , the- homo 

of eq, (2.2) can be written explicitly: 

1 <-H <+> d]t' , 
- Jdk 1dk D (k

1
,m

1
)D (k ,mn )-8(~ +q +q 

(2rr) 8 2- 2 • )t'-it 1 

X v ( A)t I p I ' p 2 I k t' k2 I AX, ) T ( A>c , , k I I k 2 I q I I q 2 

where 

<+> 2 2 
D (k,m)= O(k

0
)8(k -m ), 

Furthermore, taking into account (2.3) and (2.4), it is ... _. ... ~ ~ ... ... 
pass into the c.m.s. where q

1 
+q 

2
• K 

1 
+ k 

2 
• p 

1 
+ P.

2 
.. A 

... ..... ... ..... .... _, 
Putting q l a - q 2 .. q I k 1-- k 2 = k I pI - - p 2 = p I 

we obviously shall rove (compare with (1.6)): 

s q = ( y m 12 + q ~ + y m ~ + q 2 ) 2 

2 2 -+2 2 -o 2 2 ...... 
t =(k -q )=2m -2(y k + m yq +m -kq 

kq I 2 I I I 

2 ... 2 2 -· 2 
2 

sk = ( y m 
1 

+ k + y m 
2 

+ k ) etc. 

In agreement with (2,8) , the amplitude T ( s P, t PQ, s q) 

can be considered as a function of two three-dimensi • 

and q 
T = T(p , q ... ) • 
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/1-3/ Applying the diagram techniques , the- homogeneous term 

of eq. (2.2) can be written explicitly: 

1 (~ <+> d;l(' , 
- Jdk dk D (k

1
, m )D (k , m ) --8(>.)( +q +q -k -k ).t2,7) 

(21T) 8 I 2- I ~ ~ Jl, _if I ~ I 2 ~ 

where 

<+> 2 2 
D (k,m):d}(k

0
)8(k -m ), 

Furthermore, taking into account (2,3) and (2.4), it is convenient to ... 
....... "',.... ........ A pass into the c.m.s. where q

1 
+q

2
• 

1
+ k 

2 
.. p 

1 
+ P.

2 
a • 0. 

.... ... ... .... ... .... ... 
Putting q 1 .. - q 2 = q , k 

1 
=- k 

2 
= k , p 

1 
• - P 

2 
= P , 

we obviously shall rove (compare with (1.6)): 

s q = ( v' m 12 + q ~ + v' m ~ + q 2 ) 2 

(2,8) 
2 2 -+2 2 ... 2 2 ...... 

t =(k -q )=2m -2(y k + m yq +m -kq ) 
kq I 2 I I I 

2 ... 2 2 -· 2 
2 

sk = ( v' m 1 + k + v' m 2 + k ) e tc, 

In agreement with (2.8) , the amplitude T(s,t ,s) 
p pq q in the c .m.s. ... 

can be considered as a function of two three-dimensio nal vectors P 

and q 

11 



'I'he expression ( 2. 7), after pas sing to the c.m.s and some simple 

calculations, can be written in the form: 

.. 
1 dk 

a f m 
4(21r) vm l+k 

.. .. ... .. 
V(p,k ;s )T(x,q) 

q 

/m22+ k2 (v'7", -r:: -if) 
k q 

(2.9) 

where we have denoted the quasipotential V( ~ 1 p , p 1 k 1 k 1 ~·) 
· I 2 I I 

by v ct I "t; s >. 
q 

We would like to note that the energy .denominator in this case 

is a difference of two expressions of the type · ( 1.16): 

1 1 

rs.. -rs -if k q 
)m~ +,2 + Jm2+ p -Jm2 .. 2 .j 2 .. 2 . •(2.10) 

2 t- +q - m2+q -If 

.... 
If we transform to the variables k ' and "t , using (1.18) we get: 

1 1 • (2.11) 
Vs:. - ..;s-: -if k q const (Vm'

2 + ~· 2 -Jm ' 2+ q' 2
- it 

1 2 

1 

\~ 

·I. 

llL 'I'he Relativistic Relative Momentum of Two 

with Different Masses 

In this Section we shall investigate the propert .. 
lative momentum k introduced at the end of Section 1 

this the analogy with the nonrelatlvistic case will be 

According to (1.14), in the nonrelativistic theor; 

of the relative momentum vector is a function both of 

mass p. and of the relative velocity, which is an l 

the Galilei transformations. Assuming that ~ ' , play: 

a relativistic generalization of the vector (1.11), we 

pose for reasons of correspondence, that 1' 2 
is also 

of the · reduced mass p. and of the relativistic relati" 

v rei : 

k' 2 
-f(p.l v 

rei , 
) . 

The form of the function f can be determined from 

that in the equal mass case, because of { 1.16)-( 1.18), 

Therefore from (3.1) we have: 

.. 2 f(~ 1 V 
k • 2 rei 

On the other hand, as is well known, the relative vel 

nected with the noneuclidean distance s in the rela· 

city spacex) and the scalar product of the 4-velocitie ! 

t i cles by the following r elations: 

x} L e t us rec a ll that the rela tivis tic 
g eometry. 

13 

.. 
v - space has a 



nL The Relativistic Relative Momentum of Two Particles 

with Different Masses 

ln this Section we shall investigate the properties of the re-.. 
lative momentum k introduced at the end of Section L VVhen doing 

this the analogy with the nonrelativistic case will be important. • 

According to (1.14), in the nonrel&Uvistic theory the length 

of the relative momentum vector is a function both of the reduced 

mass p. and of the relative velocity, which is an invariant under 

the Galilel transformations. Assuming that k ' , plays the role of 

a relativistic generalization of the vector (1.11), we '·can also su}>-
.., , 2 

pose for reasons of correspondence, that k is also a function 

of the · reduced mass p. and of the relativistic relative velocity 

V rei : 

.. 2 
k' ·f(p.,v ) • 

rei , 
(3.1) 

The form of the function f can be determined from the condition 

( )-( ) 
.. 2 .. 2 

that in the equal mass case, because of 1.16 1.18 , k ' • k • 

Therefore from (3.1) we have: 

-+2 m 
k -f(-2, v ) • 

rei 

( 3.2) 

On the other hand, as is well known, the relative velocity is con­

nected with the nonf!MAclidean distance s in the relativistic velo­

city spacex) and the scalar product of the 4-velocities of the par­

ticles by the following relations: 

x) Let us recall that the relativistic 
g eometry. 

13 

... 
v-space has a Lobachevsky 



1 
• ch s •U u • U u -it it 

1 :1 10 :10 1 2 ../1 y 2 
re1 

where in the g eneral case x) 

u -1 

u 
2 

k~ 1 - (-.;-=1=1_=1;::;:12:"' 

k2 

m 2 

:, 1 
... ) v 2 . 

J1 - ~: . 

(3.3) 

(3.4) 

In the c.m.s., when m 1 • m2 
, with the help of (3.3) and (3.4) it i s 

easy to see that ... 
k:~ .. m2 sh-! 

from where, taking int o a ccount (3. 1)-(3. ~), we g et : 

... , 2 2 2 s 2 2 
k = 4~-t sh T "" -JL ( u 1 - u 2 ) .. 

(3.5) 

.. _/ m 2 k 1 - m1 k 2 \ 2 

\ m1 + m 2 -~ 

~u.lolo~~u. . law for th e coll inear 
vectors ~ 

2 
""_;;; J m~ + k2 , one can define the 

r ela t ive v elocity vector ~ 
1 •• 

... ..(t v v ... .. 2 rei 1 -vV1-v ; Ys..k -+ <f' 1 2.. k 
s - m2 -m 2 

k 1 :1 

(3.3') 

14 

... :1 
'l'herefore, - k ' is the square of a space-It.\< 

m k - m k 2 1 1 2 
._ k ; which in the c.m.s. becomes: 

m 1+ m :1 

m J 2 k4 2 j _. 
k • ( 2 m I+ - m I m22 + k 2 

m + m 
1 2 

In the nonrelativistic limit s « 1 • (3.5) goes into (1 

Combining relations (3.3) and (3.5) the following 

be obtained 

k' :1 p. --·- -p. , 
2p. /1- ;2 

rei 

which says that in the relativistic case the kinetic e 

relative motion can be expressed with the help of th 

mentum t ' and the reduced mass P. in a "nonrelat 

Substituting , further, (3.5) in (1.18) we easily f 

.,- r~ J .. :I m+mj .. :I 
vsk•ym1 +k +m 2+k- 1 2 m 1m:~+k' 

.j m 1m 2 

Therefore, the mass m ' of the "effective particle" ir 

(1.18) and (2.11) is the geometric mean of the masse. 

m'-vmlm2 

At the same time, it is easy to see that i n the 

limit (2.11) goes exactly into the denominator of the E 

pending on the reduced mass : 

1 1 ... 
k' 2 m 1 + m j r--..;;:== 

~22 ( m 1m2+ k' 2_J m ,m 2+ q~-i~ 
.. , 
q 

2fl 2~-t 

15 



.. 
'l'herefore, 

m llk I - m 1 k 2 

- k ' 2 is the square of a space-lt·'<e 4-vector 

------ -k which in the c.m.s. becomes: 
m 

1
+ m 

2 
.... 

(:}.6) .. 
, k ) • 

In the nonrelativistic limit s « 1 , (3.5) goes into (1.14). 

Combining relations (3.3) and (3.5) the following formula can 

be obtained .. 
k'll 

2p. 
_,.,. , (3.7) 

which says that in the relativistic case the kinetic energy of the 

relative motion can be expressed with the help of the relative mo­

mentum 1 ' and the reduced mass P. in a "nonrelativistic" way. 

Substituting , further, (3.5) in (1.18) we easily find: 

(3.8) 

Therefore, the mass m ' of the "effective particle" in the relations 

(1.18) and (2.11) is the geometric mean of the masses m 
1 

and m 
2 

: 

m'-Vm 1 m
2 

At the same time, it is easy to see that in the nonrelativistic 

limit (2.11) goes exactly into the denominator of the eq. (1.8), de­

pending on the reduced mass: 

1 1 

m 1 + mll (:J .. 2 J - ~ 
m m + k' - m m + q' 2-it 

.~· l 2 l ll 
V mlm:l 

.. ·2 
q . 

---lf 

2p. 

15 



K~eping in mind the analogy with the nonrelativistic 

formula (1.11), we choose the direction of the vector 1' to be col-
. ~ 

lin-ear to the direction of the relative velocity vector v ,.1 , defi --

ned in (3.3'). Then, taking into account (3.5), k' can be written: 

------. 

k' .. _i_/;2_ 1 (m Jm 2 +k 2 -m Jm~+k:l):l, 
1'1 ( m1+m2):1 :1 I 1 

(3.9) 

or in four-dimensional form, in an arbitrary reference system: 

where 

k' -(k','t.')-J k: (k,) , 
ll 0 k• ,. IL 

.j. 

k .. 
m 2 k 1 -m 1 k 2 

\•k-A(A·k)·. 

m1 + m 2 

k 1- k2 

2 

(H J.) .0 , A -

As one can see from (3.9) 

k , 2-k 2 

2 2 m -m 
1 2 

2v;: 

rs: 

(3.10) 

A, 

.. 
in all references systems. In the c.m.s., where A .. (1,0 ) we have 

I 
'-. ~~ .. <!_and the eq. (3.11) goes into (3.5), and (3.10) into (3.9). 

The vector kJ. , which appea.-s here, has been introduced earlier 

a nd is usually called the Wightmann-Gording relative momenturr/
9

• •
10/ 

16 

A number of simple relations for the momentu 

ars if we pass to spherical coordinates on the hYJ: 

k :l 2 
1• m 1 k :1 

2 
2 

as m ~ 2 a nd k' :~. m' :1 

I k1 I - m 1 sh X 1 , k 10 • m1ch X 1 

11 :~I .. m 2 sh x2 , k :10-m :lch x2 
~ I , h , I k' • m s 'X , k ~ .. m'ch X' 

Substituting (3.12) into (3.8) and taking into ac 

(3.3) and (3.4), we have: 

m 1ch X 1 + m :lch X :1 - ( m 1+ m :1) ch X' 

When m -m 
1 2 

~ 

1 k, 1 • 21L sh x 1 + x2 
2 

, evidently X 
1 

• X 
2 

'" X 

IV. The Equation for the Scattering Amplitude 

Particle" F'orm 

Let us return to eq. (2.2) and make in it a chc 

abies of the type (3.9). Then the volume element trat 

dk- . 1 ~k, ~, m 
d • f(k , m 1 • : j 1'2 

1+ Jm:+k:~Jm~+k 2 2.;-;::;: 
m1 m2 

17 



A number of simple relations for the momentum k' , appe­

ars if we pass to spherical coordinates on the hyperboloids 

k 2 
2 

2 em 41 2 a nd k ' 2• m' 2 

I .. , I , , 
k • m sh 'X , 

k 20-m2 ch x2 

k ' .. m' ch x' 
0 

(3.12) 

Substituting (3.12) into (3.8) and taking into account (1.15), 

(3.3) and (3.4), we have: 

When m •m 
l 2 

.. 
I k' I - 2~t sh 

X 1 + X 2 

2 

, evidently X 
1 

• X 
2 

.. X 

( 3.13) 

IV. The Equation for the Scattering Amplitude in "One-. 

Particle" Form 

Let us return to eq. (2.2) and make in it a change of vari­

ables of the type (3.9). Then the volume element transforms into: 

1 d k, 
-;:=:=;::==.. · f ( k .. ' ., m 1 , m 2 ) , 

I 1'2 
1+ 

(4.1) 

17 



where 

j; ,2 +4p 2 
.. m ) • f(k~ m,, 2 k'2+m,m2 

Jl• 

/4p2sh2-! + m ,m 2 

m 1m ll 

4 2 h2 s 
~" c T 

ch s .. u
1
u ·

2
, 

m1 + m2 

Then putting 

A(p,q) .. {r( p .. , m
1 

, m
2 

) T(p,q) ../f(q,m 
1

,m 2 ), 

~p,ci) __ .J._..jf(p, m 1' m
2

) V("p,q) /t (q, m pm 2 ), 
Sp -

dU .. , .. j 
d k, J .. ,2 

,E , .. m
1

m
2
+q , 

q 
E J .. ,2 

,• m m + k 
k 1 ll 

k 1 + 
m

1
m 

2 

and taking into account (2.9) and (3.8) we have: 

.. .. I" ,.., .... 
A(p',q')•--V(p ',q';E ,)+ 

217 q 

I 1 I +--
( (217)

3 

~ 
1 • f 

,., .. .. 
V(p', k',sq)dUk'A(~',q') 

E ,-E ,+it 
q k 

m 1 + m 2 ) 

1 8 

(4.2) 

(4.3) 

(4.5) 

T he eq . (4.5) c a n be c onsidered a s a rela tivistic genE 

o f the Lippma nn-Sc h winger equa tion ( 1.8), in the s pirit 

bach evsky g eometry realized on th e upper sheet of th 

i d p ' 
2 

• m 1m 2 • The difference · between the coefficients 

the .integral terms is not essential because, as one in 

sees, (1.8) c a n be written in the form (4 ,5) : 

A(p,q) .. - !..:\i(p~q)+ _1_ ~ 
217 (217)8 f 

--- .. .., .. ., .. V(p,JC)dk A (x,q) 

m 
1
+ m

2 
.. q2 

.. 
k2 

2v'Di;'iiill 2~ 

On the energy shell E P, • E q , the amplitude A ( 

cause of (2.1) and ( 4.3), satisfies the following normal!:< 

tion: 

d u 1 dO- -f I A ( p .. ', q,) I 2 

2 2 s 
4p ch, ""2 

I 2 2 s 
y4p sh- + m1m 2 2 

IA(~',q') 

Now let us briefly discuss the formalism connectE 

SchrOdlnger equation, The wave function of the system 

as (compare with/4 /) : 

r 3 .. .. .., ,,p , )-(217) 8 (p '(-) q ')-
q 

21T 1 _.. , _.., 
I A(p ,q ), I .. ~ J .. ,:~ m 1 m2 + q - m 1m 2 + p vm;m; 

19 



The eq, (4.5) can be considered as a relativistic generalization 

of the Lippmann-Schwinger equation ( 1.8), in the spirit of the Lo­

bachevsky geometry realized on the upper sheet of the hyperbolo­

id p ' 
2 

- m 1m 2 • The difference - between the coefficients in front of 

the jntegral terms is not essential because, as one immediately 

sees1 (1.8) can be written in the form (4.5): 

( ...... ) p. ,...._( ...... ) 1 ..rm;;:-:1 m n 
Ap,q---Vp,q+-- •f 

2rr (21r)8 m 
1 
+ m

2 

,..... 
V (p, 1 ) d 17 A (t, q) 

... 
k2 

... 
q2 (4.6) ----if 

2~ 

On the energy shell E P, • E q, the amplitude A ("p', q' ) , be-

cause of (2,1) and (4.3), satisfies the following normalization condi­

tion: 

4 2 h2 s 2 
d 0' 1 I A ( ... , ... , ) I 2 dn--f- p , q 

p. c ,. 
---------1 A(~ ',q')l•(4.7) 

I 2 2 s v 4p. sh T + m1 m 2 

Now let us briefly discuss the formalism connected with the 

SchrOdinger equation. The wave function of the system we define 

as (compare with/4 /) : 

lp , <P ' ) • ( 2 IT ) S 8 (p ' ( -) q ' ) -
q 

2rr 1 --;=====-•=====::; A (p,, q' ) , 
I ... ~ J -+,2 y m 1 m2 + q - m 1m 2 + p 

19 

(4.8) 



where S(p '(-)q')- J1 '+ p ' 2
/ m m 

1
SCp' -q') • With the help 

I 2 

of (4,8) · and (4.5) we easily get 

(y !;;JI r- _,,2)"' ( ... ') m 1m2 + q - y m 1m2 + p T q, p • 

(4.9) 
1 ---(2rr)a 

v'mlm2 Jv (p',t')dO ... ,'I' <k"'>. 
k , 

q m + m 
I :1 

Equation (4.9) is evidently relativistic analogue of the Schrooinger 

equation 

q2 v 1 .. ...1 ... ... 
(---)'1' (p)•---;fV (p, )dk 'I' (k) _. 

2" 2 p. q (2rr) q 

Let us further define the relativistic wave function in the 

resentation: 

"'G'>-.!_Je<;-,;->'~' <P''>dn ,, 
q' CAT)& q' p 

where 

(4.10) 

t -rep-

(4.11) 

e<p .. ;r)-
· m m + p' - ·p'• n 

I :1 (j ... :1 ..... -1-try-;-;;:-
1 2 

... ... ... 2 (4 ) r-rn, n .1. .12 

.r;:;;;: ' 

is the kernel of the Shapiro-transforrnation/
11

/ x). 

x) The orthogonality and normalization conditions for the e-tunc­
tions have the form: 

- 1- f e (1 'p,) e· ( p', p ... , ) d n , ... s (8
) ct- p ) 

(2rr )8 ~ 
1 ( 8) 

-- g ct,p+'> e• c;, <i'>dt = s < ;- <->"q, > 
(217)8 

20 

Applying the Shapiro tra nsforma tion to ( 4 , 9) a 

analogue o f the Schrooinger equation in r -space Co 

.2 . .... ... ... .... .... 
(E ,-H0 )'1' ,(r)=fV(r,p)'l' ,{p)dp, 

q q q 

where V (i', p) is introduced throug h the r e lation: 

and 

V(p,q) =jg* (p,1) V(f,p) e (q, ~ )dt dp 

2 ' 1 
1 a >+ __:_ sh( i -- . H o = 2v;;-;;. 2 ch( i . ~ ~ r rm;;;-; < 

V mlm2 

- -----'---::-- e 
..;-;;-;;-__ r 2 

1 2 

1 a 
1--- --..;;;;-;;-;- a r 

T he comparison of ( 4. 13)-( 4.15) with the similar relatic 

pondin g to the equal mass case/
4

/, allows us to con< 

the results /4-?/ can be directly generalized in the ab• 

formalism. 

The authors are sincerely grateful to M. Freema t 

radyan, N.B.Skachkov, A.N.Tavkhelidze a nd I.'I'.'I'odor 

discussions. 
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Applying the Shapiro transformation to ( 4. 9) a relativistic 

analogue o f the Schrooinger equation in r -space can be obatined: 

where V (?, p) is introduced through the r elation : 

and 

H 0 = 2~ ch(i -
1
- L >+ 2.!.... sh(i 1 _a_)-

1 2 a a ~ r r ,;;;-;;-:- r 

/':,. e ,cf> 
----'--- e 
.,;-;;-;;: r 2 

I 2 

I 2 . 1 2 

1 a 
t---v;;-;;:; a r 

( 4.13) 

( 4 .14) 

(4.15) 

The comparison of ( 4. 13)-( 4.15) with the similar rela tions, corres­

ponding to the equal mass case/
4

/, allows us to conclude that a ll 
/4-7/ 

the , results can be directly generalized in the abov e stated 

for malism. 

The authors are sincerely grateful to M.F'reeman, R.M. lVIu­

radyan, N.B.Skachkov, A.N.Tavkhelidze and I.T.Todorov for useful 

discussions. 
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