











and 7(3.?) is the Fourier transform of the interaction poten-
tial,

The geometrical analogy between equations (1.2) and (1.5)
turned out to be far-reaching and fruitful, It allowed us to app-
roach correctly the concept of relativistic I -space and to ob-
tain useful relations and results.

The principal aim of the present article is to obtain a relati-
vistic generalization, as simple as (L2), of the Lippmann-Schwin-
ger equation in the unequal mass case,

As it is known, to pass in (1L.5) to the unequal mass case
it is sufficient to replace the parameter m in this equation by
twice the reduced mass:

moa2p = —2Mama (1.7)
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Doing this, we get the equation: ;
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However, in the relativistic case the aplication of the procedure
(.7) to eq. (1.2) for obtaining the equation we are looking for
does not make sense at all. To make this point clear, let us re-
call how the concept of reduced mass arises in the nonrelat;

vistic theory.,
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The difference of two "one-particle” energies of the type (1.13)

gives rise to the energy denominator of the equation (1.8). Let us
emphasize, that the momentum of the "effective particle" replacing
the- two~-body system is the relative momentum K whose length,

because of the formulae:

e W3 =7 )" apd? (.14)

is an invariant under Galilei transformations.

In the relativistic case the 4-momenta of the two free partic-

les can be written In c.m.s. in the form:
k, =( mf+l?’ , l-:.),

(L15)

“‘The total energy in the same reference system is

\/mi+-l:9+\/m:+f’ a\f?k. (L.16)

When m ,=m,=m we have:

2\/ m’%\+k2 =\/sk. (1.17)

The energy denominator in equation (1.2) is evidently a dif-
ference between expressions of the type (1.17).

Eq. (1.16) and (1,17) imply that independently of whether the
masses are equal or not, the total energy of two relativistic par-
ticles in com.s. can not be regarded as the energy of some effec-

-
tive relativistic varticle with momentum k . However, the fact
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IL Equation for the Relativistic Scatterii Amplitude T('ﬁ,‘ﬁ)

in the Unequal Mass Case

Let T(s,t) be the invariant elastic scattering amplitude for
two scalar particles with masses m, amd m, connected with the

differential cross-section by the relation:

do IT(s, t) ]2
= p)
dQ 8n) s

. (2.7)

[1-3/

fies an integral equation, which can be represented graphycally in

According to this amplitude off the energy shell satis-

the following manner:

P2 Y

The single continuous line corresponds to a particle with mass m,,
the double line to a particle with mass m,, and the dotted line to
a spurlous "quasiparticle" with a fourvelocity 7&# and mass X
or X° ,

When X=0 the solutions of the equatlon (2.2) T(M,p ,p,.q,4,)
coincide with the amplitude T(s,t) . The energy-momentum conser-
vation on the shall x =0 is governed by four-dimentional & -

functions of the form

- - Y v - - tc.
8(7t)cl+ql+q2 PP, ) 8 (Ax -Ax +k1+k2 P, =p,) etc






Applying the diagram techniques/ 1-3/ , the® homogeneous term
of eq. (2.2) can be written explicitly:

1 (€] (€D] dyx” ,
(zﬂ)afdkldkaD (ky,m ID (k ,, m 2)"’_“ (M +q+q ~k ~k )%2,7)
XV()‘X.PlnPQ-k l:k2nkx’)T(M’tkl;k2pqlo q2 )’
where

&2 2 2
D (k,m)=6(k )8k =m ).

Furthermore, taking into account (2.3) and (2.4), it is convenient to
R > o - - -» Y
pass into the c.m.s. where g, +q2=11+ kK,=p, +p, = A =D,
X - N N -» -» - -» - -»
Putting 9,=-9,=4q, klg_kzgk » Py= =P, =P,

we obviously shall have (compare with (1.6)):

sq=(\/m12+d'2‘ +\/m:+'ci2)2
(2.8)
¢ =(k Vo2 n? 2(VE 4PV ien i -Fg)
kg 1 3,=cm +myvia y 4
., » 2
sk=-.(\/m‘2+k2 +\/m§+k2) cte,
In agreement with (2.8), the amplitude T(s »t »s,)  in the cum.s,

-
can be considered as a function of two three-dimensional vectors P

and g
s T =T(7,q).
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The expression (2.7), after passing to the com.s and some simple

calculations, can be written in the form:

1 g Vip,kis IT(KG)

—_—
8 -
4(2w) m 4k /m:+k’ (\/.s_k_‘/:q ~ie)

, (2.9)

where we have denoted the quasipotential V(Ax,p , P,ok Lk, M)
by V T, s, ). -
We would like to note that the energy denominator in this case

is a difference of two expressions of the type (1.16):

1 1

\rshk"\fs-q-it \/m +k2 +\/m + 12 -\/m +q -\/m’-ﬁq”—n (2.20)

e 4
If we transform to the variables k’ and ¥ , using (118) we get:

1 _ 1 . (2.11)
vsk—vsq-ic const(\/m'2+f'2-\/;'2+ H’a-ic )







1
— -chs-u‘u = Tt , (3.3)

x)

where in the general case

u--—.—‘--
1 ml

k 1 Vl
<\/1- 75 JT- 33/

(3.4)
-
u = -ki = 1 v2 ‘
2 2 VI-@T V1= 9]
In the cm.s., when m =m , with the help of (3.3) and (3.4) it is
easy to see that N
k2=m? sh-—i-
from where, taking into account (3.1)-(3.4), we get:
2 3
K°?a 4p.ash2-§‘—~ = - (u,~u,) =
(3.5)

In the c.m.s., .using the Einstei?]_gjdm'_qn, law for the collinear
-
vectors 3l=1€'/\/mﬂi+ﬁ" and V,=-kE/ ym +K? , one can define the

relative wvelocity vector 'Jm :

2y's -
> > > X
Vo ’ﬁlx —v)/ 1-v v, = :::-m—f-::gk (3.v3')
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. -
Therefore, -k ’? is the square of a space-like 4-vector
mok, -mk,

-k , which in the c,m,s, becomes:
m l+ m 2 -
.6
/——ﬂ—m L / . (3.6)
k= , k).
m l+ m 2
In the nonrelativistic limit s <1 , (3.5) goes into (1.14).

Combining relations (3.3) and (3.5) the following formula can

be obtained
k3

-#, (3.7)
2’“ 1~ *32

which says that in the relativistic case the kinetic energy of the
relative motion can be expressed with the help of the relative mo-
mentum k° and the reduced mass ¢ in a "nonrelativistic" way.

Substituting , further, (3.5) in (1,18) we easily find:

\/—'k -\/ml+-l:°+\/m2+-l’(’- Gl Rk B L (3-8)

Therefore, the mass m° of the "effective particle" in the relations

(1.18) and (2.11) is the geometric mean of the masses m  and m,
n’=ym 1My e
At the same time, it is easy to see that in the nonrelativistic

limit (2.11) goes exactly into the denominator of the eq. (1.8), de-

pending on the reduced mass:
1 1

ry
,2 f », 3 .
- m ]
3 m.m,+q 1:)
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Keeping in mind the analogy with the nonrelativistic
formula (1.11), we choose the direction of the vector k’ to be col-
linear to the direction of the relative velocity wvector —:" , defi -

ned in (3.3'). Then, taking into account (3.5), k¥ can be written:

-

-, k - ’ -
kK’ & ——— k2= ! (may/m2l+-l:2-ml\/m:+k2)’, (3.9

€| ( m+m, )

or in four-dimensional form, in an arbitrary reference system:

, ., 2. k32
k“-(ko,i )-\/_..F.(kl) ) (3.10)

1 K

where

k
Kk mk=A(Aek) = > - 12,

+ 2\/—5—k

()«k*)-O, A=

As one can see from (3.9)
k '2-k2

in all references systems, In the c.m.s,, where A = (1.—6) we have
-’ " ind the eq. (3.11) goes into (3.5), and (3.10) into (3.9).
The vector ki , which appea.s here, has been introduced earlier

ind is usually called the Wightmann-Gording relative momentun[g’.lo/
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where

f(l-(.', m,,m,)-

/ 3,38
."(’,2_’_4“2 \[4;¢sh-2-+mlm2
£'?+m, m 4p2ch2-%

(4.2)

Then putting

A7) = ];( &omy,m,) TEDVIG,D o ,),

(4.3)

~ , > > >
V(ﬁ’-'&)---s—l‘:— f(-§9mlrm2)v(P9q) f(q,m,,m, ’

and taking into account (2.9) and (3.8) we have:

~y
L V(p 9" :E,-) +

A (-p. '.;') - e
27 (4.5)

.
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as a relativistic generalization
»n (1.8), in the spirit of the Lo-
he upper sheet of the hyperbolo-
tween the coefficients in front of

because, as one immediately

form (4.5):
f V3 ek A (B,
da k2 (4.6)

—~-i€

WEE, W,

->, »
On the energy shell E_.=E . the amplitude A(P’,T°), be-

cause of (2.1) and (4.3), satisfies the following normalization condi-

tion:
2 2 s
do 1 -, o, 2 4p” ch . .3
== A, §) | L | AGp 0 ) |+ (a.7)

\/4p.zsh2%- + mom,

let us briefly discuss the formalism connected with the
'r equation. The wave function of the system we define

‘e with/4/) :

Y=(2m) 8 3)-
(a.8)

" ’ 1 >, =,

n, \/mlma4-‘('1”-\/111lxx\2+};’2
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