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1. Introduction

The problem of finding a solution satisfying sinultaneously ana-
lyticity, crossing symmetry and unitarity is one of the unsolved prob-
lem of the double dispersion relation method.

The well-known solution of Castillejo, Dalitz ad Dyson for
scalar mesons has some disadvantages: i) it is no crossing sSym-
metrical with respect to all three channels, ii) poles lying on the
physical cut have no clear physical interpretation, ii) CDD model is
far from the real case of pion scattering.

In the work recently published /1/, the total ariplitude of the
elastic scafttering of different spinless particles with degenerated
masses was considered, The work was aimed to find a formalism by
means of which it would be possible to unite crossing symmetry, uni-
tary and analyticity when reconstructing the total scattering amplitude,
One tried to find the amplitude as a series, each term of which obey
the double dispersion relation, Each term of the serics (i.e. each
partial wave) was reconstructed by the —%— me hod, The discon-
tinuity on the left cut was specified by means of certain weight
functions, which should obey a number of physical and mathematical
requirements, The weight functions were not specified, Such an
approach has led to a complicated problem of series convergence

which the author has not succeeded in resolving. ¥ owever, the main



shortcoming of tre method is, in the authors’ opinion, that the branch
points in the crossing channels occur in unsuitable places,

While investigating the scattering of real pseudoscalar mesons,
at low energies , one obtains as a rule satisfactory agreement with
experimental restlts. This is reached due to the use of a small num-
ber of partial waves and to the violation of some comb'ination of
crossing symmetry, two-particle unitarity and analyticity or the viola-
tion of all three :onditions taken together. The double Mandelstam
representations are usually used in these investigations. The ampli-
dute is expanded in partial waves., The two-particle unitarity condition
enters explicitly 'he equation for partial waves but the crossing
symmetry turns ouat to be broken,

A large amount of skill would be needed to take the crossing
symmetry correctiy into account, if this is at all possible, but this
would lead to the violation of the two-particle unitarity /3/.

The scattermg amplitude can be reconstructed without direct
recourse to the couble dispersion relations., In ref, /4/the authors
make use of the ordinary expansion of the total amplitude in partial
waves, which are calculated by the -%— method, The arbitrariness
of the approach s the specification of the expression for the dis-
continuity on the left cut, In reconstructing the total #r -scattering
amplitude the authors try to keep all the important properties of the
scattering problern and the analyticity properties given by the do-
uble dispersion relations, The crossing symmetry is fulfilled only
approximately. Tle total amplitude does not obey the unitarity in the
u and t -channels.

In the pres:ant paper a new method for constructing the elastic

7.7 —scattering amplitude is used. For simplicity the case of sca-
lar neutral mesors is considered though the method suggested can
also be extended to the case of the elastic pseudoscalar 7 -meson
scattering, :

The method consists of finding a model function F(s,e,t)
which possesses the crossing symmetry property with respect to all

three channels, wnich has the right beginnings of the cuts along s, u,t



corresponding to the presence of two-particle unitarity only and
which satisfies the other requirements imposed on the physical scat-
tering amplitude (§2),

Analyticity and crossing symmetry lead to restric:tions imposed
on the F(s,u,t) function parameters, These restrictions follow from
the requirement that there should not be, on the physical sheets, any
singularities but the known cuts. One assumes the ‘ex stence of poles
on unphysical sheets and of cuts in the space of two independent
complex variables. The regions of the allowed values of the F(s,u,t)
function parameters obeying these requirements are ceclculated in §3.
The presence of the poles and the cuts on the unphysical sheeets
results in certain sum rules which will also be discussed in §3.

Additional restrictions on the F(s,u,t) function parameters follow
from the requirement that the imaginary part of the function F(s,u,t)
should satisfy the optical theorem., Use is made of the weakened con-
dition of the optical theorem: it is required that ImF(s: 4,t=0,u==4v) >0
where v is the squared momentum of a pion in the s channel in
the com.s. (§4).

The lowest partial waves of the scattering amplilude for scalar
pions are calculated ( £ =0,2) and their analytical progerties are dis-
cussed in §5, Owing to the fact that the expressions ‘or the partial
amplitudes are very complicated the validity of the two-particle uni-
tarity is checked only in a restricted interval of the variable values

0<v < Tl" (§6).

Some consequences of the inclusion of pole te 'ms are consi-
dered in §7. In the conclusion a series of problems i3 discussed

related to more complicated models of the scattering &mplitude (§8).

. §2, Choice of the Function F(s,u,t)

Let us find the amplitude of the elastic scatterin3 of scalar

mesons in the form of a certain function F{s,u,t) ~vhich should

obey the following requirements:
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I. It must lave the right beginnings of the cuts with respect to
s ,u,t (8 2413 ; v x4p? t 242 P is the

pion mass, In what follows we assume g =1 ).

II. It must have crossing symmetry property with respect to the
replacement s 3 o , s+t ; tg u.

III, It must obey the exact condition of two—particl'e unitarity in all
three channels 1ear the physical threshold of each channel and an
approximate coniition of the two-particle unitarity on the intercépt near
the physical throshold (e.g. in the s —channel in the interval 0 <v <+
where v--i- the threshold of the ﬁrét inelastic process 7 + - m+3n),

IV. It must have ImF(s,u,t)> 0 in the region s >4, um=-4v,t=0.

V. It must have a polynomial increase at infinity in any direction,

VI. The paitial waves must have the right threshold behaviour
in all the channzls,

Here we do not list all the requirements imposed on the phy-
sical amplitude of the scalar meson scattering, It is more convenient
to discuss some requirements later, The consideration is made in the

s —channel in vihich the role of the energy variable is played by
s=4({l+v) and the momentum transfer is described by the variable
tm=2v(1=2z) 'see Fig,1) where 2z is the cosine of the scattering

angle, ,f'

Fig.1
A \_/
The condition Il leads to the requirement that the Riemann surface
of the function F (s, u,t) for fixed 1« and t should be a two-sheet
one, Up to now using the dispersion relation method one restricted
oneself to the two-particle unitarity and, consequently, did not go

beyond the framcwork of the two-sheet Riemann surface. In this sense,

this paper is not an exclusion,




Before passing onto the other conditions listed at the begin -
ning of the section we will give a conformal mapping of the surface
s+u+temd onto the surface o24+A? +r%a-8 by means of the trans-
formations

omys — 4
(1)
A=y u=4

T -\/;——T-

and determine the sign for all the roots in such a manner that in the
transition from above to the cuts, with respect to ;,s,t in the s,d,t
planes respectively, the imaginary parts of the varables o,A,r
assume positive values, As a result of transformaton (1) the two-
sheet Riemann surface with respect to the variable s (for fixed u
and t ) with the cut along the real axis s 2 4 transforms into the
one-sheet surface ¢ without cut, In a similar manner the two-sheet
Riemann surface with respect to the variables v and t  will turn
into the one-sheet surfaces A and T, respectively. Instead of the
function F(s,u,t) we shall consider the function G’(a,X,r) .

Condition 5,imposed on the function ®(e¢ ,A,r}) , now means
that it must be meromorphic over the whole space c? with respect
to any two variables of o,A,r . To keep the symmetry with respect
to the three variables, which is convenient when checking the cross-
ing symmetry in all three channels, we use all the three variables,
The meromorphic function ® (¢ ,A,r) essentiall:y depending on the
two variables has singularities, i.e. the cuts. The .nphysical singula »
rity of the function ®(o,A,r) we call a singularit; when, in consi -
dering the problem in the s -channel for the physical values of  ,
the imaginary part of the variable ¢ belonging to any singular
point of the function is negative. Owing to the crossing symmetry,
a similar requirement is imposed on the problem in the v« and
channels,

Thus, the function ®(o,A,r) must be a meromorphic function

of the three complex variables o .A,r symmetrical with respect




to the change o2X , o ar , Apr given on the complex sphere
c2 A% ria8  and having the singularities in the s -channel , only
in the lower ralf-plane ¢  of the complex plane o ., We represent
it as the retio of the two symmetrical (with respect to the variables

a.A,r ) polynomials P(g,A,r) and Q(o,A,r)

l:(a,l.f) .
e (2

d(o,A,r) m X
» Qn(a,h.f)

where P,(0,A,f) and Qu(0,d,r) are the polynomials of the finite
degree and ®» may be: either finite or infinite, The representation
(2) is the mos: general representation of the function ® (o ,A,r) if
only the requirement of polynomial boundedness at infinity in any di-
rection is considered,

Now the strict mathematical solution of the whole problem is
as follows: is it possible to find, in the class of meromorphic func-
tions, a functi>n of the type (2), which obeys the two-particle uni-
tarity on the intercept, the requirements IV, VI and whose singula-
rities are unphysical?

In princ.ple, it is necessary to answer the question as to
whether there exists a solution to the infinité system of nonlinear
algebraic equitions whose parameters must lie in a given region,
The infinite sy'stem of nonlinear, algebraic equations arises: i) from
the requirement for the two-particle unitarity to be fulfilled for an
infinite set of partial amplitudes ®g{e) in which the function ®(o,A,r)
is expanded

0(0,/\.!)-2-2"@(0)?!()«,” » 3)

¢

3
where 3 A ar
l -C,2,4, s} o = 4y ; zm

and ii) from the requirement for the two-particle unitarity to be ful-

filled at each point of a finite intercept with respect to v(0<v g -;}.)



In this paper a simpler problem is considered, that is, the
case of the finite number of partial waves (2 =0,2) ard the case
of the finite number of points on the intercept.

Let' us suppose that the amplitude ®(o,A,r) decreases at

infinity mo =1 . As the model function we choose the simplest one

2 2 2 3 (4)
g A
Glo, A,r)m + - SN g + Z - _
0243 PLE r2 43 ""an—i(a+/\+r)

where 32 is the interaction constant for scalar pions, corresponding
to the interaction lagrangian g#® and equal to the residue of the
function ®(0,A,r) at the points s=uat=u’al and A,,a, are the real
number-parameters of the problem, We have taken n=3 since the
number of equations from which the coefficients A, and a, wil

be determined is six (see §6). In principle, we may ircrease the
number of partial waves, the number of equations for determinating
g2 AL, a as well as the number n . The choice of the model

n

function ®(o,A,r) only as the sum of poles

2 2 2
(D(O,a\,f)- g D4 g + g

0?43 r? 43 A2+3

does not ensure the two particle unitarity in highest jsartial waves

starting with £22 |, This is easily seen from the fact that in the
2

s —f:hannel the only term which has the cut is the first term ;—i—;
but it is independent of the angle 2z .

The function ®(g,A,r) given by (4) obeys the conditions I,
II, Il and satisfies the requirement ImF (s<4,u<4, t<4)=0 which
is easily seen from eq. (1) for o,A,r since in tne region s<4
t<4,u<4 the quantities o,A,r are imaginary or :qual to zero,.

We may add to the expression ®(o,A,r) the sum of pole

terms of the ki:’ld
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s [ m . m + m + - .
m=l ln—lb--b l-+|b-—|¢ I--ib-"|A l_+ib-—“
(42)
G G*
= + . a>0 .
a—~{b =-ir a +1ib =ir
m -m m m

which keep the right analytic properties of ®(o,A,r) and are interpre-
ted as the contribut on to the amplitude ®(o,A,r) from the reso-
nance states of the # # -system, The poles (4a) in the plane ¢

for fixedA , r give the contribution to the amplitude ®{(o,A,r)
which is similar to that from the Breit-Wigner poles (at the point

Ouyadsb?d )

1 1 « 2(a=i0) 2(a~10)
A T ST - — ——— e
a-ib-to s+ib—io s +b=0'~2a01 2\/-’+b’ [\/l’+b’ -0~1ial

The contributions of the poles of this kind to the scattering amplitude

will be discussed ir more detail in §7,

3. Determinaticn of the Region of Allowed & ,

The region of allowed values of the parameters a is deter-
mined from the requrement that the singularities of the demominators
a, —ilo+A+r)=0 (3ee eq. (4)) should lie in the region Imo <0
for physical values of the momentum transfers t (i.e. for fy 22 ),

The singularitis of the function ®(e,A,r) lie at the points
obeying the system of.equations

1. nn—i(adu»r)-o

2. o A% 4 r? a8

10



In what follows we shall omit the index n of the parameter s, ,
In the general case, when ®{0,)A,r) is the ratio of tre polynomials(2)
and it is necessary to find the parameters for which all the singu-
larities of the function ®(o,A,r) are in the lower half-plane of the
complex variable ¢ , the problem reduces to the Raus-Hurwitz
problem, However, in the case of egs. (5) the probleni can be solved
by the direct solution of the problem (5), Let owo; +io, , A=A +id,,
f=r, +ir, . Eliminating from (5) the variables A, and A, we arrive

at the system

1. 0, (20 47 )m=r (0 +27 ) —alo +r )
1 r r 1 ? r ] ]

3 2.2 8—4q ©
2.0”+r' +o, 1, + a(al+r|)- .a,+r'+a'rr..__;_ﬂ_ .

Eqs. (6) are symmetrical with respect to the replacement o, gr, ,
T~ . Eliminating f, (or °, ) from the first ejuation of (6) we
get an equation of the second degree with respect tc o, ( or 1, )

the solution of which is

2 3 12
1,3 a 1 8(o +2r ) 4a 9, 2 2a
¢7l ---3_:\/3_[ y ', r = + (a'+2rr)\__§_.
0’ +0'1" +'r (7)
H 2 2
1, 8(r, +20) +ar 2 2a2
( or rl, =—-;—-;\/—l;[ u L +lr 410 ) |- =2

2002401 +12)
r rr T

0 5




In this case to the root o, .=-.;— +\/—.:,- there corresponds the root
A =_.3‘__,/.__ . In Fig. 2 the "forbidden" area for the roots (7) is
shaded, Thus, it is possible to write out two series of inequalities

which the roots 7) must satisfy:

I system II system

) &) .
1. a‘<0 (Ba) l.al<0 (Bb)
2. M<o 2. rP<o0

The inequa ities (8a) and (8b) are analysed under the condition
that all the o, -mlues should be allowed and the 7y values should
form at least a rarrow band near r,= 0 , (The region of the r,
values near zerc introduces the largest restrictions on the parameter
a ) It should b2 noted that both in the first and second inequalities
it is sufficient to fulfil one of the inequalities for the singularity to be
unphysical,

It is seen irom eqs. (7) that if a >0 thzn the singularities will
not lie on the plysical sheets since either r(ln<0 or a,‘”< 0 (the
complex values of the roots ¢; andr; mean the absence of the
intersection of th> plane a=i{o+A+7)=0  with the sphere 97+ A%+ 1%
=-8 ), The negative a values satisfy not one of the sets of inequ-
alities, Thus, for 8>0 for the function given by (4) the dispersion
relations in the ‘ariable s in the region t <0 can be written,

The elastic scattering amplitude represented as a sum of the
expression (4) {1a) leads to that the desired amplitude will have in
the plane for fixeed physical values of t the following singularities:

a) Poles lying on the imaginary axis ¢ and corresponding to
the bound states of the system of two 7 -mesons;

b) Poles lying in the lower half-plane ¢ symmetrical with res-
pect to the imaginary axis and corresponding to the resonance states
of the system creatt?d by two pions,

c) Projecticns of the cuts in the lower half-plane in the form
of a pole point tihie beginning of which may be connected with the
thresholds of the following reactions

r+msa* 4o or F+ R st

where 7* js the resonance states of a pion,
12



If the amplitude decreases at infinity sufficiestly rapidly, then
applying in the plane o (for a fixed r ) the Caushy theorem to
the function ®(o,A,r) we can obtain the following sum rule:

’Eg’| + ’EHeG‘ + Ekes¢k(a|ld ) =0 (18)

where X Res ®, (¢, ) is the sum of the ®(a,r, .., ) function re-
sidues at the pole points corresponding to the prcjections of the cuts
on the lower half-plane ¢ for a fixed momentum t-ansfer , These
residues must be connected with the inelastic two-particle unitarity
of the processes T+% +w*+ n or w4+ 7 sx* 4r*  and so

on at the points of the cut projections,

4, Restrictions Imposed on the Parameters o’ the Model
Function ®(o,A,r) by the Cordition ImF(s >4 .t =0, u me4r)>0

From eq. (4) for the function ®(e,A,r) it follows that

T:—Z- ImF(s>4,tm0,um-4v )-ll‘.’.(y,ll v A ) -

11)

(
L] Al[(l2 +2+2y)2+4y2--4][(la +2+2y)’ +4y2--.4] +A’[(l'+2+2y)2+4y2 -4 Ix

2 2 3 2
x[(ls+2+2y)2+4y2 —4] + A, [(a, +242y) 44y =4 Q00 4242y) +4y —4];

y=Vil+v

We demand that the optic theorem should be fulfiled at least in the
weakened form ’

InF(s >4, tm0, us=4v)> 0

in the interval 0<v < = ( the quantity v may be chosen to be

finite but sufficiently large). This requirement imposes some restric-

13




tions on the coefficients Ay , ay . The restrictions follow the

Sturm theorem about the determination of the number of real roots,

It is obvious tnhat the interval of the y wvalues which does

not contradict all th: other requirements,imposed on the function

®(o,A,r) ,depends on the choice of the function ®(e,Ar) ., For a

successful choice of Plo,A,r) this interval may turn out to be equal

to the desired one:
0<v <o

Let us constrict the Sturm series
3 2
A) = 61y*F, +32y®F, +8y7?F, +4yF, +F, |

fo(y,a‘ .

1 , 8 2
',A’ )= Tfo = &y F4+24y Fs +4y F, +F1 ,

F,F, ~ 6F F F, F, -=BF_F
2 2 2 3 14 1.3 04
f3(y ,a,, A, day [31-“a ~4EF, J+yl( o T+ 5 ’

{a=4yV +W

P!
F,F, ~8F, F

L P! 152 0" 4

-6F F, ) - _(3Fa -4F_F, Yo L,

w
{f = —(F F
sy 3 3 16 8

4

where
- Y 3 2 _ 2 3
V=-(I"2 Fa—6l-‘ll7“)(9i‘3--l;l-‘a I-‘a F‘ +24F1F4 ) +2F4(F1Fs -—8% F‘ )(3]7a -4F2 F‘) l';(3Fa-4F2F‘)’

3 2 2 2
Wa(F,F ,~8F, F )(OF, —16F,F, F +24F F,)—F (3F, —4F,F,),

F‘sA,-ﬁ-Aa +A8,

14



Fp mAyla, 42, +4) 44 (o +a +4) +A (2 40 _+4),

F= Al[ 1’( .2+”+'8 (la+4) +2(la+2)( a, +2)] + A’[-l(-l--l)q- aa(na+4)+

>

+2(a,4208,+2)] + A lafasd)sa (o +0)+2(a 42V 4],

(12)

Fyo Afagla, +)(ag+2) vagla 44 (a42)] + A l(a 441 (ag+2)a; +

+a (e, +80a +2) ]+ A la (a 480 42 +a (a8 )],

Fp=As, la(l’+4)(ll +4) +A3'l.a('!+ 4)(-a+4) + A " 1"|( a,+ 4)(-,-'-4) .

Let us make the table of the sings for the functions f4.f,..f, at

the points y=1 and Yo=* (see Table I).

Table 1 "
N :
y o f f, f i, umber of sign
changes (N)
1 + (+) (#) | @) | 1= e
- + + (0 | @ | 1 Waife )

The insertion of y=1 and y== jn the functions (12 leads to the

following expressions

15




io(l) -l»‘F‘ +32Fa + BF’ +4Fl +F°> 0

fo(w)-l"‘r >0 s

[4(1) = 64F, +24Fy +4F; +F; 3 0
fy(e0) =« F > 0
-
- F,F, -=6F F F F, -BFF (13)
e d 2° 38 174 18 0 4
f,(1)aiF, ~4F,F + > + - 20

2 .
1 [a(m)-.!”-‘a —4F2F‘ 20 '

fc(l)nlv + W 0

¢

f’(oo)-vzo’

r‘u‘;-r‘(»)zo .

According to the Sturm theorem the function fo(y..‘,.ﬂ) has no ze-
ros in the interval 1<y < = if the number of the sign changes N
in the first lin2 c;f the Table I is equal to that in the second line.
The maximum possible number of changes is three. Totally Table I
gives 34 different sets of inequalities, Each of them gives its own

region of the allowed values of the parameters a; ,A, . In this

16



paper these regions are not considered, Table I is simply checked
for the A,,a, values which will be found from the cb>nditions of the
two-particle unitarity (§6) for partials s and d waves.

5., Analytical Properties of the Partial Amplitudas

The partial amplitudes 02(0)-1-‘2(14) are determned in the usual

manner

+1
1
F!(v) - T-{O(a,/\,r) P! (z)dz -

In the present model we can look for what singularties arise in the
partial waves and in what way, if in the total amplitude on the physi-
cal sheets the physical cuts (with respect to s,u,t ' and the poles

corresponding to the bound states of the mr -system are given,

s-wave
g2 g3 142y
Fy (v) = - — Q) 4
$+4v 14 2v
%
3 A PR 2iv - a
n n . v (19)
+n§l ” fViev -1 &+ = ate sin ———— +
8288y —4ia v ¥ (4-4-21/)2 -(x -x\/l+v)2 /
; . 2 @14y =x,) 2 =x,)
+ [ fa ~ 20 =
: —— ——
BV 16412y —a?+dia v (442 =(x —x_ Y1+ V) (2V14v =x_)2=x )
n n 1 2 2 1

where Q, of the Legendre function of the second -ank,

1 2 I
xpa =g v ca s VIE412y —al sdiew )

17



The analysis of the expressions ineq,{14) shows that the s -wave has
the following singularities:

1, Pole at the point V--—i—, corresponding to the usual pole
term;

2, Lpgarithmic branch point v ---14- corresponding to the be-
ginning of the cuts from the poles in crossing channels with respect
to the variables = and t at zm ¢ 1 H .

3. Root cut n the interval 0 £y <= correspording to the
two-particle unitarizy in the s -~channel,

4. Root cut in the interval =eog¢v £~1 , corresponding to the
beginning of the paysical cuts in crossing channels with respect to
the variables v andt atz= +1 (see Fig.3).

5. Logarithmi: singularity at the pointv =~2 connected with the
branching of the cuts of u« and t channels (see Fig.3)

6. Root singiularities lying on the unphysical sheet and deter-
mined from the equation 16+ 12v -a’n + 4ia v® a0 , where v as-
sumes the complex values. The first five singularities are well known,

The sixth singularty was not investigated earlier,
2

-4 44

,___@___

-2 -1 -1 );-v oo
Fig. 3
Fig.3 Cuts given ky the Mandelstam representations in the reaction
m+m am4ir in the s -channel (on the plane v,z ):
I - cut from ® -channel

I - cut from u-channel

NI -cut from t -channel

18



It can be interpreted as a cut arising from the two-particle inelastic
unitarity in the production of resonance mesons: 7+ 7+ 7%+ or
g+n s0*+w* , The effect of this cut on the n+r o7+ n scat-
tering amplitude can lead to various anomalies in the cross section

(resonance, curve knee points etc).

d-wave
i Ay [ 3(4+2v) ] g3 ' l+2v)
F’(V)-hl rm -—-—4—:7--1 F(V,n 'AI')—TQ’( - -

3 3A,(24 v)
s ! -

f2(y1+ v ~1)(9+8v --r)+2(\/l+u-l)4iulv“ -

Snal 8y
3 ] .
~8—8y ~4i 2y 14V l4y=- 8 Smne—
-2 i A7 (xI’Zn Visv-xy --x:b Gl 2 ) - T—(V(l+v)‘ -1)-
2(x ;~=x,) 2-x, 2-xgq

+ (x: +x X +x’)(2\/l+v—2)+(x:+ xl’:a-f x,x 34 x; Yx

-(4+2v)(xl+x)-rcsln rows Fat ¥y .
(15)
v x:x’ (2-—xl)(4+2v +xa—x‘\/l+v)
x arc sin + —
2 - —— RN
e 17%3 (2V 14 v =x | 1442V =x; 4 x;/14v)
x;x, & (2-x, 14420 +x, \/l+v) -
17 % 2y 1+ v-x,)(4+2v-xa+xl\/l+v)
S Y (VO 4v 1P =1)=(a3=8-8v—4ia v ¥)( \/(.1:-1'— +vixgex,h
+ v ) =1)=(al=-8-8v-siav — T a4 vinex
tml 32“‘ T 1
e a —8 av-diar? 2\/——14-1'-11 - 2\/1':‘,'_,2
+(\/l+v-l)(x +X,X o+ X ))-———-—-—(xlﬂn 4—'x'22n I+

2(xl—x’) 2-x, 2= x,

4(14+v) .8(241) 4 8(2+4v) 2 2 —
( A + B ) - 8\/(l+v) (-—5-+ S )+(xl+xix’+§)8(l-q/._(l+u) Y

+8
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2
— B+41) — R
(xl +x2)[2ll\/l+v + ( 4+4v,——.-4—-—-) VIty 4 e arc sing——-] -

3 2 P
X+ +x S — . v
173577 (8+ tv)are sin + =2 (214 =2) 4+ =B are sin +
2 2+v X ~x X, =X 24+v
1 3 1 2
5 PSS
Xy x (2=x M x,+4+20 = x, /1+v )
+ 172 fa 1N Xg 1V - (15)
x‘-—xa (2\/:;—:x!)(4+2v-x1+ xa\/l+v)
ﬂ -
I S U (2= Y442V +x] —xyV 1+ v ) |
¥t T Xa (2\/7-::_;—)(2)(4+2V -x2+x1\/1+v )

3

L]
and the third 151" sums from (15) it

Summing the secondlzl
is seen that no additional singularities , compared to those which
s -wave , will arise since the logarithmic singularities

were in the

are cancelled in just the same way as in the s -wave which is

seen from the following:

3A (2+ll)xalx2 xi")(2 xlaxa»
(~ < (1) + (1)) = - fo ()
syl X1-xg 4{x,~x) 32v (x; =xg)
3
3 5 3A x"x
LA LT NP UL L S A PICR Lape .
gy ? X%, 4(x1—x2) 3207 (x g ~x g

In these expressicns the logarithms have the common multiplier. The

ratio under the lotiarithm sign has no singularities,




6. Two-Particle Unitarity

In §3 and §4 we have determined the range in which the pa-
rameters change

1, a, >0,

2, a, and A, must satisfy the conditions (13) taking into ac-
count the Table I of the change of signs. '

The equations w~hich will give the exact values for the para-
meters &, , A_ . and g’ follow from the two-particle unitarity. The
expressions for the s and d -waves (14) and (15) are very cumber-
some, In singling out the real and imaginary part we would meet al-
gebraic difficulties, therefore for the sake of simplicity we write these
formulas as a series in v which is valid in the interval 0<v <-‘]— .

To this end we firstly expand the expression

A

%

a +V4+ 20 420z + V420202 -2iv

and then integrate them with the Legendre polynomiils., We obtain

2 2
F(v)mReF( v) + - k) riv R (b)),
° ° 3+4v 2v °
where
are—— 3 A +6
ReF‘o(v)-E ! {(a +4)s v[1=2 1 ] -
ol (4 +4) a, +4
1 1
6 4( 6)2
-va[—]¢ +|‘ _ l‘ o .I+ . (16)
12 2(|‘+4) 4(1'+4) (.‘,,,4)a
. 2 .
+ va[_‘l___ 243a, 9+a _ a(a+6) . 4la+6) _ -i-(n‘+6) I -
6 e Mar? @+ 0 (a4 (40
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3
T 1 19 35+12a, 27a, +160a,+96 2(a,~3)(a, +6)

-t -— - +
640 12004 g(q 44 1 48(a,+4) " 3(a, 40
3a,(ay +6)° 8(a, +6)° 16(a,+6)
- + — 4~ — 11
(a,+4) (a, +4) (a, +4) .
2A 2(a  46) 1 4(a 467
mE (1) = s e ey ey b ——t bt 1 -
=l (o +4)? (a,+4) 126,44 46 +47 (a +07
8
v 8 B+6a a, +6 3a,(ag +6) 24(a, +6)
- —— -+ + + +
3 16(a+4)’ (a, +4? (a, +4)* (a,+4)°
2
. v [-EiFIEA‘F . L . 3a, +4(a +6)(84+3a )+12a (a46)
3a,+4)° 30 8a, +4) 16(a, +#°
2 4
3(a‘+6) 9“[(‘1*6) 48 (a‘+6) !
+ -~ + - + % }
(a; +4) (a, +4) (a, +4)
—— 2 l+2v %
8 + .
Fy (¥) = ReF, (v) = == Q,( ———)+iv ImF, (v).
(17)
3 2
——— A, .
z + 00

Re Fg(u) - X
i so(.‘+4)’
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3 A‘y 1 8+3a’ h(.l+6)
ImF, (v) = X | |- g~ — 1+
(a, +4)°  15(a, 40 60(a, +4) 15(a, +4)
8+3a a 8+3a,)(a, +6) 12(a, +6)°
2 l2 + 1 a+ 1 1 . + i 1 } +0(V5)
84(a +4) 30(a +4) 15(a +4) 15(a +4)° f

The expressions for the pole terms in egs. (15) and (17) are
written down without expansions. (The expansion will be given in
§7). In the expansion ReF, (v) all terms containing a power higher
than the second one are omitted since the unitarity will be checked
witkﬁn the accuracy up to = vt . Since ImF,w) near the threshold

4

must be sv * it is necessary to require that in the inaginary part

ImF, (v) the coefficients for v? and v? dependent on Ay and a,
should be strictly zero (see eq. (18a)). The strict fulfilment of the
two-particle unitarity at the threshold (near v =0 ) jeads to another
two equations imposed on A, ,a (see eq. (18b).) s\nother series
of two-particle unitarity conditions in the s-and d -waves at dif-
ferent points 0< » 5-3-— can be added to the mentioned two con-
ditions (18b), In this work for the methodical purpos:» we consider
the simplest approximation therefore we add to (18b) only two equa-
tions which correspond to the unitarity for the s —«nd d -waves

at the point 0 < Vo< + (equation (18c))

Y B
= AT (18a)
3

2 X A [8"'3“1 + —L-—-ls(a +9) I=o0
el (a +4)4 a, +4



——————_— 582 2
3) lmFo(V )-‘ReFo(V) - —a—l

(18b)
4) ImFy(v) = | Re F (v - E—g’ ]2
2 15
- —_— g 2 g? 2 ._ ~ 3
5) mFy(¥) = [ReF (D) + = = f(1+47)| +v|ImF (v)]
+4v 2y
(18c)
- —_— 2 1420 3
6) ImF, (V) = | ReF (¥) = 2= Q M
] 2 -
v 2v

The six equations (18) form a system of nonlinear algebraic equa-

tions used for the determination of the exact values of the seven
. = 2 .

coefflicients 8% , ity say ,ay ,Al ,A2 ’Aa

lem g2 is a free parameter, The system (18) was solved here as

. In the considered prob-

follows, Three nuribers a, ,a,a, were given, Then the system
consisting of four equations (18a) and (18b) was solved exactly,
Using the values of Aj,A3,Ay; and g? eqs. (18c) were checked.
It was assumed trat in egs. (18c) small deflections are possible
(about 3-5 percent). For given a,, a, and a, the requirement for
g? to be positive select the unique solution, As an illustration we
give two solution >f this kind

1. ay=2;a,=4; azmb; A =0545; A w==-3,684; A, =4,673; g? = 00029

(19

2.al=0,l; a,=05; a

. a=1i A =1119; A w—-30,03; A, =20,89; g7 =0,025.

As should be expected small changes in the location of the be-
ginning of the cuts a | effect a little parameters A, and g? ie. the
solutions of the system (18) are stable. The addition of the para-

meters a, , A, also changes a little the parameters A, ard g?
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7. Contributions of Pole Terms

In the considered model there may be contributicns of pole terms
of the two types:

a) contributions from the pole corresponding to the bound sta-
tes of a system consisting of two pions; .

b) contributions from the poles corresponding tc the resonance
states of the n 7 -system (they are given by egs. (.ta)). The con-
tributions of the type a) are taken into account in eqs. (4), (14), (15),
(18). In the physical domain the contributions of these pole terms
do not lead to the cross section behaviour of the res;onance type,
In this sense the pole of the second type are of much greater inte-

rest, Consider, e.g. the construction of one such pole in the s -wave

2 .3 2,,3
(pole) 2(a® +b° +4v)a G -2(a’4+b° -41)G —
$ ) = i -t L Visv -1

N 2
(a2=b244v ) +4a b2

(21)
2 Ty 2 To
+ =G lala—2 +bla -a}] + =Clbb—=+ala -a, )] +
v L o v T 0 1
it G, (a® =b?+4v)~2ab 0,
+ 4iv y
(32—b2+4l¢)2 4—4&:2112
where G, +iG =G is the residue of the function ®(g,A,r) at the
point o m=b . —ia 3}
b
ro-\/(a w2747 a = arcig —3
pr— 2 b
ry=Viag2yviev) +b @, = arcig .
a +2y 1+
If b®>a? , which corresponds to that the mass of the resonance

state is larger than the width, then the s -wave will hnave & maximum

o
o



in the croos section. If the width of the resonance is small then the
peak will be large and sharp, if the resonance width is comparable
in magnitude with the resonance state mass then the peak will be
low, In Fig.4 the sshape of the peak corresponding to the partial cross
section ( s -wave, is given as an example for the case when a=0.l,

b-2; Gl -0 .

Gf (f‘lf)
i Zz.:;

30
20t
1[4
—_ + u + )
0s 40 1,5
a(pols)
Fig,4. The shape of the cross section —-—:—-—
4G

4
8, Conclusion

In this pape- we considered only one example of the model
function ® (o ,A,r) aken in the form of (4). It was shown that using
even such a simple form it is possible to satisfy the exact two-par-
ticle unitarity near the threshold (v +0) and the approximate condi-
tion of unitarity on the cut(0gv <v ) | Thus, the suggested method
for constructing tr e elastic scattering amplitude as compared to other

methods ensures he fulfilment of a larger number of requirements
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imposed on the physical amplitude to be fulfilled. It a.so provides

the existence of the dispersion relations with respect to s for t <0.
To illustrate the essence of the considered method we consider the
domain of small » such that |a,|>|e+A+r| . In his case each

term of the sum in eq. (4) can be expanded in the secries

>

S B (0+A+r)",
a0 k

This series is a harmonic polynomial which depends on the three va-
riables o ,A,r ‘given on the sphere ¢?+A%4+r%a -3 . If the coef-
ficients B, were arbitrary numbers then there would be a complete
system of functions (harmonic polynomials) by means of which it
would be possible, within any degree of accuracy, tc approximate any
function analytical on the sphere for given values of ¥ . However,
the coefficients Bx are combined in a definite miinner from the
coefficients A;,a; therefore the given series can aosproximate the
desired function only within a certain degree of accuracy.

In this paper a more general problem is considered: on the
complex sphere a’+/\’+r’--8 by means of a smal. set of fraction-

linear meromorphic functions

3 A,

1 s, —i(oM +r)

we approximate anocther meromorphic function, the desired scattering
amplitude on a certain intercept 0<v Lconst for a restricted number
of partial waves, It is obvious that, in principle, such a problem
can be solved within a certain accuracy.

When the number of partial waves increases, a more compli-
cated \'/ersion of the function ®{o,A,r) with a larger number of terms
in the sum P , ie. with a larger number of parameters should
be taken,

From the given work it is easily seen that all the dynamics

of the scattering processes (resonances and other' anomalies in the
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cross section ) are defined by the singularities of the model fun-
ction ®(o,A,r) lying on the unphysical §heet. If all the singularities
of the function ®(g,A,r)  are eliminated then it should be represented
as a symmetrica. polynomial of the variables ¢ ,A , f . If it is as~
sumed“that the anplitude at infinity should not be higher than the
first or second cegree then the considered polynomial js so simple
that using it, it is impossible to describe satisfactorily the compli-
cated behaviour of the scattering cross section. In the real case of
scattering of pseudoscalar pions on pions it is interesting to look for
the appearance o:the known resonances in the nn -system ( e.g.
of p meson in the state Talml ). In this case we should take into
account the contribution from inelastic processes. With the aim of
taking into accournt apbroximately inelastic processes we can, instead

of the transformations (I) introduce more complicated ones, for instance

Cmt Vs=bryaulb
L ——r————

Am i‘.\/ u~—4 t\/n - 16

rmt Vi=4 £ V1 <16
or —

0 =wsyfs—44\e=16 + V5=35 - ete.

Finally it is interesting to know if there. exists a set of the
Feynmann diagrams which would lead to the.model function (4),

In conclusion we thank Academician N,N,Bogolubov for
useful advise and the interest in the work, the member correspondent
of the Bulgarian 4.cademy of Sciences L Todqrov for numerous
discussions and ~mluable remarks, R. Denchev and V.A. Mesht¢he-

ryakov for the participation in the discussion of the results,
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