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I. Introductory Remarks

1/

In the previous work - we obtained the relativistic Schrodinger :

equation for a system of two scalar particles with equal masses

(2B, =Hg) ¥ (F) = f V(F;T 4BV (Fat”, (L)
where 2E = 2: q2 +m? is the total energy of the particleé
in the c.m, system , ‘I"1 (7)) is the wave function of their relative

motion, V(" ;1 JE)) s the "quasipotential”, determined génerally from

field theory x) ani_i the quantity

)
a 21 9 - A 1 g
H =2meh(i 3 D+ sh{i ) - 9.9 e Omr (2.2)

]
rm T rm mra

o .
is ( Ag'qs is the angular part of the Laplacian operator) the relati-
vistic analog of the free Hamiltoian, 1t was shown that the eigen-
functions of the operator H, are the "plane waves" in a Lobachev-

‘sky momentum space

x) We use here the terminology of Logunov and Tavkhelidze / 2/, be- |
cause in the p-representation the equation {1.1) is analogous to the
quasipotential equation suggested in 2/, Por details of connection between the
quasipotential approach of Logunov and Tavkhelidze and the formalism

of equation (1.1) see 3_‘5- .



H, & (3t )= 2E_ E(@ T ) 3
- E,-q1 Tisire ' (1.3)
£@ i) al—te—e——) ;Tars 301,
- m -
In analogy with the case of usual plane waves JATF . which’

are the kernels of a Fourier transformation mapping the’ non—relatl—
vistic 'momentum space onto the non—relahwshc coordinate space,

the t‘unctnons E(D) are the kernels ot‘ the Shapiro integral trans-
t‘ormatton, mapping . the Lobachevsky momentum space (the upper
sheet of the hyperbolmd q% -3%=m? ‘onto some three-dimen-
sional relativistic T space). From the group—theqretical .point of '
view, the Shapiro transforfnation‘ is the expansion in matrix elements
of the ‘principal series of unitary representations of the Lorentz group.
The radius-vector T in (1.2) and (L3) is connected in a simple

Way with the value of the Casimir operator of the group in these

representahons. .
;o In, /1] it was established that with equation (1.1) we can con-
sider algo the equation with the local quasipotential V(T ;Eq) %)
e »(2E -1 (@) - VB © ()
‘om q 0! Tt A o . (L4)

x) We have slightly changed ‘the normahzatxon of the wave /‘ /'lCtlon
&  and the quasipotential V (E.) .. in contrast with /1
simplify the investigation of the non—relatnnstxc limit,

if we assume the existence of the spectral'represéntation of the
scattering amplitude in terms of the momentum transfer )
Expandi @ (7 i ' .
panding q(1' ) in Legendre polynomials
.

N R (r,q) > >
cp(’)_g, ¢ (28 +1)P, (-

=0 qr

y (1.5)

it is easy to obtain from (1.4) the one-dimensional equation for the

radial wave. function R z(r',q ) : x)
H"d (28 rad : .
(2E =H, R, (r,q) = Vir; "
(28 =iy IR, G 9 = VAE IR () (1.6)
where
rad o d A e+ . ‘
H = 2c¢hi -
o " dr * trei) o 7 (L7)‘
Due to (1.3) and the relations
(r, X, ) -
f(q?)ezx———-—-ﬂ—-(z ar
¢ +1)P (
¢ qr =) ) (1.8)

» fe1 . ey ooy '
AN ' E
sz (r,xq) ) ‘thq (=1) (=r) P . (chx ) )
q

(1.9)

: (Eﬂ) L+t

(Eq’dlxq;(—r) =i

CCirs 2 + 1)
Clie) )

)We use the unit s - E
ystemﬂ ln which ‘t =¢csma= ]’ .
to the non—relatsttlc case. means that r >»'1 ) Th{i ltransltlon
r q .



one of the- eigenfunctions of the operator (1.7) is the function sz(r.xq)

rad

Ho él(r‘_,xq) =2Eqse(r,xq) . 7 ) (1.10) V

2. The Operation of F‘irﬁté—Difference "Differentiation" and the
Concept of Generalized Degree

‘ v 4 . .
It is obvious from (1.7) that the operator 'H:,B is a combi~
. .

d
. . -1 .
nation. of finite shift operators e‘ dr and . FT . 1tis clear -
then, that' it will be reasonable to investigate the properties of equa-
tion (LG) using the methods of the finite-difference calculus.
Let us define the finite-difference "differentiation" operatior'm A
putting (cf. / 8/)

- —

e M oa-iA. : (2.2)

Acting with A ~ on some function 1{r) because of (2.1), we

A o ALG) = flr=i)=10) , : . (2.2)

-1

5’ U
It is obvious, that in the non-relativistic limit- )

AL a e 1) T (23)
codr s . . R .

x) In usual units (2.2) has the form

e =it

mc

At(r) =
o it
mc

‘

It is clear also, that we can rewrite equation (1.6) in terms of
A .

It is. easy to verify that the A -derivative of lhe product of

. two functions {(r) and ¢ (r) is*given by the expressior’l‘

ATt ] =1A1G)]p () + 1M [AS(I] +

+'._§_.-[Ar(,)l[A¢(.)l.

It would  be convenient for effective exploitation of the A -ope-
ration, to have some function whose behaviour under A -differen-
tiation is similar to that of the usual degree function, It turns out

that such generalized degree is the function

A A T(ir-+A) (2.5)
r =1 .
F(-ir)

(cf. 1.9).

Indeed, as it is easy to check,

Ar Doy, - " {2.6)
Furthermore, it is obvious that
r(0)= 1.
If A= , where is a .positive ‘integer, then
(n) . :
r ar{r+i) ... (r +(a=-1)i), ‘ (2.7)
and ) ,
(~n) -1 . ’
r = . o
T (r=i) = 2i).,.(r=ni)} (2.8)
? 7



Passing to the nonrelativistic theory,
) A
T - T

Let us note, that ouf' definition of the generalized d_egree‘ is more’
universal, than the corresponding definition in /8/

In contrast with usual analysis the product of two generalized
degrees is not again a generalized degree, but it can be shown

that for arbitrary A and p

' A+ )
LAY (@ r

T r =

F (=X, mpheir,1 ) (2.9)

where F is the hypergeometric function.
Let us suppose now, that we know the Tayior expanéion of

some function f{r+a)

oa n n 2.10
f(r4a) =3 2 .LEI___I_S.:.)_. f ( )
n=0 i dr?®

Let us construct the analogous expansion in terms of the ‘A -
operation /8/. It is clear, first of all, that ‘

. d
} — ..1_‘1_. 1

! f(r+adame 3T gl)ale. IF ) f(r)m

) - (2.11)
' ) ta. . i
. =(1=iA) (),
\Ey,‘xpanding the. -~ binomial (1 —i4) in a series in A , we get
" ta : ialla=1).
(=18 alsial-id) & =20 (~ia) el
8

ERIREE

e S

From here and from (2.11), keeping in mind (2.7), we finally obtain

n)
( - (212

A" B .

148

f(r+a) =

n =0

]

L]

A comparison of expansions (2.10) and (2.12) shows that these
series are analogous in their structure. '
3. The Analogs of Some Functions

Using the generalization of the degree function, we can introduce

with the help of the corresponding series, the analogs of many fun-

ctions, which are used in continuous analysis.

.Let us define the generalized exponential function by the follo-
wing expression ' '

n - {n)

oo
a T
explasr] -3 — ' (3.2)
It is obvious, because of (2.6) that
- (3.2)

Aexplajsr] =aexplairl,

Comparing (3.1) with the hypergeometric function expansion, we

conclude "that !

explaje]l = F(=ir,2;1;ia) - (303)
which is equivalent to the equality
. . '
explazrl=(1_ia) rA, (3.4)

: Keeping in mind (3.4) and (2,11), we can write the function
flr+a) as follows ‘ .
f(r+a) = expld;altlr) ' (3.5)



Cpnsequently, the operator A up t;a a factor i is the "ge-

nerator'" of translations along the r-axis in the répresentation defined

by the exponentials expla;r] .
Let us note that the plane waves £(q* ;1) , considered in

§1, are also expressible in terms of generalized exponentials

-1=tr
& iT) = (g, -3 1) =
-1 : .
= (q 0—;;) expl i(q0 -1 Tq’"ﬁ Y=t ]) : (3.6)

\

Let us now define the generalized hyperbolicbfunctions sh:[a,r]

and ch [a,r]

. oo 2n+1 (2n+1)
shlasrl=——{explasr]l mexpl-a;rlle 3 2 .
-2 ne0 (20 +1)1
(3.9
. . . N v o0 2n . (2n)
ch[a;r]=—2—:lexp[a_;r]+exp[-a;r]l=2 —r
. ) ' n=0 (2n)!

i
i

Ty Co ’ ~
and the. generalized trigonometric functions sinla;r]  and cosla;r]

‘ ) 1
' - sm[a;r]:—z—.—-{exp[ia;r]—exp[—ia,r]!:-
’ i .

00 n 2n+1 ' 2n+1) (3'8)
=3 (-1 ;
cx n=b '(2n+1)l
jtu
H
i
S 10

Tt

cos [ a;r]=L-lvexp[ia,r]+exp['—iﬂ;r]‘
2

L]
. n a2n (2n)
=35 (=1) ——— .
n=0 (2n)tf

1t i‘s clear , that
Ashl asrl= achlasr} ]
Ach[a;r]nash[a;rj)" . ‘ (3.9)
Asin.[a;r]=acos[al;l‘]; . | .
Beos Lagr lazasin [asr] ]

. 'Let us consider now the so-called logarithmic derivative of

the> I'  function
r“(z)

V(z) = (3.10)
' (z) .
After using the well-known ‘functional relation
\ N .
V(=¥ (e (3.17)
z .
and'taking_into account (2.2) and (2.8) we obtain
1 (-1 ' .
AY (ir4l) = —ee = r p) (3.13)
r—1 .
Consequently, the function Y (ir+1) plays in the calcul's under
consideration the same role as [l r in continucus analysis. This

conclusion is justified.also by the similarity of the expansions of

these functions: in Taylor series (2.12) and (2.10) respectively

11



i)
Y0i(r+a)+ 1) =W (ir+l) + afla +i

r—1  2(r—idlr—2zn) ¥
. C e (W
: i - 2i ot ntl1 4
pmalaxidla £2i) 0 g(re e 2
3 (r~idle—=2i)(r-3i) . n=1 a )

+1 -n n

; * n r. a
fa(e+a) = bar + 3 (~1) —n———
n=? a

Let us now find the generalization of the step function ¢ (r):

1 >0
0(r) = | .

0o P <o . (3.13)
The main property of 8 (r) is expréssed, as is well-known by the
equality:

. : 40 (r)
=8(r) 3.14
o dr . ? ( )

V
o

w\’h‘ich”is most simply proved, using the integral répfesentation

i

: = 1 80 tKr
0(r) = [ —= dx (3.15)
20F woor K=1i €

Let us define taking into account (3.14) the generalized 6
~ .

function @ (r) to be that function for which the relation
. .
AG () =6 (1) , (3.16)

is valid, .

We 'shall have, .in complete analogy with (3,15)
' v iKr
1 e

ix (3.17)

L '.—" ‘A : i
) rhoy 0(r) =
y FSI c 27 i e K —~l—je

)

e

from which, after integration

te=1
n (eie) ' 1
6(s) a lim — - . (3.18)
-3y -272
€40 ], - ) IEPY
*
~ N .
So, 9 (1) for r#40 is a function with period i and has

to be consideredi as cénstant with réspect to A differentiation, At
the point r = 0 ‘the expression (3.18) has a pole, which leads fi-’
nally to equality (3.16). ' ‘
Tt is olﬁvious,‘ that in the nonrelativistic limit [*T1>' 1 'the
function (3.18) goes into (3.13)., Let us note, that the identity .
0 () +0(—¢) al for the function (3.13) is valid also for 6(r)

- ~ .
0(r) + 0(~2) = 1,
(3.19)

The 8 _function under . A differentiation has to be consi-
dered as a function of a complex variable, because the A -ope-
ration is accomplished by transition into the complex r-plane, Let us

introduce the following representation for 8 (r)

5(r) a bim ( — - ! ), (3.20)
B0 2ni r—-ip r+ip
with (2.2) and (3.20) we shall’ have ‘ é
A8 (1) et i [ 1 JESPUSES SUR P T
©2mi ps0  roi-ip  r—itip r—ip reip (3.21)
i

- S e A fim
- T w0 roi)?4p?



Upon integration along the_ real axis in r-space, the second term in As can easily be 'seen, equation (4.1) is fourth order with res—

(3.21) can be considered as a continuous function of g and conse- pect to the A -operator. Accordmg to the general theory of diffe-

quently (3.21) is in fact equivalent ‘to the .relation rence equations /8/, it follows from here that it must have four inde -

. 4
d .
AS(+) = =i 8 (), (3.22) pendent solutions

W : However, it is necessary to know only the solutions of the
) ) second order equation
The same equality arises, when the identity r 8 (1) = 0

. ; . o -
is A -differentiated formally according to the rule (2.4). ' : (2B ~H ) R, (r,q) =0 4 (4.2)

Let us pay attention to the fact that the relation (3.20), because

of (3.11) and (2.2) can be written in the form -because the other solutions of (4,1) can be obtained from them Ly

. going to the limit E_ 0. ° .
8(r) = e lim ALY Gir g )= ¥ (ir=p) ], (3.23) ) N . .
2mi o0 . - _According to §1, one of the solutions of (4.2) is the function
’ = sp(rax ) given by relation (1.9). Since this equation does not
"We obtain from here, taking into account (3.16), the following expres- ‘ change with the substitution
sion for "smear" ¢ —function ) : { ' Es-t-1, (4.3)
: ‘ » ' .
~ ) ‘\
0 (t) = [Whr+p )= ¥ Gr=-p) ] +¢é (1)
e e . - (3.249) , another solution of it will be the function
. » l(r, x )=(=1) s (e xq) (4.4)
where ¢ {r) is some . i periodic function, which we have to de- - . it
termine, We find easily, that ¢(r) == 2hII_ 1o comparing (3.24) or . 1/
. . . ! . . ]— -0 Tt [4
B . 7 .
at g = -0 with (3.17) and (3.18). : ‘ | cplrx )= Ygmshx (=0 P (ehx V.  (4.5)
| ‘ ‘ ‘ o . iy
"; V,z“ "‘ . g . | . . . . v
: J - ' ) In the non-relativistic limit, as is il ified
4, The Solutions of the Free Schroedinger Difference { ) ! s castly veritie
' ‘Equation e q :
\ , . s rx ) o —'2“-1[ , (r.q) ! <
. B q : + o -7 (4.6)
~ It follows from (1.6) that when the interaction is switched off,
. . . . [ . P . ; ’ .
the radial wave functxonA Rz (r;, q) satisfies the equation o e (ryx )= / 7rgq N g
’ . : : 4 a 2 [ r b) .
d . . '
i, rad o (1) ' : ' :
(2B, ~H, )R, (r,q) =0, ,
‘Like the spherical Bessel fuhctions, sp and cp can be
expressed in terms of elementary functions. For example for sy the

following  recurrence formulas are valid (cf./ 1/)

14
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fa It is easy to establish, taking into account (1.9) and (4.2) and
( Y e nl (sh x q) ( d )Z sin rx : ] some relations from the theory of spherical functions /9/, that at ar-
s r, X a (— or p) N A
4 a LD deh X, shx (4.7) "1 bitrary «x_ .
. : 1
RO I 2sh X (SR
e, (1, )a—— (=r) Q (chy )., (4.13)
(LH) 4 q i 1= q
g - F1r
G N (~r) ( 1 d )E sinr X, . . C G 3
, ==~ h i :
) ' » It is clear that the choice of the solutions of equation (4,2) in
the. form. (4.13) corresponds to the consideration of outgoing and in-
It is easy to find the asymptotic behaviour of the function ] coming Spherical waves. In the non-relativistic limit from (4.11) and
5 (r, xq‘) for large rx  with the help-bf’(l}.?) ’ I (4.6) or from (4,13) we get immediately '
q . ) .
. - A L _ :
(t,x )= sinley - —) »1, (4.9) . ‘ ad o - o
splrax e osinlex > y T o e (rox )+ + iy =2 u LG, (4.14)
. 4 a - 2 £+ L
. 2
We get‘ from here, using the relation (4.4) J . X
. o As is well known, the cylindrical functions ] . + N
e n i34 . . £+ 0+ =
cz(r,x ) »cos(rx =) >4, (4.10) v ‘ 3 .
4 4 2 : and H(zl;”_,_ are entire analytic functions in the plane of angu-
. N . h a . .
So, the solutions s Z(r' X q) and “p (ro x q) of equation (4.2) o lar momentum { . It is interesting to know the analytic properties
: . g _ prop
correspond to standing waves. : / }1 in ! of the relativistic solutions - SE ) and 62(1‘,2) . This.
. . 9 : ; - - : A
Let us introduce now the functions (comp, /) problem will be very easy if the sj.c, and _e{‘-” are ex-
. ) pressed in terms of hypergeometric functions. -
v w ) ( Ve ) » . . Let us remember first, that Fla,.Biyiz) is an
1 ez r,Xq =cz r.Xq -O-ISZr,Xq 9 (4.11) f: ‘ v '(y) ‘ -
@ ] entire analytic function of the parameters ¢ , B and ¥y for |z f<1.
: ®e (P-Xq) = "g(" X q)" is g(’ + X q) . { Taking into account this fact, and the relation
. . ‘ ko - ch ¥ -1
. i g chy =1 kR ‘ch ¥ + F(—-V,—V—p. Pl-ps chy+ 1 )
It follows from (4.9) and (4.10) that - _ , ) (C"X’=( V) ( Pea - (4.15)
| ) Y SN chx 1/ ' —p)
. riex A (4.12) ‘ : ‘ o 1
1,2) t - =5 . : . S -
e( (r,x ) » @ a 2 ry 1, ) we conclude, that the spherical function P 2 (chy a )
[4 q > a- K -5 +1r
I ) . . k at {chx|>1 is an entire function of £ . Consequently ) (r, x)
: (see (1.9)) is a meromorphic fun;tion of £ , because so is the ge-;
| , neralized degree (...»)(2 +n - ih'1 Clir+ £ +1) .
: ) - [ ir) -
. 17 .
16 - :




The position of the poles is given by the equality

t=mt-a-ir | (4.16)

where 18=0,1,2,... | Then, in so far as we consider only r3 0
thg poles of {(4.16) occur in the third quadrant of the -f-plane,
Reasoning as earlier, it is easy to establish that the function
cp (r,¥)  is also meromorphic in the Lplane, its poles loc;ted in

the first quadrant

f=n + ir, _ nm 0,1,2,.. ‘ (4.17)
Th . (1,2) .
e fact that the functions ey in the Lplane are mero—

morphic is obvious from formulas (4.11).
To conclude this section we write down' explicitly . those solu-
tions of the initial equation, which are simultanéously solutions of

the equation
(0
e Ry(r)=0,
. _ (4.18)

As ;‘n the preceeding . case, it is convenient to group these

solutions in pairs

l_.(il‘b+-(!+-l )I“(— n +2 )sh ;'II'
2 2

2
splr)= — - =a; (e Il
. r ir l—'<— ir + + 2 ‘
, (== ) |
: o (4.19)

cﬂ =a€(r)ch mr
W LS

cep = ae(r)e
@ s (4.20)

2 - o

e I = ae(r) e

18

5, The Wronskians and the  Green-Functions

According to the general theory of finite—difference equations/B/,

the arbitrary solutions Y, and vy, ofa ‘difference equation are

linearly independent if the determinant

yl(r) yg(r)
=Wy, sy, ) - (.1)

Ayl(r) Ayz(r)

differs from zero.
In the 'nonr_elativistic' limit it is obvious that

(S

| )
y‘(r) ).'2(r
W(yl:yz)-' . . _
! -l'i-;yl(l‘) T-_yﬂ(r) .

Then (5.1) has to be considered as the analog of the wronski-

an in finite-difference analysis.

- On the grounds of (4.11) we have

1 W (2)

W(sz,c e)a ---2--i—-W(ez ;ez ) 9 (52)
) oy o ( @
, =W , =W ,
W(se t:z ! (sz ez ) sz ez

As in the continuous case, the wronskian (5.2) can be calcu-
lated precisely. To do this, let us find first of all the equation for W.
Considering for the sake of definiteness ¥ =W (e(zn , e(z) )

we shall get from (4.2)



ey @ Sy @ oW
t e +1) N °e ('"'-X)ez ('+1.X)—ez ("'“-X)ez (r~i,x)} =

(5.3)

2 E
() [¢)]
w ; )
i (e [4 e z .

"~ On the other hand, using again (4.2) and performing some simple

transformations of the argument, we obtain

(@ 3] 2) n
2iE Wie, iep )=ez (r.X)ez (r-—2i,x_)--e:Z (rf2i.x)e(;) (r,x ) =

(5.4)
a . ,
- — .
) n 1
e O° le(:.(r-i,x)c(e (r+i,x)—e(;)(r+i.x')eg(’(r-i,x)l,
Now, from (5.3) and (5.4) we can conclude, that
1 - £+ 1)
- (¢} 2) € +1 w @
dr : ) .
e W(ee ey )u(l .'-.‘r(r--i) Wee,ee )}
or finally. (5.5)
by ‘ i .
U (@) L+ 1) W @
AW (e ,e Y= i + W(e ;e ).
: 4 £ r{r—i) 4 [/

!

The solution of equation (5.5) as is easily verified has the form

5

Sy @ ‘__r)(l +1)
w( » ) = A ) )
St € +1) 4 r X7y (5.6)
()
L i i
a\
20

where A ,{r, x) is some i-periodic function, which has tO_.bé de'_\-
' termined™). |
Let us make the substitution in (5.6)
rep—-in ( n _integer)

and let o tend to infinity, ‘Thén obviously we shall have

tt+m : .
(p-~-in) [SP I &)

TR W.(eE feg

| Lt (5.7
Aglp.x) = Uimt v (5.9

t=p=1n
n-»o0 (=p+ i‘n)(ﬂ

/10/

Using the relation

’ B -1/4 '—f-—-— Y
e—-”‘”d‘v(z)n\/-;-r— (z2 =1) [z—\/zz-—l] .

e st
)

. _ - —
. _ll‘iu#_’_p(_l_.ﬂ,,»_lz__,,:”_sz_,, 24V ),
(v +3/2) 2 _ 2¢/23 -1

it is easy to show , that

. : ¢
(1,2 +1(x(p~tn)= Tﬂ ) _ (5.8)

ez' (p~in,x) » .e

' )

i n ®oo
(comp. (4.12)). Substituting (5.8) in (5.7) we find

¢
AE (p,x) =2i(-1) shx,

) This function plays the role of the arbitrary constant, arisiﬁg upon
integration of difference equation (5.5) .

21




Equation (5.6) now takes the form -

(l+1)
: ) <2) ©2i(=r) 4
W(eZ e _m_l)_- (=1) sh X. (5.9)

It is interesting to note the relation

n (3) . n 2)
W(el vep ) C Wleg gep ) shy .
@ - W@ ST+ (5.10)
el (r,x) eg (s x) : WX(eﬂ 'ee)
d R . ’

S
—:]-i-el (r,x) —d-;—-'e Z(l‘,x)

If we take into account the fact that sh X isi the modulus

of the three dimensional momentum, then the similarity of (5. 10) w1th
the analogous relation' between wronskians in the non-relativistic

theory becames quite ob\nous.

In some calculations ‘it is useful to keep in mind the equality

cP L e, ¥
ir=f —1 £ L
wsY @ ) ir b . v . 3
i A ir =X : (5.11)
’ Sy w N @ )
: X St X

!

the analog of which in the non-relativistic case also exists,

Our next problem is to build the Greens functions of equation
(4 2) from its free solutions. It is clear that ¢

¢ {rrix)  satisfies the
equahon (comp, (3. 4)) from /115

: g+ .4
[2eny .-Zchx-i—-— - e ar )G lr,r’x) adlr=r*). (5.12)
q , C@ 4
. 14 dr r $ : /
o
4 v
22

e i i Na-~
Then we can reason as in the non-relativistic formalism,

mely, due to (5. 12)‘ at r<r’ and r>r’ the Green-function satis-
_ . .

bina-
fies the free equation and consequently must be a linear combl

(&)
tion of functions sy ., cp .eg_ and’ eq -

with l—perlodlc coef-

ﬁcients. At the point r =r * these coefﬁcnents must have a singu-
larity ‘such that after “dlfferen'uahon" with respect to r we get B(Ir-r 9,

One can see, takmg into account the correspondence pnnclole

and the definition of the _'9‘ function (see (3.16) «(3.18)) that it is in
fact thlS function whxch must enter the expression for the coet’ﬁcxents.

It is. easy to find the explicit expression for Gg(r- )g‘) from

1
the mtegral representation {(cf (3.44) from | /)

-

: & ‘
dx sple,x )syefix) - (5.13)
2 chyxy =2ch)x +i¢
q

e Vet f‘
cl(r.r ;xq -—;o

Let ‘'us note first of all, that

L ger B0 v ). (5.14)
wl(=~l) c————— t, X .
S;&'x ) ( (Pr)(z+l) Z
’.Ié‘hen, instead of (5.13) we shall have:
) L+ ( o)
. 2 (43 BN Ce g oy gz(f.x)st r’X ( ',‘)
[ - e (=1} - : - 5.15
Gy lrur ix ! - » (_',)(Z#l)v o Tz ey ~tehx +i€

The integral (5.15) can be obtained with the help of ‘_tr)e theory

of residues. We write down here the result

, 1 . .
C le,r5x V=~
q

t wie® ¢, x ).eb)(r’.,x )
. : q £ q
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7. A.A.Logunov, A.N Tavkhelldze, I T Todor'ov, O.A., Khr'ustalev,
Nuovo Cim., 30, 134 (1963).

A ) ~ N e . . . . . )
x{8 (r—r ')e;”(r . xq)e(;)(r ’ xq) +0( ""l‘)e“; (r*x )e(;) (rox V= 8, A.O, Gelfond, The Calculus of finite Differences Moscow, Nauka,
' o (1967). .
9. L.Brown, D.I,Fivel, B.W.Lee and F.,R.Sawyer, Annals of Phys.,23,

7., (1963). 7
10.‘ Batemah,‘ Manuscript Project "Higher Transcendental Functions"
‘Mc Graw-Hill, New York, 1953,

q

a Lo e, A ) @,
--(9(r+|-)eZ (r,x“)ez (rox )- 0 (—r~r )eZ (,,xqj )ez (,,xq,)_’

The only difference between (5. 16) and the ‘corresponding exp- :
_pressxon of the usual theory /9l is that in our: Green—functxon there. = ‘ ] Receive§ by Publishing Department
occurs an "acausal" term, proportional g (=r=rt’ ) . In the non-rela- o _': ' . . on June 26, 1968.
tivistic limit this term disappeaxs,obviously.

There is now, reason to consider the Green-function of the i : *

e

iniial equation (4.1) separately, because it is expressible in terms
of GZ (r,r';xq) and GZ (ryr";0). o i . : . » ) S : ' : p
The authors express their sincere gratitude to D.l.Blokhintsev,

N.N.Bogoluhov, Yu.A.Golfand, A.,V. Efremov, A.N,Tavkhelidze, LT.Todo- .

rov and M;Freeman for their interest in the work and usaful discus-

sions.
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