C 324.3
$B-19$
ОБЪЕДИНЕННЫЙ ИНСТНТУт яДЕРНЫХ ИССЛЕДОВАНИЙ
Дубна Varoujan Baluni, Nguyen Van Hies

A LOWER BOUND OF THE ELASTIC SCATTERING AT FIXED MOMENTUM TRANSFER II

1968

> Балуни В., Нгуен Ван Хьеу

Нижняя граница амплитуды упрутого рассеяния при фиксированнои передаче импульса

На основе аксиоматической аналитичности получена нижняя гранида амплитуды упругого рассеяния, справедливая для всех конечных передаваемых импульсов.

Препринт Обьединенного института ядерных исследований. Дубна, 1968.

Baluni V., Nguyen Van Hieu
A Lower Bound of the Elastic Scattering at Fixed Momentum Transfer II

On the basis of axiomatic analyticity we establish some lower bound of the elastic scattering amplitude for all finite momentum tran sfer.

Preprint. Joint Institute for Nuclear Research. Dubna, 1968

Varoujan Baluni, Nguyen Van Hieu

A LOW ER BOUND OF THE ELASTIC SCATTERING AT FIXED MOMENTUM TRANSFER II

Submitted to "Письма ЖЭТФ"

In the previous work by one of $u s^{/ 1 /}$ it was shown, that on the basis of the rigorously pr'ved analytical properties of the absorptive part $A(s, t)$ of the elastic scattering amplitude, we can prove some lower bound for this amplitude in some interval of the momentum transfer.

In this work we generalize the results obtained in ref. $1 /$ and establish some lower bound which holds for all finite momentum transfer $\mathrm{t} \leqslant 0$.

We know that $A(s, t)$ is an analytic function of t in the Martin ellipse E_{t} with the foci at $t=0$ and $t=-4 k^{2}$ and the major semiaxis $2 k^{2}+y$ for some constant $y>0$ ($k-$ is the three dimensional momentum in c.m.s.) and for all values of t in this ellipse $A(s, t)$ grows at $s \rightarrow \infty$ no faster than const. $s^{1+c, c \leq 1 .}$. We consider two points $t+=-a$ and $t_{+}=-4 k^{2}+a \quad$ for some $a>0$ and denote by $w(t)$ such an analytic function which maps conformally the ellipse E_{t} in the t-plane into some ellipse $E_{\text {w }}$ in the w-plane with the foci at $w= \pm 1$, that the points \pm are transformed into the foci ± 1, resp. We denote by w_{0}, the image
of the point $t=0$, and by a the major semiaxis of the ellipse $E w$, resp. The magnitudes of w and depend on $s a$ and y.

The conformal mappings of the ellipse into the half-plane and of the half-plane into the ellipse are studied in book $/ 2 /$. Using the expression given in $/ 2 /$ it can be shown, that at $\Leftrightarrow \infty$

$$
\begin{gathered}
w_{0}-1+\frac{8}{\pi^{2}} \frac{\gamma}{5}\left\{\arccos \left[\mathrm{ch}^{-1}\left(-\frac{\pi}{2} \sqrt{\frac{a}{\gamma}}\right)\right]\right\} \\
a=1+\frac{2 \gamma}{s} .
\end{gathered}
$$

Now by means of the conformal mapping

$$
\xi=w+\sqrt{w^{2}-1}
$$

we transform the ellipse E_{w} into the ring with the internal radius 1 and the external one R

$$
R=a+\sqrt{a^{2}-1}
$$

following Cemulues and Martin ${ }^{/ 3 /}$ (see also $/ 1,4 /$). Further applying the Hadamard's theorem on three circles, we obtain the lower bound for the ratios $f(s, t)=\frac{A(s, t)}{A(s, 0)}$

$$
\max _{-4 t^{2}+a \leq s \leq-a}|f(s, t)| \geq s^{-(\varepsilon-\rho) \phi\left(\frac{\pi}{2} \sqrt{a / \gamma}\right)}
$$

where

$$
\phi(x)=\frac{\arccos \left(\operatorname{ch}^{-1} x\right)}{\frac{\pi}{2}-\arccos \left(\operatorname{ch}^{-1} x\right)}
$$

and p is such a constant that at $s \rightarrow \infty$

$$
A(s, 0) \geq \text { cons } i+p
$$

In particular if the amplitude has the Regge behaviour ${ }^{/ 5 /}$ then for the trajectory $\beta(t)$ we have the following lower bound

$$
\max _{-4 k^{2}+a \leq t \leq-a} \beta(t) \geq 1+\rho-(\epsilon-\rho) \phi\left(\frac{\pi}{2} \sqrt{a / y}\right)
$$

For $\pi \mathrm{N}$ scattering the analyticity on t was proved for $\gamma=1,83 \mathrm{~m}_{\pi}^{2}$. However one can hope, that γ achieves value $4 \mathrm{~m}_{\pi}^{2}$. In conclusion the authors express their gratitude to D.I.Blokhintsev, N.N.Bogolubov, A.A.Logunov, M.K. Polivanov and A.N.Tavkhelidze for their interest in this work.

References

1. Nguyen van Hieu JINR Preprint E2-3728 Dubna (1968).
2. W.Koppenfels and F.Stallmann. Praxis der Konformen Abbildung, Berlin Gottingen Heidelberg, 1959.
3. F.Cerulues and A.Martin. Phys. Lett, 8, 80 (1964).
4. A.A.Logunov and M.A.Mestvirishvili. Phys. Lett, 24B, 583 (1967).
5. V.N.Gríbov. JETP 4., 1962 (1961).

> Received by Publishing Department on June $18,1968$.

