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1. Introduction

Till now the perturbation theory with renormalization is the
only regular method in QFT, It proves to be good for quantum
electrodynamics, but for the only renormalizable mesodynamics Lag-

x)

rangian

Ly =89y5 ¢ 6 +h g | (2.7)

there exists a well-known difficulty because of the large values
of the coupling constants g and h , Nevertheless for high-energy
region, where the small parameters m2/s , t/s , log(m2 /s) and
log(t/s) naturally appear, the situation is greatly simplified. (As
usual 4 external momenta p are on the mass shell (fig.1), the squ-
ared c.m, energy s =(p ' +p2)2, the squared momentum transfers

2 ’2 ’
t=(p,—p] Y, u=(p,-p, ) and s+t+u=rm:'+m:+ml +m22)

x) For the sake of definithness we speak here about pions and
nucleons but all the considerations are valid for meson and baryon
octets of SUy scheme, broken by the mass term alone,



PN
o

By )

Fig.1

In previous papersl many pages were devoted' to the detailed
consideration of the /e&/ » = asymptotical behaviour of the Feyn-
man graphs in the theory (1.1). (The results of the investigation
were collected in paper‘ 2) . The perturbation theory in this limit
seemed to us to be so simple that there appeared a natural tempta-
tion to sum up the asymptotics of all graphs., This resulted in the
'appearance of this. paper; But in the course of the work we had
understood that our intensiqn would be reached more eésily Af we
supposed the bare charge to be a finite number; so we did., We
should confess that the statement of the problem in itself contains a
groundless assumption that the asymptotic of a sum is the sum of
asymptotics, But we trust on the smallness of the parameters for
the asymptotical terms and that in  the region t=0 , junior loga-
rithm will remé.in junior in the sum, In other words, we hope for the
so-called 'doublelogarithmic situation". The comparison with expe-
riment shows that we are right.

As to the asymptotics, one can say that any graph v_vith inte-

ger angular momentum in the crossing t -channel, increases as -



logH | the power H being determined by the number of two—pérm '
ticle separfation in this channel and being independent 6f the rer‘nain—‘
ing details of the structure. So, the Bethe-Salpeter scheme is espe-
cially suitable in searching for the asymptotics of amplitudes in the
theory (1.1.). Symbolicélly the B-S equation caﬁ be written as a

system for the T, , T, and T, amplitudes (see fig.1).

T =V__+V__ x T__+V_ T, T =V +V xT,_ +V_ x T

irgig brgid nw Tn mn mn mn mn . wn fin nn )

(1.2)

+Vap x T +V __ xT

nn nna n nn nn

the amplitudes T being here the sum of all the gra;shs of the pro;
cess and the "potentials" V being the sum of the graphs without
two-particle sepfarations .in crossing channel. In practice | , this sys-
tem breaks on the subsystems with definite quantum numbers in
crossing channel, which conserve in the course of iteration. The
iterated amplitudes are the usual linear combinations of the physi-
cal amplitudes of the s —channel, For example, the amplitude Tnnn
in (1.2) is a linear combination of the nucleon-nucleon and nucleon-
antinucleon scattering amplitudes. '

As in the usual Regge-pole theory the devision of the ampli-
tudes into parts with‘ definite signatures Tt and T~ (syTnmetric ’
and antisymmetric under the exchange s -»ﬁ ~~s ) appears to be
useful for us, For the connection of this division w1th the topologsr

of graphs see bel-~w,
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In this paper we restxfict ourselves to the arﬁplitudes with

integer angular momentum in the  crossing channel,

2, Structure of Amplitudes and Potentials

The structure of the amplitudes is well known, The pion-pion
scattering amplitude T,, is simply a scalar: T,, and T,, have

'the> usual form

2 2
Trm = A+ 2 B
, F
B 1 5 " u v .
Toa=yy XTI )Fg + ¥y X ¥y VFe +(yeyy "Y(z))“—"z =t (2.2)
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(The isospin structure of these amplitudes is trivial and we do not
write it explicitly). In the perturbation theory these amplitudes are
built up'g' according to the usual Feynman rules 3 and the general

normalization is such that, for instance

Im T"" (t=0) e

16 ”2 afct *

In fact, we know- from the analysis of graphs L2 that amplitudes A ,
Fg and Fp do not contain senior logarithmic terms which agree
with the absence of spin-flip for #an -scattering in high energy re-
gion, The amplitude F. correspoﬁds to the Regge-pole of the 8 -ty-

pe % and will be considered elsewhere, (This amplitude is compo-

1
sed of senior logarithms of so-called "odd graphs" 2 i.e. of the



graphs with an odd-pion interrﬁediate state in the crossing channel).
The remaining ‘amplitudés can be distinguished by the quantum num-
bers of the crossing channel (see: table 1). According to this .table
the system (L1) often ,degenérate‘s into one ‘equation. We consider -
the asymptotic of the potential in (L2) as a sum of the kernel asymp- v
totics, i.e. the bgraphs without‘ two;particle separation in the crossing
channel.‘ But the asymptotic of any ’kebrnel Vi consisté of the parts

of positive and negative

Table . 1

amplitudes | R B T,
Quantum i _T;'f l:v F/;
numbers and. - -
all that lvacuun” - groug
Isospin I O 4 2 o| 4 Z 4 O 0]
G-parity -+ -+ -+ - | — —_ —_— —+ —+
Signature (7)| -+ - I I A R R s —
Mnternal
parity" (tP)| - -+ + 1+ 1+ - -1~ -

P.P.'f.f’ w | Ty
Particles ' LA ? ¢ |4 7T /71 | )} 2
porenciate R0 0 | (| SOF g




- signatures which have the universal form (up to 1/8 )

a

V;' =--—2l [log(~s)+ log(s) ] for re -kernels,
+

Vi =g for the other kernels (2.2)

and - e
V; =-in by = bi(IOE(—S)T’lﬂG(S))

(the isospin and G-parity indices are omitted herfe). If a kernel is
symmetric under s »u then V; =0 . For any plannar rg -kernel
2by =ay but.for any plannar sa-— or nﬁ -kernel thé sum of any two
graphs obtained from each other by the 8 +u exchange has a defi-
nite signature, In table I we give also the types of potentials which
can contrbute to a given amplitude, but none of the kernels may be
~odd.

Consider now the divergences., All divergent subgraphs are
viewed as’ 'régularized. However, the #r -kernels (which are them-~
‘selves divéi‘gent ) are automatically regularized by the Mellin trans-
formation (3.1). Unlike the other divergent subgraphs, their contribu-~
tion to the-asymptotic is calculated in just the same way as the
contribution of other kernels 1’2. So, we may forget the divergency
of such subgraphs,

The renia.ining divergences are taken into account according
to the following scheme, First of all we look for the asym;ﬁtotics of
kernels when s » » (and “interkernel" lines with respect to their mo~
menta p? ). In Appendix we show that the contribution of the internal

divergent parts of any kernel are simply factorized. Summing over



the different kernels we obtain in this case the potential as a se—'
ries in powers of invariant charges 3, rather . than in powers of g
and h |, These invariant charges absorb into themselves all the
divergences (except the divergences of internal lines). The most
simple and especially interesting is the case when the asymptotical
lmuts of the invariant charges, which correspond to bare charges, are
some finite numbers., Simultaneously, the asymptotics of the propaga-
tors (up to renormalization) are naturally supposed to be the same
as free propagators., Some other possibilities of the propagator and
invariant charges asymptotics will bé considered elsewhere. The
asymptotics of the sum of the kernels which differ by the divergences
alone in this case have the form (2.2) and the asym;itotics of the po-
tentials (the sum of all the kernels, if any) can be written (up to 1/s

terms) as follows

+ Iogs + log(-—s)
v e . VT =inpa
g4 mr 2 84 wir
+ vﬂn -— nﬂn ’
v = M v ==—ig — -
. — — . 2.3
n \/2 on ’ \/2 ( )
. v _
V+ = an . \'4 =—ig u /2.
nn 2 nn nn

we always disregarded here, terms 1/s . It seems natural
that their contribution to the ‘c;xmplitude does not exceed that of the
seﬁor terms taken into account (for more details see Discussion).
In addition , we disregarded the junior logarithm. We hope that this

approximation corresponds to the summation up to (lt'.tgs‘)—l but this



hypotheSLS seems to be less realistic than the flrst one concerning
1/s ). However, if the potentials v and u in (2 3) are small enough
then in the energy region 1< log 8 <1/v our summation is equally
well ground.ed as the "doublelogarithmic" one in electrodynamics (see6

and bibliography there).

3. Asymplotic of Amplitudes

it is more easy to investigate the asymptotical behaviour of the
amplitudes using the Mellin transformatiorl;"The leading singularities

in the complex p plane, coincide with that of the usual j-plane (_seel)

: : +
S 8+ 100 L og- Cetg
- 1 : (us t) 1, u
T =-— [ dp (=) AG) . - -
A 5—100. L(l+p) sitmp . (3.1)

where for convenience the factor Abdepe’nding on the definite pro--

cess is introduced:

on

A, =1, A =—p/V2, A, =w/2. - G

1/

» According to we know that the leading singularity of f; (w, t)
for ény. graph T; is the 'pole of some order at the point p=0 . We
know also from Appendix 2 ref, 1 that the residue of this pole does
not depend on .t and for the finite ba-re charge f: is the product
of the kernel contributions and a certain factor depending only on
“"the number of kernels a ., ‘

This allows us to sum up the leading singularities of all graphs

with a given number of kernels a and obtain the iterated solution
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of the B-S equation with a potentials V . The contributiion of the
potentials to the amplitudes f (p,t) according to (2.3), have asymp-

totically the form

~

. +
Vog /Bi=Vp/u i Vo, /p into £ ()
w . /ui —u, /poiu /p into £ ()

Besides, the factor \/7 has to be added to each potential V.,
and each pair of external spinor lines, Twq of these factors for nn -
and =nn -—amplitudes are taken into account by A(p) . Notice, the num-
ber of such factors is to be always even so th,ere is no branchiﬁg
point at x=10 , |

The factoriz&.xtion of the kernels reduces the x;vhole problem of
summation to the problem of the ‘type of "ladder" graphs. The equa-
tion for fi is similar to the equation for the ladder graphs 7’8.
The asy'mptotic' of any graph is deiermined by the number of the ker-
nels and the number lof unions of kernels (including the graph itself). .
It can be dedﬁced as follows. Any union of kernels is again a scat-

tering graph, therefore denoting by f_ the amplitude with m kernels

.we havex) asymptotically for m>2

1 me1
fm=._‘.l_k31¥tk fo v .

%) The asymptotic of a graph in the a -representation is a result

of integration over the maximal number of parameters A which arises
from the barycentrical transformation ofa’s belonging to the kernels
and the unions of kernels in the regionA~0 . One of these 2A’s
corresponds to the graph as a whole. After integration over it, at
least one pair ofa’s corresponding to the interkernel lines is to be
finite, This just corresponds to the division of the graph into two
parts, The exp. (1.4) is the sum over all possible division of the
kind,

11



! on the right-hand side corresponds to the

The facfor [
unior;s fy énd f._x . Notice now, that the sum over f;, from 1
to = is simply the amplitlide f and f; is the potential v or u of
(3.3). So the ac':ldition of f, to thé left- and right—hand sides and the

summation over m gives a nonlinear equation for the amplitude,

a., "Vacuum Group'

For the‘ émplitudes of the so-called "vacuum group" (see tab-
le I) the division of the. graph can proceed either by two pion or
two nucleor; lines, For the latter case the factor \/‘Tg- (‘and ACp) ),

~which we mentioned above‘,’ is to be taken into account, So, the sum-

mation over f¥ results in the system for
+ +2 +2
By —Vor /) = f,m et

+ + + +
pUEp, +v lp)= £ Cf . +£. ) (3.5)
+2 +2
Ry =V /)= +pf

(In analogous equations of the papar8 the fa;tdr M on the right—

" hand side has been forgotten). Solving the system we easily obtain

- S F
f4- " p2/4-v__+ypt & Vor ot u2/4—V””+\/P
' 2 - R+ T nn= R+ 'v nn—2_— R+‘ (3.6)
where
2 2 2 uz ";
pto=(— = vnn)(—f——v"")—pv”n SR =y ev _—v 42ypt .

S 12



All the amplitudes have a square-root branchpoints on u —

(Qr i - plane when

n? n? ] 2 :
p+=(T._:vn Y= = YV V= ¥y, =0 (3.78)

n

In the vicinity of these points, up to a nonessential additive constants

+ "~ 2 I
+ K .
f”” = C (—T—evnﬂ)‘/p+

. — g (3.8

.y M2 ‘ —
fm'x = (_T:_ vnn)‘/p *

The equations for f=  and their sdlutions can be obtaiﬁed
from (3.5) (3.8) by replacement. v, .., Voo 8, /ip, Vo, ~u_ /p-

So, the branchpoints of f~ are determined by
3 " 2

(++.unn)(_‘:—-unﬂ)—“z‘=d- , (3'7)

Let us denote by pythe root the most on the right of (3.7),and suppose

it to be positive. This can happen when vg,., v and. v >0,

mn nn

which agrees with the first order of perturbation theory. With the

help of (3.1) (3.2) we can obtain

2
T,., nel/ 4~ Von
" . (3.92)
Tra = c‘*“R*'(sv) XJ By V"n»/\/Z :
2
T \elug /4=y V2,

13



Tm, “1/4 =~ Y.
Tra} =c7RT(s) % { %, /V2 (3.90)
Tn_;x (“3/4—!!!”‘)/2',
—impy
+ rt _ 1 + e :
R™ (s) =(—)) (log 2-)) o2 (3.10)
d, Sq :
v sin v py

: + FY
Notice, that the exact value of the constant c and ¢ is of no
vimp'ortance for us because they are connected with a normalization
energy sg .

In addition to the leading singularity p 4+, which corresponds

naturally to the vacuum trajectory P, eq.(3.7a) gives three branch-

points one of which being positive when v and v

o are positive,

n

This positive branchpoint can correspond to the second vacuum

trajectory P” . It is natural to compare the singularity u_ with

the p -meson trajectory.

More detailed analysis of this solution and comparison with
experiment ‘vx.rill be given below, Here we do stress the following
interesting properties. The leading singularity is the same for all
the processes with the same quantum numbers in the crossing
channel. The asymptotical behaviour, which this singﬁlarity respon-—
ses‘ for, is s‘uch that with the account of the Froissart theorem

(E<log?'s ) the total cross sections decrease not slower than

14

Re T - . .
(log s )“3/2 TaT " (ln )™ - Another interesting

and the ratib

property is the factorization of the amplitudes

2 .
Ton Tan = Toa ! ) (3.11)

/7
which is valid in the neighbourhood of any of the mentioned singu-
larities. To check this it is enough to notice that (3.11) coincides

with the equation for branching point (3.7).

b) Other Amplitudes

For each of the rémaining amplitudes in table I the system (3.5)
degenerates to only one equation because of the sole type of kernel

responses for the asymptotic of this amplitudes, So, instead of (3,5)
we have

pft —v = (72 5 pfT-w/p= 0 (3.12)

the solution of which has the form

2 3

RPNy S SV S Y U . L
f —-"—7-— \/ 4 v f 2 \/ 4 l"-. (3’13)

This gives the asymptotical behaviour (for v > 0 )

LS . 3.14
. & s L 4e'TEE (3.14)

3/2
(log s ) - sin TRy

where

- 8
pt=2¢ v pT=V4u
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we believe the conclusion about the asymptotical behaviour, when v
or u are negative, to be meaningless if the junior logarithms are
nét'taken into account., The singularity of F, with I=0 among th‘e
others seems to be the most interesting because it corresponds to
the o -meson trajectory which plays

an important role in nucleon-

. 9
nucleon scattering .

c) Deuteron Amplitudes

The nucleon—antinucleon backward scattering shown in fig.2 is
especially interesting, The guantum numbers of the u ~-channel here
correspond to the ground or excited states of a deuteron or to a

resonance in the system of two nucleons. (That is why

Fig.2

we call it deuteron singularity). All the calculations for this process

differ only by the exchange t -+»u and the kinematiéal ar)alysis4'5
is similar to the nucleon-nucleon one in Sec.2
The equation for the deuteron amplitudes with differenf quantum

numbers is similar to (3.12) which results in the asymptotics (3.14)

(3.1?3) with the corresponding replacement of potentials.

[
ch

Because of the only type of kernel to be allowed for this
process (fig.2), the connection between kernels with different quantum
numbers must emerge. In additian the‘potentials of this process must
be connected with the potentials of proceéses with negative‘ G-parity
in t -channel (see ‘telible 1) which ruled by similar kernels. That is
why the backward nucleon-antinucleon differential cross section must
decrease not faster than the combination of nn- and nm —forward
cross secltions which is conditioned by the p -meson trajectory |
that is, roughly speaking, as (—:—a)q'e(see, for 'instance% . The ab-
sence of expef‘imenta:l data for backward nucleon-antinucleon  scat- 4
tering makes more detailed caiculations difficult. We hope to return

to this process when we learn to take the junior logarithms .into ac-

count,

4, Discussion
, *

So, having -learned to extract the asymptotic of any Feynman
graph we risk to sufn this asymptotics up bearing in ﬁnd, of course\,-
that this procedure may seem tous doubtful, We cannot dispel com-
pletely these doubts without summing all the perturbatidn theory. But |
everybody knows what this problem is! Maximum, what we ‘can hope
to do (and what we planned to do in future) is to sum up the jurﬁor_
logarithms. As to the next terms (for instance, s™!log N in ;nz} -

scattering) the example of 'summing ‘of the graphs of fig.3, perhaps

the most dangerous,

17



the following region of wvalidity of our considerations

(L 1 Gev < ELab'SZOOGev -

’
*

By the way, this estimate is in good agreement with the values
needed for the second positive root of p+v=»0 to be the second va-

u cuum trajectory P’ .when t=0 ,
. _
f

The small values of potentials allow us not only to trust the

summation of senior terms but to indicate also small value’é of bare

{
Fig.3 ‘ : ' (l charges. This gives in turn the possibility of calculating the poten- -
shows that for. g +=1 and t ~0 their‘. contribution does not exceed 1 tials from the lowest graphs of perturbation theory.,
the senior logarithm. This hap‘pens bécausg we are dealing with “+ Now, believing at least a part of the doubts to be dispelled
the square-root branch point at u=1 instead of the. péle. But f let us turn to the resglts. The most interesting is the square-root
this sum can glve a contribution to the junior logarithms. ' - branchpoints éppearance instead of the Regge poles, The leading

As an excuse, we can only say now that the - ‘potentials Voo branchpoint ("vacuum") gives with assumption ﬁ+= 1 the slow de-
mn

V#n » Van . which play the role of "interaction constants" in our X crease of the total cross sections as .
" consideration, appear to be small from the experiment. So in the | a/ Re T
. i 0oy = (log 87 and ——— o (logs )Y .
energy region where log s/m? > 1 but vlog(_._s._:) <1 our o T
summatlon is as legal as "doublelogamthnuc" summation in quantum ii (Is this not the true reason for effects which one try to explain now

electrodynamlcs. Really, we know from the experiment the total cross by a small deflection of the vacuum trajectory from unity 1?),

sectlons approximately to go to the constants (so we fix g + =1 It is not difficult to understand the origin of these branchpoints,

in expression (3.9a)) and the ratio —&2. 0,6, This means (see(3.9a) In the "quasipotential' Schrodinger equation (10) the asymptotical

ann
again) that Ve =025-0,5 v_ and v__=0,25-2 Voa . The positi- behaviour for large s corresponds to the 1/t? behaviour of the

T gt
e —

veness of vy, follows simply from its proportionality to the total potentials in the r —space. This leads, as is well known, to the .

cross section with a positive coefficient (as not difficult to check)', square-root branchpoints, Generally speaking, there seems to exist

" some intimate relationshib between summation of the asymptotics and

R, —_—

Let us suppose now that v__ >0 and v,, >0 , as is indicated

'by the first order of perturbatlon calculations, Then we obtain im- the quasipotential which we can understand and evaluate only in the

mediately that v,,,7 and v__ < 0,25 and v, < 0,12, This gives

future,

19
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These branchpoints are universal for all the processes just
as the Regge poles and for '"residues" at each of these points the
factorization theorem is automatically valid. This fact is closely con-
nected with the "kernel" structi,_lre, determining the asymptotic of any
graphs which means in fact, two-particle unitarity.

Our approximation gives us no possibility to notice the move-
ment of singulaﬁties. Only junior logarithms can indicate sofnething

. about this. But we do not know definitely whether this is a moving
" branchpoint or the Regge pole appears from under the standin branch-
point or something else, The second possibility seems to us more
probable because the junior logarithm, by all means, will gi\./e the
Regge poles, and the values T , calculated here, are playingkthe
role of interaction constants (depending on j! ) of the "reggions"
with the usual particles, It is intereSting to nofice in this connection
that for the tensor amplitude Fq each kernel gives, probably, only
one legarithm (similar to the usual "ladder" graphs in the‘¢3 -theo!fy).
This ieads to a pole singularity of ] -plane even for the sum of
senior terms,

Another problem arises when one tries to take into éccount
other members of the meson and baryon octets for the scheme of
dynamically broken SU( 3). The system (3.5) will greatly increase
but the square-root character of singularities appears to be kept.

In conclusion we would like to say that beginning the sum-
mation .of the senior terms, we hoped to answer some questions
high energy physicists are interested in. In reality, our work seems

to be "arrcwed to future" that is it generates mary more questions

20

thaﬁ it gives answers. We would like to believe that after §u’mma—

tion of the junior ‘logarithmic terms " a pan of questions" will not

be as overloaded as now and equilibrium will be more stable.

We are very grateful to everybody who has discussed thls :

work and especially to D.LBlokhintsev, A/T.FilippoVv, P./T.Matthews,

V.V.Serebryakov, D.V.Shirkov and K.A.Ter-Martirosian, One of us

(.G.) is constantly thankful to D.Stelmach.

Appendix

Notice first of all that tﬁe factorization of the divergences on

the external lines of the kernel (of the self-energy type) which -

gives a factor . dependent on pz is selfevident because such sub-

gx;ai:)hs are weakly connected with the rest of the kerneI..

Turn non to the intér:nal divergences, We show in paper

that the presence of t internal divergences increases thegpower of

logarithm (or the order of the leading pole in p -plane) by t -ins
thé asymptotic of the graph. This fact is due to the additional para-

meters p which appear in the expression for regularized contribu-~

tion of the graph. (Remember, that R-operation 1s equivalent to the

following procedure in bthe a -representations, We replace each ag.

» i i i . b enters
of nonregularized contribution by Py - P1q 80 IN the: line ¢

' i d xt we take the
divergent subgroups 1"1‘ .. °F1q simultaneously and ne

residual term of the Maklourin series in p ofvthe power of diver-

gency .of the subgraph and put p="1 ). These give the possibility

21



for introducing r additional gets of parameters which let vanish the
coefficient for s in the exponent and determine the leading singulari-
ty. To fonln these sets it is enough to take instead of a’s of a diver-
ger}t subgraph the corresponding p .

’ Let, for instance, the kernel V contain divergent subgraphs
l"l ..« I'n .Then together with the usual barycentrical transformation

for {aee V]l we have the possibility of introducing the sequence of

. the transformations

{aeV- l"l,pll,{aG:V—l"lﬁ-Fz,pl,p {aEV 2 T IRTAR

But this possibility is not uniquef For example, if F;'aﬁd I, do not
"j‘intersect with each other we can introduce a sequence, where p, wp,.
(This does not change the asymptotic itself but doubles the coeffici-
ent of it), .

How many possibilities of the k.iﬁd exist in the general case?
Let us denote each of them by a set of nembers 1,2..n, with a de-
. finite order (for example { 1,2,3...n} or {213. n1} ) First of
all, it is clear that if T, C T, then the set'l...j...i..lis forbidden,
‘Rea.uy., let T} ¢ T,, for instance, then after the transformation
R a€ V=T, #p;' =2 it is useless to introduce the transformation
2a€V-T,-T,+p,+p ,=A" because A and A’ cannot vanish simui-
'»t\aneously. According to this we must keep the definite subordination
for the intersecting subgraphs,

When there are no interesting subgraphs all a! sets are pos

sible. When we have i nonintersecting groups each of them con-

taining mutually intersecting I'’s . In this case the number of pos-—

22

e, o i i b

e —
———

L e

'appears to be

sible sets with definite order inside each of the gﬁoups is equal, as
n!

is well known, to N . Denote by m, the number of poé—
n
L

sible sets inside to i-th groups. Then the total number of all sets

m ==——--n-‘———-—-ml...-m . e Gomg from the vamable
f...0,1

p to s , according to (3.1), we find the addxtlona.l factor due to

the divergent parts to have the form
T ik log n,s)
(—n———‘—-lognls)....( — .
1’ . 1

that is it consists of i factors each of them being exactly the asymp-~

totic of the divergent subgraph,

References

1. LE.Ginzbure, A.V.Efremov; V.G.Serbo, preprint IM SO AN SSSR,
T P-44 (1968); ’
LﬁG;nzburg, V.G.Serbo. Preprmt TP -45 (1968)

2L F‘.G1nzburg. A V.Efremov, VG Serbo, - JINR Preprmt P2—3833,
Dubna- (1968),. (submitted to Phys. Lett). .

3. N.N.Bogolubov, D.V.Shirkov. Introduct:on to the Theory of Quant:-

zed  Fields, Interscience Publxshers, New York, 1969 .

4. D.V.Volkov, V.N.Gribov. JETP 44, 1068 (1963).

5, D.H.Sharp, W.G.Wagner. Phys. Rev., 131, 222 (1963).

6. V.G.Gorshkov et al. Jorn, of Nucl. Phys., 6, 129 (1967). .

7. LE.Ginzburg, V.V.Serebryakov. Jorn, of Nucl. Phys., 3, 164 (1966).

8. V.G.Vasiov; LF.Ginzburg, Jorn, of Nucl. Phys., 5, 669 (1967).

9. .VV.Rarita, R.ILRiddel ‘J't;., C.B:Chin. R.LN,Phillips. Preprint UCRL
-17523, 1967,

10. A.A.Logunov, A.N.Tavkhelidze. Nuovo Cim., 29, 380 (1963).

Recexved by Pubhs!rung Department

on June 10 1968.
23





