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1. Introduction 

Till now the perturbation theory with renormalization is the 

only regular method in QF'I'. It proves to be good for quantum 

electrodynamics, but for the only renormalizable mesodynamics Lag­

. x) 
rang1an 

L Int 
(1.1) 

there exists a well-known difficulty because of the large values 

of the coupling constants g and b • Nevertheless for high-energy 

region, where the small parameters m 2 / s , t/ s , log ( m 2 / s ) and 

log ( t/ s } naturally appear, the situation is greatly simplified. (As 

usual 4 external momenta p are on the mass shell (fig.1), the squ-

ared c.m.. energy s = (p 
1 

+p
2 

}
2 , the 

t=(p -p' )
2 

, u =(p -P' )
2 

and 
I I 2 2 

squared momentum transfers 

2 2 , 2 2 ) s+t + u =m 1 +m 2 +m 1 +m'2 

x} For the sake of deflnitness we speak here about pio~ and 

nucleons but all the considerations are valid for meson and baryon 

octets of SU11 scheme, broken by the mass term alone. -
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Fig.1 

In previous papers 
1 

many pages were devoted to the detailed 

consideration of the / ,./ ➔ oo asymptotical behaviour of the Feyn-

man graphs in the theory (1.1). (T'he results of the investigatio~ 

were collected in paper 
2

) • The perturbation theory in this limit 

seemed to us to be so simple that there appeared a natural _tempta­

tion to sum up the asymptotics of all graphs. This resulted in the 

appearance of this paper. But in the course of the work we had 

understood that our intension would be reached more easily . if we 

supposed the bare charge to be a finite number; so . we did. We 

should confess that the statement of the problem in itself contains a 

groundless assumption that the asymptotic of a sum is the sum of 

asymptotics, But we trust on the smallness of the parameters for 

the asymptotical terms and that in the region t .. 0 , junior loga­

rithm will remain junior in the sum, In other words, we hope for the 

so-called "doublelogarithmic situation". The comparison with expe­

riment shows that we are right. 

As to the asymptotics, one can say that any graph with inte-

ger angular momentum in the crossing t -channel, increases as 
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Jog H , the power H being determined by the number of two-par-• 

ticle separation in · this channel and being independent of the remain­

ing details of the structure. So, the Bethe-Salpeter scheme is espe­

cially suitable in searching for the asymptotics of amplitudes in the 

theory (1.1.). Symbolically the B-S equation can be written as a 

system for the ~ , T17 n and T nn amplitudes (see fig.1) 

(1.2) 

V nn + V nlT X T + V X T 
,rn nn nn 

the amplitudes 'I' being here the sum of all the graphs of the pro-

cess and the "potentials" V being the sum of the graphs without 

two-particle separations in crossing channel. In practice , this sys­

tem breaks on the subsystems with definite quantum numbers in 

crossing channel, which conserve in the course of iteration. The 

iterated amplitudes are the usual linear combinations of the physi-

cal amplitudes of the s -channel. For example, the amplitude Tn 
nn 

in (1.2) is a linear combination of the nucleon-nucleon and nucleon­

antinucle:on scattering amplitudes. 

As in the usual Regge-pole theory the devision of the ampli-

tudes into parts with definite signatures T + and T- (symmetric · 

and antisymmetric under the exchange s ➔ u "' - s ) appears to be 

useful for us. For the connection of this division with the topology 

of graphs see bel --.w. 
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In this paper we restrict ourselves to the amplitudes with 

integer angular momentum in the crossing channel. 

2. Structure of Amplitudes and Potentials 

'l'he structure of the amplitudes is well known. 'l'he pion-pion 

scattering amplitude T trrr is simply a scalar: T ,rn and T nn have 

the usual form 

p -p' 
T = A+ 2 2 B ,rn 2 

5 5 
Tnn=(I,u xlu,>Fs +(y(l> xy<2> )Fp 

Fv 
" ")--+ + ( y (l) X Y ( 2) 2 s ( 2. 1) 

F F 
( 5 fl 5 jJ, ) A . ( flV µv ) T 

x Y,1, Y,u xr,u Y,u --- + on,xu,2, --2 s .s 

('I'he isospin structure of these amplitudes is trivial and we do not 

write it explicitly). In the perturbation theory these amplitudes are 

built ut" according to the usual Feynman rules 
3 

and the general 

normalization is such that, for instance 

s 
Im T,, (t -= 0 ) = . u 

rr 16 11
2 tot 

In fact, we know from the analysis of graphs 
1

• 
2 

that amplitudes A , 

F 8 and F P do not contain senior logarithmic terms which agree 

with the absence of spin-flip for trn -scattering in high energy re­

gion. 'l'he amplitude FT corresponds to the Regge-pole of the /3 -ty­

pe 
4 

and will be considered elsewhere. (This amplitude is compo­

sed of senior logarithms of so-called "odd graphs" 
1

•
2 

i.e. of the 
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graphs with an odd-pion intermediate state in the crossing channel). 

'I'he remaining amplitudes can be distinguished by the quantum num­

_bers of the crossing channel (see table 1). According to . this . table 

the system (1.1) often degen~rates into one equation. We consider 

the asymptotic of the potential in (1.2) as a sum of the kernel asymp­

totics, i.e. the graphs without two-particle separation in the crossing 

channel. But the asymptotic of any kernel V l consists of the parts 

of positive and negative 

Table 1 

.Amplitudes Fv, 5, --r:;7f 
~ T,,r, Fv ~ 
numbers and • 
all that 'vacuum" l"T"QU1 

Isospin I 0 -i 2 0 :I. :i. :1 0 0 

G-parity + + + - - - - + + 

Signature (r) + - + - + -f- - -I- -

:Internal 
parity" (-r: p) + + + + + - - - -

P,P,' f, f' 
f,fv 

w l(v 

~ {E) Particles ~v ? '1' Ai 
7f ~ 

Potentials n-~;q ~ .:y: b: 
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signature's which have the universal form {up to 1/S ) 

and 

+ al v 1 =---[log(-s)+ log(s) 
2 

for ,rr, -kernels, 

+ 
vi =a i for the other kernels (2.2) 

Vi = -irr bi 
/ 

bi ( log ( -s) i log ( s ) ) 

{the isospin and G-parity indices are omitted here). If a kernel is 

symmetric under s ➔ u then Vi =-0 • For any plannar "" -kernel 

2b i =-a 1 but for any plannar ,r n- or nn -kernel the sum of any two 

graphs obtained from each other by the s ➔ u exchange has a defi­

nite signature. In table I we give also the types of potentials which 

can contribute to a given amplitude, but none of the kernels may be 

odd. 

Consider now the divergences. All divergent subgraphs are 

viewed as regularized. However, the 1111 -kernels {which are them­

selves divergent ) are automatically regularized by the Mellin trans­

formation (3.1). Unlike the other divergent subgraphs, their contribu­

tion to the· asymptotic is calculated in just the same way as the 

contribution of other kernels 1,
2

• So, we may forget the divergency 

of such subgraphs. 

The remaining divergences are taken into account according 

to the following scheme. First of all we look fo_r the asymptotics of 

kernels when s ➔ oo {and "interkernel" lines with respect to their mo­

menta p 2 ). In Appendix we show that the contribution of the internal 

divergent parts of any kernel are simply factorized. Summing over 
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the different 'kernels we obtain in this case the pot~ntial as a se­

ries in powers of invariant charges 
3

, rather than in powers of. g 

and h • These invariant charges absorb into themselves all the 

divergences (except the divergences of internal lines). The most 

simple and especially interesting is the case when the asymptotical 

limits of the invariant charges, which correspond to bare charges, are 

some finite numbers, Simultaneously, the asymptotics of the propaga­

tors (up to renormalization) are naturally ~upposed to be the same 

as free propagators. Some other possibilities of the propagator · and 

invariant charges asymptotics will be considered elsewhere. The 

asymptotics of the sum of thE: kernels which differ by the divergences 

alone in this case have the form (2.2) and the asymptotics of the po­

tentials (the sum of all the kernels, if any) can be written (up to 1/s 

terms) as follows 

+ Jog s + Jog ( - s ) 
V ==-V 

"" "" 2 

+ V 
ff'D 

V --=-; 
ffD 

,/2 

+· V 
V ~._.!!.!!..,, 

DD 2 

v-
'1D 

v-
DD 

u 

i" u 
"" 

fl'D 
=-iff' ---=-

,/2 

=-itt 11 /2. 
DD 

(2.3) 

We always disregarded here, terms 1/s • It seems natural 

that their contribution to the • amplitude does not exceed that of the 

senior terms taken into account (for more details see Discussion). 

In addition , we disregarded the junior logarithm. We hope that this 

approximation corresponds to the summation up to (Jogs)-1 but this 
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hypothesis seems to be less realistic than the first one concerning 

1/s ). However, if the potentials v and u in (2.3) are small enough 

then in the energy region 1 << log s ;S 1/v our summation is equally 

well grounded as the "doublelogarithmic" one in electrodynamics {see
6 

and bibliography there). 

3. Asymptotic of Amplitudes 

It is more easy to investigate the asymptotical behaviour of the 

amplitudes using the Mellin transformation. The leading singularities 

in the complex µ plane, coincide with that of the usual j-plane {see 
1

) 

+ 8+ too 
- 1 µ T "" --- f d µ (-s) A(µ ) 

2i 
8-·100. 

+ 
f - (µ, t) 

ro+µ) 

1. ± e :'ftµ 
sin ft µ (3.1) 

where for convenience the factor A depehding on the definite pro-

cess is introduced: 

A "" = 1 , A r, n = -,µ/ V 2 , A n n = W 2 • 
(3.2) 

According to / 1 / we know that the leading singularity of fi ( µ) t ) 

for any. graph Ti is the · pole of some order at the point µ =· 0 . We 

know also from Appendix 2 ref. 
1 

that the residue of this pole does 

- + 
not depend on . t and for the finite bare charge f -. is the product 

of the kernel contributions and a certain factor depending only on 

the number of kernels n 

This allows us to sum up the leading singularities of all graphs 

with a given number of kernels n and obtain the iterated solution 
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of the B-S equation with n potentials V . The contribution of the 

+ 
potentials to the amplitudes f -( µ, t ) according to (2.3), have asymp-

totically the form 

V / • V / • V / II into f + · ( ,, ) 
rrtr I'• - rrn µ ' nn '" r-

Besides J the factor v µ has to be added to each potential V n-n 

and each pair of external spinor lines. TwQ of these factors for rrn -

and nn -amplitudes are taken into account by A (µ) • Notice, the num7 

ber of such factors is to be always even so there is no branching 
I 

point at µ= 0 • 

The factorization of the kernels reduces the whole problem of 

summation to the problem of the type of "ladder" graphs. The equa-

± 
tion for f is similar to the equation for the ladder graphs 

7
•
8 

The asymptotic of any graph is deterr.iined by the number of the ker­

nels and the number of unions of kernels (including the graph itself). 

It can be deduced as follows. Any union of kernels is again a scat­

tering graph, therefore denoting by f m the amplitude with m kernels 

. we havex) asymptotically for m >. 2 

f 1 =--m 

m-1 

l: I f Ir: f m -le • 
lc=·l 

x) The asymptotic of a graph in the a -representation is a result 

of integration over the maximal number of parameters ,\ which arises 

from the barycentrical transformation of a's belonfl!nJI to the kernels 
and the unions of kernels in the region ,\-0 . One of these 2A's 
corresponds to the graph as a w-hole. After integration over it, at 

least one pair of a 's correspondin.fl_ to the interkernel lines is to be 

finite. This just corresponds to the division of the graph into tw-o 
parts. The exp. (1.4) is the sum over all possible divi;;ion of the 
kind. 
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'I'he factor µ-1 on the right-hand side corresponds to the 

unions f 1: and f m -1: • Notice now, that the sum over f m from 1 

to oo is simply the amplit~de f and f 1 is the potential v or u of 

(3.3). So the addition of f 1 to the left- and right-hand sides and the 

summation over m gives a nonlinear equation for the amplitude. 

a. "Vacuum Groue" 

For· the amplitudes of the so-called "vacuum group" (see tab-

le I) the division of the graph can proceed either by two pion or 

two nucleon lines. For the latter case the factor ,;",; ( and A ( p. ) ), 

which we mentioned above, is to be taken into account. So, the sum­

mation over f + re suits in the system for 

+ +2 +2 
p. (f rrrr - v "" / p. ) = f "" + p. f 'IT n 

+ 
p.. ( f 'ITn +·v Ip.) 'ITn 

f+ + + 
rr n ( f rrrr + f n n ) 

µ ( f nn - V nn / µ ) = f+
2 

nn 

+·2 
+ µ f rrn 

(3.5) 

(In analogous equations of the papar 
8 

the factor µ on the right-

hand side has been forgotten). Solving the system we easily obtaih 

+ µ2/4-VDD+..Jp+· + VD'IT + p. p.2/4-V'IT'IT+·..;.p+ 
f =L--------; f =--; f =------- ) 

'11'11 2 R+ 'ITD R+ DD 2 R+· (3.6 

where 

µ2 . 2 2 
P+.,,(-- v )(-L-v )-µv 

4 Dn 4 '11ft 'ITD 

+ 2 + 
• R =-'L -·v -v +2v p 
' V 2 '11ft DD 
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All the amplitudes have a square-root branchpoints on p. 

(or j -), plane when 

(3.7a) 

In the vicinity of these points, up to a nonessential additive constants 

+ .. + µ2 
f rrrr -= c ( -4- _, v rrrr ) V p + 

+ .. + + 
(3.8) 

f JJ n C VJJ n VP 

f nn 
.. + p.2 

Vnn) V p 
+· .. C (-.4 

'I'he equations for f and their solutions can be obtained 

from (3.5) (3.8) by replacement v7777 ➔ u77", v77n ➔ U77 n/,µ, vnn-+ u nn / p. • 

So, the branchpoints of f - are determined by 

(3.7) 

Let us denote byµ±the root the most on the right of (3.7),and suppose 

it to be positive. '!'his can happen when v7777 , v 77 n and V nn > 0, 

which agrees with the first order- of perturbation theory. With the 

help of (3.1) (3.2) we can obtain 

-v 
JJJJ 

(3.9a) 
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T "" µ:_/4 - u "" 

T "n = c-R-(s) "' 0"n I ,J2 (3. 9b) 

T nn 
3 . 

(µ /4-unn)/2, 

+ µ+ I 1 R- (s) = (-s-) - ( log _s_,)-3 2 _____ _ 

do so 

+ e -l"/J.±, 

sin tr µ .:J:: 
(3.10) 

Notice, that the exact value of the constant 
t "'± 

c and c is of no 

importance for us because .they are connected with a normalization 

energy s 0 

In addition to the -leading singularity µ + , which corresponds 

naturally to the vacuum trajectory P, eq.(3. 7a) gives three branch­

points one of which being positive when v "" and v "n are positive. 

This positive branchpoint can correspond to the second vacuum 

trajectory P ' It is natural to compare the singularity µ_ with · 

the p -m~son trajectory. 

More detailed analysis of this solution and comparison with 

experiment ,will be given below. Here we do stress the following 

interesting properties. The leading singularity is the same for all 

the processes with the same quantum numbers in the crossing 

channel. The asymptotical behaviour, which this singularity respon­

ses for, is such that with the account of the Froissart theorem 

( c;;; < log 2 ·s ) the total cross sections decrease not slower than 

14 

(log s ) - 3/2 and the ratib 
Re T 

Jm T 
.. ( ln s )-1 

• Another interesting 

property i$ the factorization of the amplitudes 

T T = T 2 

trll' nn trn • •; (3.11) 

which is valid in the neighbourhood of any of the mentioned singu­

larities. To check this it is enough to notice that (3.11) coincides 

with the equation for branching point (3. 7). 

b) Other Ame_litudes 

For each of the remaining amplitudes in table I the system (3.5) 

degenerates to only one equation because of the sole type of kernel 

responses for the asymptotic of this amplitudes. So, instead of (3.5) 

we have 

. + µ f - V = f+2 ,.,_f--u//J,= r-2 

the solution of which has the form 

2 
+ " µ V • f . ,- _,_,_ - , 
=·- V 4 

? 

2· 

f
- ,.,. µ =---v-2 4 

This gives the asymptotical behaviour (for v > 0 ) 

where 

± 
T 

±. 
C 

/1.± 
s 

372 
(log s ) 

+ -
/l =2../ V; 

l+e'"/J-± 

sin""'± 

- 3.-
µ =,/ 4 u 

15 

u 
µ_ 

(3.12) 

(3.13) 

(3.14) 



we believe the conclusion about the asymptotical behaviour, when v 

or u are negative, to be meaningless if the junior logarithms are 

nC:,t taken into account. The singularity of F.,,. with I= 0 among the 

others seems to be the most interesting because it corresponds to 

the cu -meson trajectory which plays 

nucleon scattering 
9 

an important role in nucleon-

c) Deuteron Amplitudes 

The nucleon-antinucleon backward scattering shown in fig.2 is 

especially interesting. The quantum numbers of the u -channel here 

correspond to the ground or excited states of a deuteron or to a 

resonance in the system of two nucleons. (That is why 

Pz 

P, 

Fig.2 

we call it deuteron singularity). All the calculations for this process 

differ only by the exchange t ➔ U and the kinematical analysis 
4

•
5 

is similar to the nucleon-nucleon one in Sec.2 

The equation for the deuteron amplitudes with different quantum 

numbers is similar to (3.12) which r~sults in the asymptotics (3.14) 

(3.15) ,vith the corresponding replacement of potentials. 

16 

Because of the only type of kernel to be allowed for this 

process (fig.2), the connection between kernels with different quantum 

numbers must emerge. In additidn the• potentials of this process must 

be connected with the potentials of processes with negative G-parity 

in t -channel (see ·table 1) which ruled by similar kernels. That is 

why the backward nucleon-antinucleon diiferential cross section must 

decrease not faster than the combination of nn- and n n -forward 

cross sections 

that is, roughly 

which is conditioned by the 
s -0,8 

speaking, as ( 8 ) (see, for 
0 . 

p -meson trajectory 

instance 9) • The ab-

sence of experimental data for backward nucleon-a.ntinucleon · scat­

tering makes more detailed calculations difficult. We hope to return 

to this process when we learn to take the junior logarithms . into ac-

count. 

4. Discussion 

• 
So, having · learned to extract the asymptotic of any Feynman 

graph we risk to sum this asymptotics up bearing in mind, of course, 

that this procedure may seem to us doubtful. We cannot dispel com-

pletely these doubts ~thout summing all the perturbation theory. But 

everybody knows what this problem is! Maximum, what we can hope 

to do (and what we planned to do in future) is to sum up the junior 

logarithms. As to the next terms (for instance,· s -
1 log N s in "" -

scattering) the example of summing of the _ graphs of fig.3, perhaps 

the most dangerous, 
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~~ 
Fig.3 

shows that for /L + = 1 and t "" 0 their contribution does not exceed 

the senior logarithm. This happens because we are dealing with 

the square-root branch point at /L =· 1 instead of the pole. But 

this sum can give a c·ontribution to the funior logarithms. 

As an excuse, we can only say now that the potentials V 
1111 

VTTn, vnn which play the role of "interaction constants" in our 

consideration, appear to be small from the experiment. So in the 

energy region where log s/ m 2 >> 1 but s 
v log ( --2 ) < 1 

m our 

summation is as legal as "doublelogarithmic" summ~tion in quantum 

electrodynamics. Really, we know from the experiment the total cross 

sections approximately to go to the constants (so we fix /L + .;, 1 

in expression (3. 9a)) and the ratio ~ =0,6. This means (see (3. 9a) 
UnD 

again) that vrrrr = 0,25 -0,5 V
77

n and v Dn = 0,25 - 2 v 77 ;,. • The positi-

veness· of v 77 n follows simply from its proportionality to the tota:l 

cross section with a positive coefficient (as not difficult to check}. 

Let us suppose now that v
1111 

> 0 and V n n > 0 , as is indicated 

·by the first order of perturbation calculations. Then we obtain im­

mediately that v 7777 and v DD < 0,25 and 
v 77 n < o, 12. This gives 

18 

the following region of validity of our considerations 

1 Gev « Et.ab ~ 200 Gev 

By the way, this estimate is in good agreement with the values 

needed for the second positive root of p + = 0 to be the second va­

cuum trajectory P ' when t = 0 • 

The small values of potentials allow us not only to trust the 

summation of senior terms but to indicate also small values of bare 

charges. This gives in turn the possibility of calculating the poten­

tials from the lowest. graphs of perturbation theory. 

Now, believing at least a part of the doubts to be dispelled 

let us turn to the results. The most interesting is the square-root 

branchpoints appearance instead of the Regge poles. The leading 

branchpoint ("vacuum") gives with assumption µ. += 1 

crease of the total cross sections as 

the slow de-

( I )-3/2 u-
101 

.. og s and 
Re T 

Im T 
.. (logs )-1 

(Is this not the true reason for effects which one try to explain now 

by a small deflection of the vacuum . trajectory from unity !?). 

It is not difficult to understand the origin of these branchpoints. 

In the "quasipotential" Schrodinger equation (10) the asymptotical 

behaviour for large s corresponds to the 1 / r 2 behaviour of the 

potentials in the r -space. This leads, as is well known, to the _ 

square-root branchpoints. Generally speaking, there seems to exist 

some intimate relationship between summation of the asymptotics and 

the quasipotential which we can understand and evaluate only in the 

future. 

19 



These branchpoints are universal for all the processes just 

as the Regge poles and for "residues" at each of these points the 

factorization theorem is automatically valid. This fact is closely con­

nected with the "kernel" structure, determining the asymptotic of any 

graphs which means in fact, two-particle unitarity. 

Our approximation gives us no possibility to notice the move­

ment of singularities. Only junior logarithms can indicate something 

about this. But we do not know definitely whether this is a moving 

branchpoint or the Regge pole appears from under the standin branch­

point or something else. The second possibility seems to us more 

probable because the junior logarithm, by all means, will give the 

Regge poles, and the values T , calculated here, are playing the 

role of interaction constants (depending on j ! ) of the "reggions" 

with the usual particles. It is interesting to notice in this connection 

that for the tensor amplitude FT each kernel gives, probably, only 

one logarithm (similar to the usual "ladder" graphs in the ¢ 3 -theory). 

This leads to a pole singularity. of J -plane even for the sum of 

senior terms. 

Another problem arises when one tries to take into account 

other members of the meson and baryon octets for the scheme of 

dynamically broken SU( 3). The system (3.5) will greatly increase 

but the square-root character of singularities appears to be kept. 

In conclusion we would like to say that beginning the sum­

mation of the senior terms, we hoped to answer some questions 

high energy physicists are interested in. In reality, our work seems 

to be "arrowed to future" that is it generates many more questions 

20 

than it gives answers. We would !ike to believe that after summa­

tion of the junior logarithmic terms " a pan of questions" will not 

be as overloaded as now and equl).ibrium will be more stable. 

We are very grateful to everybody who has discussed this 

work and especially to D.I.Blokhintsev, A.T.Filippov, P.T.Matthews, 

V.V.Serebryakov, D.V.Shirkov and K.A.Ter-Martirosian. One of us 

(I.G.) is constantly thankful to D.Stelmach. 

Appendix 

Notice first of all that the factorization of the divergences on 

the external lines of the kernel (of the self-energy type) which 

gives a factor dependent on p 
2 is selfevident because such sub-

graphs are weakly connected with · the rest of the kernel, 

'I'urn now to the internal divergences. We show in paper 
1 

that the presence of r internal divergences increases the.power of 

logarithm ( or the order of the leading pole in I' -plane) by.._ r . in , 

the asymptotic of the graph. This fact is due to the additional para­

meters p which appear in the expression for regularized contribu­

tion of the graph. (Remember, that R-operation 
3 

is equivalent to the 

following procedure in the a -representations, We replace each a <T· 

of nonregularized contribution by p 11 • • • p 1 q au in the line u enters 

divergent subgroups r 1 ••• f\ simultaneously and next we 
I q 

take the 

residual term of the Maklourin series in p of the power of diver-

gency. of the subgraph and put p·=·l ) . These give the possibility 
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for introducing r additional sets Qf para.meters which let vanish the 

coefficient for s in the exponent and determine the leading singulari­

ty. To form these sets it is enough to take instead of a 's of a diver­

gent subgraph the corresponding p • 

Let, for instance, the kernel V contain divergent subgraphs 

r
1 

•• ·• r n • Then ,together with the .usual barycentrical transformation 

for I a e, V I we have the possibility of introducing the sequence of 
6 

the transformations 

n 

( a E V - rl , p l } , ( a E, V - r l {3-r 2 , pl , p 
2 

} • • • ( a E· V -l: r. , p I • • • p n } • 

But ·this possibility is not unique. For example, if r~ and r 2 do not 

intersect with each other we can introduce a sequence, where p 1 -p2 • 

(This does not change the asymptotic itself but doubles the coeffici­

ent of it). 

How many possibilities of the kind exist in the general case? 

Let us denote each of them by a set of nembers 1,2 ... n. with a de-

finite order (for example I 1,2,3 ••• n I or I 2 .1 ,3 ••• n l ). First of 

all, it is clear that if r 1 C r J then the set· t ••. j ... i .• lis forbidden. 

Really., let r 1 c r 2 , for instance, then after the transformation 

~ a E V -r l +'pl =: A it is useless to introduce the transformation 

l: a E V -r 
1
-r2 + p 

1 
+·p 2 "'A' because A and X' cannot vanish simul­

taneously. According to this we must keep the definite subordination 

for the intersecting subgraphs. 

When there are no interesting subgraphs all n ! sets are pos 

sible. When we have i nonintersecting groups each of them con­

taining mutually intersecting r's . In this case the number of pos-
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sible sets with definite order inside each of the groups is equal, as 

is well known, to 
n! 

n l ! ... n 11 
• Denote by m 1 the number of pos-

sible sets inside to i-th groups. ~hen the total numbe,r of all sets 

appears to be m = 
1 

n! 
1 

m 
1 
••• m 1 • Going from the variable 

nl ... . n t. 

µ to s , according to (3.1), we find the additional factor due to 

the divergent parts to have the form 

m mt 
( -1... log n s ) ... ( -

nl! 1 n1! 
log n 1 s ) 

that is it consists of i factors each of them being exactly the asymp­

totic of the divergent subgraph. 
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