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I. Introduction 

A fundamental problem of quantum field theory is that of clas­

sifying all inequivalent representations of the canonical (anti) com­

mutation relations and understanding which of these representations 

is preferable in a concrete physical situation. 

In Bose case the heuristic formulation of the problem is rough­

ly speaking as follows. One has to find all pairs of operator-valued 

distributions, namely the field </> ( k l and the conjugate momentum 

rr ( k ' l satisfying the conditions 

( 1) 

and 

-. 
<I> ( It ) • 

+ -. -. 
rr (k ) • rr ( lr. ) • 

(2) 

That means that a representa ti o n o f the canonical commutation rela -
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tions (CCR) is a pair of linear map s of the real prehilbert test-fun­

ction space T' into a set of operators on a Hilbert space }( 

satisfying 

- cp (f) ( f (;. T'J, 

g-rr(gl 

[cp(IJ , cp(f ')] a[rr( g), rr (g 'J] aO 

[cp(f),rr(gl]= iU,gl, 
T 

(3) 

(4) 

where cp (f J and , ( g J are self-adj o int and (f, g J T' is a scalar 

product in the Hilbert space ,. ' which is the compl etion of T' 

If I e 1 I is a complete orthonormal system i n T ' we claim that 

T' is the set of all finite linear combina tions f z 
1 

e 
1 

and define 

cp I "' cp (e rr "'rr ( e ) . 
j j 

Now the problem i s to find all unitary inequivalent sets 

{cp , TT} (i,jl-1,2, ... 
I l 

o f self-adjoint operators on }( satisfying 

or equivalently 

where 

[cp
1

,cp ].[rr , rr ]=0, 
j I j 

[cp , rr].. ;8 
I j lj 

[a ,a ]a[a+ ,a+] .o 
I J . I l 

[a , a +). 8 
1 I j IJ 

4 

" 

( z1 real) 

(5) 

(6) 

(7) 



¢1 + i TTl 
a = 

I v'- 2-

+ cpj - i T1 j ( 8) 
a = j F 

are the corresponding annihil a tio n a nd creation operators. 

Anal ogously in Fermi case one has to construct a ll unitary 

inequivalent sets of pairs of o pera tors 

satisfy 

b 
I 

is adjoint to b 1 

( 0) 

"io troubles arise i n the case o f the canonical antico-nmutati o n 

t·e lations (CAR), s ince it follows from (9) that b 1 a nd b: (and con­

sequenlly b (f) and b + (g) ) s h ould be bound e d . M oreover b (I) a nd 

b+ (gl are continuo u s w ith res pect to their a r g uments so tl<at there 

is n o need to restric t oneself to T ' and o ne can choose T ' for 

the test-functi on space. 

On the contr :cry i n t' 1e case of Bose fie lds it i s easy to s how 

that a t l east one o f the o perators a (f) and a+ (f) i s u "1bounded 

a nd one must take car e o f the d omains of definition in o rder that 

( 4) and (7) ma k e sen s e. To avoid this difficulty one introduces the 

CCR in Weyl's form tha t i s o ne passed fro-n cp(fl and rr(g) to 

e l</>(fl and e ITT(g) a nd rewrites the r estrictions (4) in terms of these 

exponents. 

So we reformulate the problem as follows. 

Let T be a complex prehilbert space TmT '+iT' with the 

inner product ( )T : TxT ... C I (which confirming to the usual 

mathematical usage is linear in the first argument). 
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Let 'll ( }() be a group of all unitary operators in some com­

plex Hilbert space }( 

Definition 1. '"e say that a representation of the CCR is given 

if and only if a ':Veyl system is g iven. The mapping W : T .. 'll ( }( ) 

is called a 11\leyl system if and only if for arbitrary t, t 'c; T 

..!_ lm (\ ,\ '> 
a) W (t) W(t ') • e 2 T W(t+t'), 

f3) the function A-+W(.\t) ,\ c; C I is weakly conti-

nuous at t • 0 

One can easily connect Weyl systems with the operators cp( f) 

and IT(g) in (4). Namely given a Weyl system we construct two abe-

lain groups 'U 1 C 'U and 'll 
2 

C 'll 

'll 1 al o 1 (1) • W(f), 1 c; T and is real 

'U 2 =l u 2 (g).W(ig), 
g c; T and is r eal . 

According to {3> these groups generate two sets of self-adjoint ope­

rators </>(I) and rr( g) which satisfy the equations 

I cp (I) 

ul(l).e 

u2 (g) • e liT( g) 

and due to a) can be identified with the corresponding operators 

in (4). 

It is well known that there is a maze of inequivalent represen­

tations of the CCR and the CAR. There exist different a pproac hes 

t o the desc ription and classification of these representati o n s/2- 7 /. In 

order to make this paper self-contained we restate some r esults by 

G arding and Wightaman/2,3/. The s tarting point of the sch eme i s t o 

diagonalise the com~uting set of s e lf-adjoint o perators N 
1 

, whic h 

are in fact the o p e rators of number of particles in -th state , i.e . 

N 1 = b 1+ b 1 in the F ermi-case and N 
1 

= a~ a 
1 

in the Bose-

case , where a~ and a 1 a r e the operators (7) gen e r a ted by a Weyl 
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system. A representation space is a direct-integral Hilbert space 

over a set r of all sequences a- I a 1 ,a2 •••• 1 

with a 1 . being non-negative integers 0, 1 in the CAR-case and 0, 1, 2 ••• 

in the CCR-case. Here }{ v ( a l is a v -dimensional u ·1itary space 

corresponding to a p oint a~;. rand p. is a quasi-invariant measure 

on r • The operators N 1 are simply the multiplication operators, 

i.e. 

( ll)) 

The field operators, for example the annihilation operators in the 

CCR- case are defined by the formula of the type 

--- I dp.(T;a) 
(akfl(al=vak +1 Ck(al ----=-­

d p. (a) 

where is an operator of increasing 

( 11) 

a k by one i.e. if 

then 

(12) 

and Ck (a l is the set of unitary operators on }{ v< a l satisfying some 

simpl e restrictions/3/. In the CAR-case the analogous formula holds 

for the field operators/2/. 

In both cases a representation i s given explicitly by a set 

I y ( a l. p. • ·1 C k ( a l l~ l = I dimension of the 

a quasi-invariant measure on r a set of unitary o pera-

tors C k (a l on ~(a l l . Two representations I l and I l ' are 

equivalent if and only it" v .;. v , p. is equivale nt t o p. ' and 

C k (a) and C'k(a) satisfy a kind of equival ence relation which, 

for example the CAR-ease 1 has the form 

(13) 
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the operators U (a ) being unitary. Thus the properties of a rep-

resentation are intimately connected with the properties of a measure 

p. 

In the present paper we consider the special class of represen­

tations- the direct-product representations. Let us remind several ba­

sic notions and definitions of the theory of infinite tensor-product 

spaces developed by von Neumann/1/ on which the definition of the 

direct-product representations is based. The infinite tensor-product 

ll @ J{ k of the set of Hilbert spaces J{ k is a non-sepa-
k 

rable Hilbert space (complete direct-product space in von Neumann's 

terminology). It proves to be a direct orthogonal sum of the so called 

incomplete direct-product spaces ll K ® H k ( I D P S) • Each 

of the IDPS is a separable Hilbert space generated by a product-

vector X z II @ Xk , i.e. nX®J{k is the closed 

linear subspace of II @l{k spanned by all product-vectors 

which differ from X in at most finite number of components X k 

Definition 2. Two product-vectors 

are said to be equivalent X ,. X 

X • ll@ X k and X' -H@x ~ 

if a nd only if 

I l<x x'>-II<oo. 
k •l ... ... k 

( 14) 

Note, that if two product-vectors belong to the same IDPS, 

they are equivalent. Conversely, if two product-vectors are equiva­

lent, they belong to the same IDPS. 

Definition 3. Two product-vectors X - Il~x k and X '• I1 X~ 

are said to be weakly equivalent X ;;: X if and only if 

~ ll<xk ·X~ >I -II< oo. (15) 

It turns out that if x' ':x" then there exists a sequen ce 

of real numbers <P k such that 
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(16) 

Note a lso that if X • X then the scalar product is defined to be 

.. n , (17) 
<x.x'J- <x.x 

kal k k 

and the right-hand side converges. If X .f. x' then the right-hand side 

of ( 17) may not converge but the scalar product is defined to be 

zero. 

Now we construct the direct-product representations of the CCR 

and the CAR. 
(S) 

a) CCR: For all k let us choose Let W be a 

Schri::idinger·-Weyl system, i.e. the mapping W (Sl : C 
1 

... 'll ( ~ 2 ( x l l 

of the set of complex numbers into a group of all unitary operators 

given by 

cs> •e..!l. 1ex 
( W <( + i "'17 ) X ) ( x) z e 2 e X ( x + 17 ) (18) 

withx<xlt;.~ 2(xl and(, 17 real. 

A Weyl system W: T ... 'll ( ll® J(k l 

representation of the CC,R if 

is called a direct-product 

(19) 

where for every product-vector 

w (S) p (&lWk (zkllx -TI~<w (zklxl (20) 

and zk = ( f , ek l 

on unit vectors e k 

are the projections of the test-function f <;. T 

which from an orthonormal basis I ek I in T • 

It is worthwhile saying that if the number M of freedoms is 
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M 
finite, the corresponding te nsor-product space p ® J( 1r. reduces 

tO f ~ ( X I o • • .• • X M ) In this case the field opera tors generated 

by the direct-product W eyl system ta ke the u s ual SchrOdinger form 

1 a 
"t • T d'7'; ' </> .lr. • X lr. (21) 

b) CAR : For all k let us choo se J( lr. • E (2) where E ( 2 l is 

two-dimensional unitary space. A dire ct-product representation of the 

CAR is the set of operators I b 1 , b t I in ll @R 1r. which a re 

defined by 

1-1 + 
b1 ll@xlr. • ll @0-2{3 {3 lx 1 ® f3x 1 xTI ®X 1 , 

I+ I (22) 

where {3 is a linear operator o n 

is given by a standard matrix: 

E (2) which in some fixed basis 

{3 - ( 
0 (23) 

0 0 

In § II we develop the g eneral approac h to the descriptio n 

of the representatio ns of the CAR a nd the CCR in t e rms o f the 

spe ctra l measure g ene rated by the s et of the o p e r a t o rs N 1 • T his 

a pproach is a kind of generalizatio n o f the o rig i nal t reatme nt i n/2,3/ 

and i s i!l'll fact a further devel o p men t o f consider a tio n s b y Wi g htman 

a nd Schweber /8/. 

I n § III we c o n sid e r the dire ct-product r e presentatio n s and 

d e r ive a n e cessary a nd s ufficient c o nd i tio n fo r unitary e quival e nce 

o f a ny two d i r e ct- p roduct r e pres enta t i o n s (this conditio n has bee n 

pre vio u s l y obtained in/9/ b y a r a ther specia l t e c h n iq u e). Our nex t 

ste p i s t o con s truct a 'l1easure P. a nd u nita ry ope ra tor s Ck(al for 

a n arbi trary d i r e ct- p1·ocluct r e presenta ti o n . Jt turns out th a t the cor·-

respond i nl~ 'n<>asurF> i s o. produc t- measu re. As a s imple cons <?quence 

of ow· consic!P r·dti n n we obL"1 i n a necessa ry a nd s u ffi c i ent cond i liDn 

for· cquivc.:.\ ]Pr ICQ o f any t\\ o pl~o(J.uc t -lnPnst lt 'P.-: . 
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In (? N sever a l c lasses o f canonical transformations a r e d is­

c ussed. 

II. The S p ectral Measure Associa ted w ith a Represen ­

tation o f the Canonical (Anti) Con-nutation Relations. 

N ow we construct an operator- valued measure, defined on the 

Borel sets of f' , that is the Descartes pt'oduct of the spectra S J 

whic h are the operators of the number of particles. Thi s 

measure generates the spectral cot res p o ndence in w hich every N; 

is represer~ted by a linear function. Thus the whol e con s truction is 

in fact the solution of the problem o f the si·nultaneous diagonaliza ­

tion of the set I N J I~ = 1 

There exists the well-known standard procedure for diagona-

lization of any operator 

fand isomorphism o f ~[ 

C* -algebra Ci , based on the Gel-

ont o a set of continu ous func tions defined 

on the space o f a ll maximal ideals of (:f • Being a very powe rful 

tool in general considerations, this procedure i s n ot very 

convenient fo r our purposes. So, h e re we prefe r an e quivalent, but i n 

a sense a more direct approach, which almost immediate ly g ives the 

desired/2,3/ numerical measure 1-' on Borel sets o f f' 

Let a representati o n of the C- R ( C - R means e ither ~r::: R o r 

C AT<) be g iven in some Hilbert space J{ • Thus we have the faonily 

I N l 17 .. 1 o f self- adjoint mutually commuting o p e r a tors NJ. 

Let SJ be the spectrum of NJ and ~~J: ~ J -+ P ( J{) be a 

spectra l orthogonal measure corresponding to N J We mean that 

M J i's defined on the general Borel ring I J of s ubsets .-,f S J 

its values belonging t o the set P< J{ l of all p roj e ctioc1 o perators 

o n J{ and "1 J is enu>nerably-additive functi on satisfying the followin_g 

conditi ons 

a) i.e . identity operator in J{ , 

ll 



I 2 In 2 I b) M1 <E
1

lM
1 

(E
1
l-M

1
(E

1 
E

1 
l; E

1 
E 

2 ~ I 
I I 

Note that in the CAR-case S
1 
-I c 

1 
I 

CCR-case s 
1 

- l a 
1 

I -I 0, 1 , 2 , ..• I 

l 0 , 1 I and in the 

that · is r • l a I where 

a is a sequence a -I a 1 , a 2 ••• 1 of non-negative intt2ers a
1 

( 0 and 

1 in Fermi-case and 0,1,2 ... in Bose-case). In both cases I 1 coin-

cid·es with the collection of all subsets of S 1 • M 1 is a discrete 

spectral o rthogonal measure, i.e. 

M
1

(E
1
l-I P

1
(a

1
l, 

a
1 

<;.E
1 

wher.e PI (a I ) 

is a projector i n H corresponding to the point a 
1 
~ E 

1 
CS

1 
and 

'£ P 1 (a 1 l - I • The spectral resolution of the operator 
al ~s I 

N 1 takes the usual form 

N 1 = I a
1 

M 
1 

( l a 
1 

I ) • I a 
1 

P 
1 

(a 
1 

) • 
a

1
<;.s

1 
a 1~s 1 

-Now we introduce the semiring R of a ll subsets 

which have the form 

&.cr-ns 1 l 

(24) 

&. - n E l = E 1(8)E20 ... . 
(25) 

l 

where E l ~II j = 1 • 2 , ... and E I = s l for a ll but a 

finite number of i • Next we define the mapping 1'> : ii .. P < H> by 

where E 1 

R3 &. .. 'P ({1;)=f1Ml(El), 
l 

is a - component of & = TI E 1 

12 

(26) 

in (25). One c an 



easily check that this mapping is .a spectral orthogonal function, I.e. 

P is projector-valued, enumerably additive and s a tisfies the condi­

tions 

(27) 

to establish this fact o ne has simply to recall that each M J ( E J l 

is a projector in J{ , M J ( EJ l (. 

o f in (26) and that all M J (E J) 

o f the commutativity of NJ 
... 

only for the finite number 

are mutually c om"rluting in view 

Note that P satisfies all requirements imposed on spectral mea-

s ures except that of being defined on Borel ring. So our next step -is to extend the domain of definition of P up to Borel ring I. gene-

rated by R and to preserve all properties of P 

Theorem. The orthogonal spectral function P: ii .. P ( J{ ) 

g iv en by (26) can be extended up to spectral orthogonal measure 

~1 : I P ( J{ which is defined on the Borel ring I 

generated by If so that M ( & ) - P ( & for all & c;. R 
This extention is unique. 

'l'o prove this statement one should follow the same lines as 

in the case of the extention of numerical elementary measures/11/. 

N ow we summarize the properties of the so constructed mea-

sur e M 

a) M < f' l a (. 

~ M(U E (k) ) -I M (E (k) if all 
k=l k=l 

(k) E(lrh 
(k ' ) 

E ~I and fo r all k (. k' r. a</.> 

13 



The right-hand side converges absolutely in the strong operator 

topology. 

c) M ( E ) • M + ( E ) 

d) (M(E)f,f)~O for all f ~ }{ 

e) M<9E 1>-?M 1!E 1 ) 

if all E1 ~ l: 1• The product on the right-hand side converges in 

the strong operator topology. (If n M 1 ( E 1 ) • 0 it is still 

considered convergent. This convention is useful since M gene­

rated by continuous representations of the C-R takes the zero va­

lues on every one-point subset of f') • 

The line e) states that the operator-valued measure M is 

always a product-measure. In general the same is not valid for the 

corresporrling nu-nerical 'Tleasure on f' • 

The more detailed characteristics of M deperrl o n the pre>-

perties of I N 1 I~ .t and consequently on the properties 

of the representation of the C-R. The related characteristics will be 

studied in another paper. Here we note only that some of the requi­

rements imposed on M by the properties of the representation have 

been in fact discussed by Schweb~r and Wightman/8/, though they 

have not considered the measure M 

lues on one-point subsets of f' 

as a whole but only its va-

Having the spectral measure M , relatro, to the family I N 1 1;:1 

one can map isometrically the Hilbert space }{ into direct integral 

J f'$ }{ (a) d p. (a ) • Under this mapping every N 1 will 

be represented by a multiplication operator in the corresponding 

variable a 1 • The structure of Jf' e }{(a) d p.(a) is determined 

by properties of a representation of the C-R. The most simple case 

is that when the set I N 1 I;" • 1 is maximu-n-abelian. Since in § III 
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we treat precisely this case let us consider it in more detail. 

The procedure is almost the same as in the case of only one 

operator. If the family 

exists a vector h c;. J{ 

N 1 lj.1 

II h II - 1 l 

is maximum-abelian, then there 

which is cyclic with res-

pect to I N 1 I j. 1 that is the set I M (E)h I E c;. I is 

dense in J< • Let I r $ J< <a l d ,.,. <a l be a Hibert space of p. -

-squareHntegrable functions on r , i.e. all J{ (a ) are one-dimen-

sional and the inner product of any two such functions f 1 and 

f ~ is I r 7 I (a ) l~(a )d,.,. ( a ) • The numerical measure 

p. is given by 

p. ( E ) • ( M (E) h, h ) • (28) 

Let us put in correspondence to any vector 

a function 1 <a l c;. I e J< < a l d,.,. <a l 
r 

defined by 

where is a characteristic function of the set 

One can easily check that 

Since the set 

II 1 II~ - I I 1 <a l ~ ~ d,.,. < a l • r 

IM(E)h Ec;.I is dense in J{ 

the set )( E ( a ) I E c;.. I is dense in I r @ J{ ( a ) d ,.,. ( a ) 

the mapping (30) defines an isometric operator 

15 
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u: J{-+ J
1 

eK<a ld,.,(al. 

It is not difficult to pt·ove that under this mapping the do11ain of defi-

n ition ~ ( Nl ) of every N J transforms into the set of functions 

I ( a) satisfying J a~ I I (a) 12 d I' < "" and to every N l I 

; <;.i)(N)CJ{ 
j 

there corresponds a function 

( N 
1 

f) (a) = a 
1 

I (a ) <;. J 
1

$ J{ ( a ) d I' (a) • (31) 

-1 
Thus the operator N / = U N J U is a multiplication operator 

a nd in J r Q J{( a l d I' ( a l a representation takes canonical form 

(11) by Car'C!ing and Wightman. 

III. Direct- Product Representations of the Canonical 

(Anti) Commutation Relations 

Now we retur n to infinite tensor-product space II~ J{k and to 

the direct-product representations defined by (18), (19), (20) and (22). 

For the sake o f brevity we shall speak o nly about the CCR-case 

since all considerations o f the CAR-case are a lmost the same. 

Let :B be an algebra of bounded operators oh li ® J{ k which is 

g enerated by all operators of the form 

.. 
8 kal 1 @ ... @lk-IClliB®Ik+1 ® ... (32) 

that is for any product-vector x.;.Ticg,J{k 

R.l k.-1 

o x = II ®X 0 8 x ®Il ® X 
k I k k+l l (33) 

a nd 8 is an arbitrary bounded operator on J{ k 

Let 1f be a minimal weakly closed algebra containing :S . ln 
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particular it is obvious that any Weyl operator W ( f.) defined by (18) 

is an element of ~ : 
w (f)<;. ~ c !ii. (34) 

It has been shown by von Neumann (Theorem IX in/1h that a bound­

ed operator A on ~~ }{ k belongs to 1i if and only if A commutes 

with all projection operators P ( n X ~ }{ k l on IDPS n X<3 }{ k 

and with all operators U (I cb I l- [I 0 e 1</>k ( ¢> k -real numbers) 

U(l</> I> X- n ~e 1 </>k xk 

which are responsible for the relation (16) between weakly equiva­

lent product-vectors. 

It follows from (34) that the direct-product representations are 

reduced by every IDPS. The restriction W X of a Weyl system 

(19) to the IDPS TIX0 }{ k is again a Weyl, system and can be 

shown to be irreducible, that is every bounded operator on n Xe }{ k 

which commutes with all wX( f) is a 'Tlultiple of the identity. In the 

following we shall call W X an irreducible direct-product represen­

tation. Now the question is when two irreducible direct-product rep-

resentations wX' and w x" are equivalent. 

First we note that since the set I W ~s> ( zk ) I z k <;. C 1 I de-

fined by (18) is irreducible in }{ k • f 2 (x l the co'l'lmutant 

(S) 

W k (zk) I z k<;. C I' •I a II 

(S) I 
and henc e the bicommutant I w k < z k > I • k c;. c I " coincides 

w ith the algebra of all bounded operators on H k This means that 

the algebra m generated by I w (f) I f <;. T I is dense in ~ and 

consequently in ] • Now let two product-vectors X' and x".x•; x" 
b e g iven. Suppose that the corresponding irreducible direct-product 

representations wX and wX" a re equivalent that is for everv r c;. T 

17 



wx . Ul = u wx ' (l) u - 1 (3 5) 

where U is an i sometri c oper ator, mapping nx'@H. x" 
II ~ }{< on 

Next we introduce a bounded on II~}{ I< defined b y A cf> s 0 

if ¢ ~ n x® H k 

and x ~ x' 

and X :x' and by A¢=¢ if ¢ ~ fl X X }{ I< 

One can easily check that A fulfills all conditions 

of the theorem, cited above, and thus 

A<;;- 93 (36) 

Moreover 

x' 
A • 0, 

x" 
A =I, 

(37) 

where A X is the restriction of A t o IDPS f! X 0 }{ k 

Now let w 

we get 

G-~ 

x" 
w 

and w ... A 
n 

- u w X U -1 

, , 1 
AX~UAX U-

in contradiction to (37). 

weakly. Since f o r a ll n 

(38) 

On the other hand if x' .l' X " then w X' is obviously equi-

valent to W x" since in this case U can be constructed explic itely 

and proves to be an operator U (I ¢ l ) • V ~ e t¢k with ¢I< form 

(16). 

So we have obtained the followin g. 
x' 

Theorem 1. Two irreducible direct-product representations W 

and wx" defined on n x' 0 }{ k and n x"@ }{ k , respective ly , are 

equivalent if and only if the corres ponding product- vectors are weak­

ly equiv alent. 
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Another proof of this theorem has been given in/9/, 

Our next task is to inv e s tigate the structure of the set 

corresponding to an irreducible direct-product representation W )( in 

the standard approach/3/. 

According to § ll the first step should be to find the opera-

t ors N 1 • Due to (18) and (19) N 1 are given b y 

(39) 

where n is an operator of a number of particles in }{ k • .f2(x) that is 

1 d 2.d> 2 
( n </>){X ) • - [-~ (X)+ ( X -1) tp ( X ) ] , </> ~ ~ ( n ) C _f .j X ) , 

2 d X 2 

(40) 

The spectral function M <Ia l > 
J J 

in (24) takes the form 

M 
1 

( I a 
1 

l ) = P 
1 

( a 
1 

) • 1 1 ® ... ® I 1_ 1 ~IT ( a 1 ) @ I J+l@ ••• ( 41) 

and rr, ( a 
1 

) is a projector in }{ 
1 

a .f 2 ( x ) on the one-di·Tlensional 

s ubspace gen e rated by b a1 , where b a1 a ba I (x) is the a 1 - tb 

Hermit function: 

(42) 

The second step is t o understand whether the family N J l ~= 1 is 

maximum abelian. Let us prove two simple statements. 

a) There exists a dense set of vectors )( 1 in }{ 1 = f 2(x) which 

are cycli c with respect l.o n , that is for every such )( 1 I;; f 2 < x l 
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To prove the statement 

with all q~ - <x l • b m) f 2 ~ 0 

b) In IDPS px' fb }{ k 

there exists a product-vector 

one s_imply notes that every x 1 ~ ;< x) 

is obviously cyclic. 

generated by a product-vector x' • ~0X~ 
X - Q @ X k with all X k,;;. f 2 (x) cyclic 

with respect to n • This X is cyclic with respect to I N 
1 

I ;:.
1 

Proof: According to a) we can choose a sequence X (;. f ( x) 

satisfying II X k -x'k II< f k • (0 < f < 1 ) with all X k cyclic with 

respect to n • One can check that inequality ( 14) holds for X= ll® X k 
' k 

and x'·~~X~ and thus DX®J<k-llX® J(k • On the other hand 

the cyclicity of X is also guaranteed because the set of product­

vectors which differ from X only at the most in a finite number of compo­

nents is dense in ll X~}{ k and every such product-vector can be 

arbitrarily well approximated by a linear combinations of 

pl X a (I I @ ··• 0 IJ-1 ®rr @ IJ+I@ ··•·) X 

(due to n -cyclicity of every X k ). 

Thus without loosing generality we can consider that for any 

wX a representation-space ~X @ }{ k is generated by a cyclic pro-

duct-vector X • D ~ X k • In accordance with § II this means that 

all J< <a l in Ire J< <al d~t< a l are one-dimensional, i.e. dimension 

v (a) a 1 • The numerical measure I' on r corresponding to W X 

is given by 

~t.< E l • ( M ( E l il( , X l (28a) 

and on the sets of the form 

I~&-?E 1 El ~ I l (43) 

it takes values 
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,. ( /1; ) (44) 

where 

(45) 

The line ( 4 4) says that the measure p. corresponding to an irre­

ducible dire ct-product representation W X is always a product-mea­

sure generated by a set of real numbers' 

P 
1
"' = p.

1 
( I a 

1 
= m I l = ( 1T (m) X 1 , X 1 l 

(46) 

If the expansion of X 1 ( x l in Hermit functions is 

(47) 

then 

(48) 

Now let us find the last element I C k (a l I:= 1 of the canonical 

triplet I 11 ( a ) , p. , I C k (a l I :". 1 'I It turns out that unitary operators 

Ck(a) defined in (11) are given by 

where 

2 1 



Proof: Let again 

</> k ( a k ) • arg q a k 
k 

)( k -!. q ak h ak 
a C-s k 

x-11@x 
I I 

k k 

Now due to (29) 

k-1 

Mk<lak•mllx- 11 ~x 1 ~q:hm~ll(;Jx 1 .. 
I 

-+I (a) • 8 t;; J $ }( (a)dfL(a). 
ak,m r 

(50) 

On the other hand according to the definitio:'l o f the direct-product 

representatio:'l 

- m k-1 m-1 
a k M k <I a k - m I ) )( - y m q k n @)(I ®h @ 11 ® )(I ~ 

k+l 

(51) 

~ m / m-1 
•Ymqk qk Mk!lak•m-lllx. 

Use again (29). We h ave 

akMk({ak •mil )( -+(akl)(a) ~ 

(52) 

=v-;;. qm /qm-t 8 +t ~ f + H!a)dfL(a) 
k k a k ,m r 

An immed iate gen e r a liz ati on o f the a b ove cons ideration i s 
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(53) 

where </> k (a l are defined by (50). Comparing (53) with (11) we ol>­

tain (49). Conversely, for an arbitrary given triplet 

dtf> ... cak+I>-</>..C ak>] 
lv•1,,.,1c ... (al•e II 

with a product-measure I' one can choose X • Il 0 X 11. with 

and thus find a corresponding irreducible direct-product representa­

tion. 

So, we have proved the following 

Theore"Tl 2. A representation of the CCR is (equivalent to) an 

irreducible direct-product representation if and only if v • 1, I' is 

(equivalent to) a product-measure and Ck(al take the form (49). 

Combining theorem 2, (48) , (50) and theorem 1 we obtain the 

Corollary 1. Two quasiinvariant measures I' and I' ' on r 
generated by two sequences of real positive numbers 

respectively, are equivalent if and only if 

(Note 

g es). 

and 

I< 1 I v 
l 

that since I m 
p l m 

Proof: Take 

X • l1 ®X 
l 

m 
p ~ 

m) <oo p l 
(54) 

I 'm 1 pl ~ 

m 
the inner sum conver-
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x '-? ~x,' x·-Iy'p'"'h 
l - l 

According to Theorem 2 the related irreducible direct-product repre­

s entations W )( and W x' are equivalent if and only if fl and f!' are 

equivalent. Next, using Theorem 1L and (15) we obtain (54). Thus, 

the inequality (54) is a co<1plete solution of the corresponding prob­

lem formulated in/3/. In fact this result was first obtained in the early 

paper by Kakutani/12/. 

Theorem 1 a nd 2 are also valid in the case of CAR. The ine­

q uality (54) holds as well, but in this case the inner sum contains 

o nly two terms. 

IV. Canonical Transfor mations. 

The results o f the preceding sections can be readily applied 

to pseudocanonical transfor mations. The basic question here is to 

u nderstand whether a g iven pseudocanonical transformation is in fact 

canonical, i.e. is i 'Ylple'Ylented by a unitary transformation. 

In this section we consider a special class o f pseudocanoni-

cal transfor'Y!ations - the "finite-di 'Ylensional " transformations. Let a+ 
k 

a nd a k ( It • 1, 2 , ••• l b e creation and annihilation oper a tors ge-

n erated by a representati o n W of the CCR in some Hilbert space}{ • 

Let a nother set I a~+ a~ J :O.t o f operators be given in }{ and 

+ + ) a k • f k( a k ' ••• ' a k ; a k , ..• , ak 
1 m I m 

(55) 

,+ - + a •f k (a: ' ... a . 
a k ' ... , a ) • 

k k ' k I 
"' I m 

If f k are chosen in such a way that [a~',a'+].8 
& q k q 
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the transfor'Tlation (55) is called pseurlocanonical. If m < oo we shall 

call it "finit~imensional". The pseudocanonical transfor'Tlation (55) 

generates another representation IV' of the CCR in J{ and this 

new representation is generally speaking inequivalent to the initial W 

If IV and W' are equivalent the representation is said to be canoni­

cal. It is important that the answer to the question, if the pseudocanonica l 

transformation (55) is canonical) depends not only on the properties of 

functions f k in (55) 1 which reflect only the algebraic structure of the 

transformation, but also 

tion W in J{ 

on the properties o f the initial representa-

Let W in J{ be equivalent to some irreducible direct-product 

representation wX ( )( • n ® X k l • Then the transfor·ned represen-

tation W' is equivale"1t to another irreducible direct-product represen-

tation, namely towux where a unitary o perator U takes the fo r m (fo r 

simplicity we restrict ourselves to the case of on~imensional tra •'"l­

sformation): 

u (56) 

Here U is a unitary operator in ~ • f l ( x l satisfying the con-

ditions 

81 -U- 1 a u (57) 
k k k 

+I '"-1 + 
ak - uk ak uk 

where 

(58) 
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Due to uniqueness (up to unitary equivalence) o f the representati on 

of CCR i n the case o f finite number of degrees o f freed om, every Uk 

exists and i s explicitly deter mined by a functi on fk in (55) . Thus, 

ins tead of co:nparing w and W' we can co"11pare wX and wx' 

Applying Theorem 1 w e obtain the 

Corollary 2. The pseudocanonical tra n sfor •nation (55) is canoni­

cal if and only if 

~ ( 1 - I ( u k xk • x k l I l < "" 
(59) 

w here U k are d e fined by (57), ( 58) . 

One can easily generalize this s ta teme nt to includ e all finite -cli­

•nensio nal tra n sforma ti o ns. It is inte resting that for every tra n sforma ­

tion (55) there exists an irreducible direct-product r e presentati oY1 in 

which (55) i s canoni cal. 

Let us discuss s imple examples. T h e "11ost gen e r a l one-dimen--

s iona l ~ pseudocanonical tra n s formation i s g iven by 

a¥ :s ak 
ch vk e 1 <</>k :t</Jkl 

I ( </>k - if;.) 
+ a k sh vk e + A k 

(60) 

where vk • </>k , </1 k a re real a nd A k i s complex . In J{ k = ~~ ( x) (that 

i s in the case o f o nly o ne d egr ee o f freedom) the transfo rmati o n (60) 

is i --nplernented by a unitary o p erator U k 

-I 
a k = uk a k uk 

(61) 

(I) (2) (3) (4) 

u k = uk uk u k u k 
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Here 

>.k u<o (~ l k 
c e 

(2) I cf\ 
u k <¢ k l ~ e 

II 

(3) z-< 
U k (Ilk l = e 

tr/1 
= e k 

and 

a 
y2 

+ - >. k ak a k 

+ 
ak a k 

+ + 
a a 

k k 

+ a 
k 

( X + 

- a a l 
k k 

dx 

(6 2) 

N ow let all r/>k c II k r/Jk c 0 
' 

that is 

arrl { ak 

tion W X 

a 

been considered 

, 
k - a + >. (63) 

k 

generate an irreducible direct-product representa­

pseudocanonical transformations of this type has 

by Shelupsky/10/). Let the rep resentation space be 

}{a II)( 19 }{k 

(64) 
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where h nk i s the n k - th Hermit function. In this c ase the represen­

tation w X is called discrete and is completely deter"llined by a se-

quence 

Now 

(I) n 
<u o.klh k 

k 

I n k! a(n
1
,n

2
, .... ) • 

-~ 
2 i <- 1.\k l2lm nk 

, h ) 2 e 
m=<l rn! 

n 1 k. 

(n - m)! m ! 
k 

(65) 

(66) 

(I) n k nk 
Usi ng (66) one can show tha t the sum t< I- I(U k( Ak)h ,h >I> con-

ver ges if and only if 

2 
ll: ( n + I ) I A I < oo 
k k k 

(67) 

Thus, the pseudocano nica l transfor'Tiation (63) in a representation 

space defined by (64) and (65) is canonical if and only (67) holds. 

For the F'ock representati o n (all nk = 0 ) the rela tion (67) reduces to 

2 
l: IAkf <oo 
k 

The analogous calculations can be performed also in general case 

(60). The authors are indebted to V.S. Vladimirov , A.l. Oksak am 

B.M. S tepanov for valuable disc ussion. 

T<eferences 

1, J. von Neumann, Co·-np. Math, _.9 1 (1938) . 

2. L. Gardi n g , A. W ight 'Tian, Proc, Nat. A cad. Sci., !Q, 6 17 (1954). 

3 . L, Garding, A. W ightman, Proc. Nat A c a d, Sci.1 .!Q, 622 (1954). 

28 

4 . H. Fukutone, Prog r . Theor. Phys., ~ 989 (1960). 

5 . I .E. S egal, Trans. A "TT. Math. Soc. , §_§., 12 (1958) . 

6 . H . Araki, J , Math. Phys., h 492 (1960). 

7. 'III,M . fenh<!Jaun, H.H.BwneHKHH. *05o6meHHbre tPYHKUHH', T,4 , rn. IV 
'<I>HaMaTrHa' , M-1961. 

8 , A , Wightman, S . Schw eber, Phys. Rev., 98, 812 (1955), 

9. J. Kla ude r , J,Mc Kenna, E . Woods, J, Math. Phys,
1 
L 822 (1 966), 

10. D . Shelupsky, J. Math, Phys,, L 163 (1 966). 

11. r . E . l!JHnOB, E .fl. fypeBH'i, 11HTerpan, Mepa J.l npOH3BOnHaSI , * HayKa, . 
M -I 967. 

12. S. Kakutani, Ann. Math, , ~ N 1 (1948). 

R e ceived b y Publis hing Department 

on A p ril 22, 1968. 

2 9 


