











are the corresponding annihilation and creation operators,
Analogously in Fermi case one has to construct all unitary

. . . . + . .

inequivalent sets of pairs of operators th b7 b, i=L2,.. which

=atisfy

()

Lt . -
o by is adjoint to by

No froubles arise in the case of the canonical anticommutation
relations (CAR), =ince it follows from (9) that b, and 'n:. (and con-
sequently b(f) and b* (g) ) should be bournded. Moreover b(f) and

¥ (g)  are continuous with respect to their arguments so that there
is no need te restrict oneself to T’ and one can choose T’ for
the test-function space.

On the contrary in thie case of Bose fields it is easy to show
that at least one of the operators a(f) and a* () is unbounded
and one must take care of the domains of definition in order that
(4) and (7) make sense.To avoid this difficulty one introduces the
CCR in Weyl's form that is one passed from ¢() and nlg) to

e’¢(f) and e ") Jnd rewrites the restrictions (4) in terms of these

exponents,
So we reformulate the problem as follows,
Let T be a complex prehilbert space T=T  +iT’ with the

inner product { , ). :TxT » C ! (which confirming to the usual

mathematical usage is linear in the first argument),










































Another proof of this theorem has been given in/gl.

Our next task is to investigate the structure of the set
fvia), pica)lyo,}

correspording to an irreducible direct-product representation w in

the standard approach/3/,
According to § M the first step should be to find the opera-
tors N, . Due to (18) and (19) N; are given by

Nyaly @ o ® L, @ 8 @1, 1 ® won (39)

where n is an operator of a number of particles in L =£300 that is

2
(n¢)(x)=-§1-[--Z—fz(xn(x’—nqs( O], ¢$¢T(Ic®y x). (40)
x
The spectral function M, ({a . 1) in (24) takes the form

M, (la, =P (a,)=l,®..01_, ®rla,) B1,,® . (21)

and #(a,) |is a projector in }(’ =£2(x) on the one-dimensional
subspace generated by 1% |, where % = b%1(x) s the a, -t

Hermit function:

wh®™ x) =a, b . (a2)

o0

The second step is to understand whether the family | Nyl is

maximum abeliar. Lel us prove two simple statements.

&) Thore exists a dense sel of vectors x; in H, =£,(0 which

are ovelic withh respect Lo, that is for every such x; © £2(x}

thiee oot ata, Yy 4 ioodonsae i Yoo .

Uy






u((c_‘;)=I,Iuj(Ej), (44)

where

p’(E’)=2 (ﬂ(a’)xj,x‘ ). (45)
a‘GEj

The line (44) says that the measure # correspording to an irre-

ducible direct-product representation wX g always a product-mea-

sure generated by a set of real numbers
m
P, =p(lta; =m}) =(rlm x;.x,)

(26)

T P, oal.

m i

If the expansion of xj(x) in Hermit functions is

x’(x)nzq:‘hm(x) (47)

then

p':' -h’ml’ . (28)

Now let us find the last element {C,(a) 1T o of the canonical

triplet { v(a), p, { C (a} }:_, 1 . It turns out that unitary operators

€ (@) defined in (11) are given by

ilg, a, + 1)~ Cap ]
cla) me ° " e (49)

where









x =Uaex, i x =%vp "h

According to Theoren 2 the related irreducible direct-product rej
~entations WX and wX are equivalent if and only if p and u’
wguivalent, Next, using Theorem 1 and (15) we obtain {54). Thus
‘1e inequality (54) is a comnplete solution of the corresponding pr
ien formulated in/3/, In fact this result was first obtained in the e
paper by Kakutani/i 12/,

Theorem 1 and 2 are also valid in the case of CAR., The
quality (54) holds as well, but in this case the inner sum contair

onlv two terms,

IV, Canonical Transformations,

‘The results of the preceding sections can be readily applie
to pseudocanonical transformations. The basic question here is tc
understand whether a given pseudocanonical transformation is inf
canonical, ie. is implemented by a unitary transformation.,

In this section we consider a special class of pseudocanon
cal transformations - the "finite-dimensional” transformations. Let e
and a, (k=1, 2,..) be creation and annihilation operators ¢

nerated by a representation W of the CCR in some Hilbert spac

Let another set {a/%,a[ |7, of operators be given in X
. +
ak-fk(ak, »8 L 58 L ,ak+)
1 1 m (55‘
S+ T + +
a =nf (a ) wey 8 a . ,a ).
k x km ky ! km ky
If t, are chosen in such a way that [ak’ ,a ’:' 1 s N s
qQ
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Applying Theorem 1 we obtain the

Corollary 2, The pseudocanonical transformation (55) is canoni-
cal if and onlv if

0530
(1 = €U, x X, )b <= (59

A

where U, are defined by (57), (58).

One can easily generatize this statement to include all finite -di-
mensional transformations. It is interesting that for every transforma-
tion (55) there exists an irreducible direct-product representation in
which (53) is canonical.

Lot us discuss simple examples. The maost general one-dimer—

sional linear pseudocanonical transformation is given by
—_— b

(P, +Y 0 1 (P, - U
e ¢k k + a SthP x %i)\ R (60)

”
a ' = a ch v
k

» k k k

where v, . ¢, . %, are real and A s complex, In} =¥, (x) (that

i« in the case of only one degrec of freedom) the transformation (60)

is inplemented by a unitary operator 'y

(Gl

v(1) 2 @) 1)
Uy = U U Uy by .









