```
    C 324.3
    N-56
ОБЪЕДИНЕННЫЙ
ИНСТНТУТ
    яДЕРНЫХ
    ИССЛЕДОВАНИЙ
Дубна
```


Nguyen Van Hieu

A LOWER BOUND

```
OF THE ELASTIC SCATTERING AMPLITUDE AT FIXED MOMENTUM TRANSFER
```

1968

Оиенка снизу для амплитуды упругого рассеяния при фихсированной передаче импульса

На основе аналитических свонств амплитуды рассеяния, получена нижняя граница убывания сечений в физической области $t<0$.

Препринт Объединенного института ядерных исследовании. Дубна, 1968.

Nguryen Van Hieu, E2-3728
A Lower Bound of the Elastic Scattering Amplitude at Fixed Momentum Transfer

A lower bound of the cross section decrease is obtained in the physical region $t<0$ on the basis of the analytic properties of the scattering amplitude.

Preprint. Joint Institute for Nuclear Research. Dubna, 1968

E2- 3728

Nguyen Van Hieu

A LOWER BOUND
 OF THE ELASTIC SCATTERING AMPLITUDE
 AT FIXED MOMENTUM TRANSFER

Submitted to ふЭT\%.

In this work we establish some restriction on the decrease of the elastic scattering amplitude $F\left(A_{1}, t\right)$ at $A \rightarrow \infty$ for the fixed $t<0$, where δ is the squared total energy in comes., $t=-2 k^{2}\left(1-\omega_{d} \theta^{*}\right), k$ is the value of the threedimensional momentum and θ is the scattering angle in this system of reference. For a series of processes the amplitude $F(b, t) \quad$ is an analytic function of t in the ellipse E_{t} (called the Martin ellipse) with the foci at $t=0$ and $t=-4 k^{2}$ and major semiaxis $a=2 k^{2}+\gamma, \gamma>0$, as this was shown by Martin $/ 1 /$ and Comer $/ 2 /$. We denote the imaginary part of $F(s, t)$ by $A(s, t)$. From the results of I in and $\operatorname{Martin} / 3 /$ it follows that

$$
\begin{equation*}
\max _{t \in E_{t}}|A(\phi, t)| \leqslant \operatorname{const} \Delta^{1+\varepsilon}, \Delta \rightarrow \infty \tag{1}
\end{equation*}
$$

for some positive $\varepsilon<1$. Instead of $A(s, t)$ it is convenient to consider the function

$$
f(\alpha, t)=\frac{A(s, t)}{A(s, 0)},
$$

which has the same analytic properties in t as $A(b, t)$ has. We suppose that the total cross section has the behavior const. Δ^{ρ} at $\Delta \rightarrow \infty$. Then

$$
A(\Delta, 0) \sim \operatorname{con} \Delta t . s^{1+p}, s \rightarrow \infty
$$

and we have

$$
\begin{equation*}
\max |f(\lambda, t)| \leqslant \operatorname{cont} d^{\varepsilon-\rho}, \delta \rightarrow \infty \tag{3}
\end{equation*}
$$

By the change of the variables $w=t+2 h^{2}$ we transform E_{t} into the ellipse E_{w} with the foci at $w= \pm c, \quad c=2 h^{2}$, and $w i t h$ the same major semiaxis. The minor semiaxis is $b_{0}=\sqrt{a^{2}-c^{2}}$. We introduce now an arbitrary positive number $\alpha<c$ and consider the ellipse E_{w}^{\prime} with the foci at $w= \pm e^{\prime}, e^{\prime}=c-\alpha$, and with the minor semiaxis b. This ellipse, of course, is contained inside E_{w}. The major semiaxis a^{\prime} of E_{W}^{\prime} is determined by equation

$$
a^{\prime 2}=a^{2}+c^{\prime 2}-c^{2}
$$

We shall choose e^{\prime} (i.e. α) in such a manner that the points $w= \pm e$ (i.e. $t=0$ and $t=-4 k^{2}$) are contained inside E_{w}^{\prime}. Then the physical region is contained completely inside E_{W}^{\prime}. This condition is fulfilled if $a^{\prime}>c^{\prime}$, i.e. if the following inequality holds

$$
\left(2 k^{2}+\gamma\right)^{2}+\left(2 k^{2}-\alpha\right)-\left(2 k^{2}\right)^{2}>\left(2 k^{2}\right)^{2}
$$

For large Δ from this inequality we get

$$
\begin{equation*}
\alpha<\gamma \tag{4}
\end{equation*}
$$

By means of the conformal mapping

$$
\xi=\frac{w+\sqrt{w^{2}-e^{\prime 2}}}{e^{\prime}}
$$

we transform the interval $\left[-c^{\prime}, e^{\prime}\right]$ in the w plane into the unite circumference in the ξ plane, following Cerulus and Martin/4/. In this conformal mapping the ellipse E_{w}^{\prime} is transformed into the ring with the internal radius l and the external radius R,

$$
\begin{equation*}
R=\frac{a^{\prime}+\sqrt{a^{\prime 2}-e^{\prime 2}}}{e^{\prime}} \tag{5}
\end{equation*}
$$

The point $w=c$ (i.e. $t=0$) is transformed to the point $\xi=r$,

$$
\begin{equation*}
\tau=\frac{c+\sqrt{c^{2}-c^{\prime 2}}}{c^{\prime}} \tag{6}
\end{equation*}
$$

Denote by m the maximum of $|f(b, t)|$ in the interval $-c^{\prime} \leqslant w \leqslant c^{\prime}$ i.e. In the interval $-4 k^{2}+\alpha \leq t \leq-\alpha$, and by M^{\prime} that of $|f(\Delta, t)|$ on the boundary of E_{t}^{\prime}. According to the Hadamard's three circle theorem (see ref./5/, theorem 5.32) we get

$$
\ln |f(s, 0)| \leqslant\left(1-\frac{\ln r}{\ln R}\right) \ln m+\frac{\ln r}{\ln R} \ln M .
$$

Putting finto (5) and (6) the values of $a^{\prime}, c, e^{\prime}$ we get at the limit $A \rightarrow \infty$

$$
\frac{\ln r}{\ln R} \approx \sqrt{\alpha / \gamma}
$$

On the other hand $f(s, 0)=1$. Therefore we have

$$
\begin{aligned}
& 0)=1 \text {. Therefore we have } \\
& m \geqslant\left(\frac{1}{M}\right) \frac{\sqrt{\alpha / \gamma}}{1-\sqrt{\alpha / \gamma}} .
\end{aligned}
$$

For πN-scattering we have $\gamma=4 m_{\pi}^{2}$. Using the condition (3) we get now

$$
\begin{array}{r}
\max |f(A, t)| \\
-4 k^{2}+\alpha \leqslant t \leqslant-\alpha
\end{array}
$$

where

$$
\begin{equation*}
\phi(\alpha)=\frac{\sqrt{\alpha / 4 m^{2}}}{1-\sqrt{\alpha / 4 m^{2}}} \tag{8}
\end{equation*}
$$

If we assume that $f(\lambda, t)$ is analytic and uniformly polynomially bounded in the whole cut plane (the Mendelstam representation) then we have

$$
\begin{equation*}
\max |f(s, t)| \geqslant \operatorname{const} s^{-n \psi(\alpha)} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi(\alpha)=\frac{\left[1-\left(1+\frac{\alpha}{4 m^{2}}\right)^{-1 / 2}\right]^{1 / 2}}{1-\left[1-\left(1+\frac{\alpha}{4 m_{\pi}^{2}}\right)^{-1 / 2}\right]^{1 / 2}} \tag{10}
\end{equation*}
$$

and n is such a constant that
for any t.

$$
|f(s, t)| \leqslant \operatorname{con} t s^{n}, s \rightarrow \infty
$$

If the amplitude has the Regge behavior then the inequalities (7), (9) are the lower bounds of the corresponding Regge trajectories.

This work was done during my stay at CERN. I would like to express my gratitude to Profs. D.Amati, J. Prentki and L.Van Hove for the hospitality and for their interest in th1s work. For discission I thank Prof. G.Domokos.

R_ef_e_r_e_n_c_s

1. A.Martin. Nuovo Cim., 42, A930 (1966); 44, A 1219 (1966).
2. G.Sommer. Nuovo Cim., 52, A 373 (1967).
3. Y.S. Jin and A.Martin. Phys.Rev., 135 , B 1375 (1964).
4. F.Gerulus and A.Martin. Phys.Lett., B, 80 (1864).
5. E.C.Titchmarsh. The Theory of Functions, Oxford University Press, 1939.
