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1. Introduction 

In connection with forward Compton scattering it is well known 

C1.at sum rules for the magnetic and electric moments of the target 

particles can be derived from a general low energy theorem and 

dispersion relations I 1- 51. In this way quadratic or bilinear forms 

of electromagnetic moments are expressed through derivatives of dis­

persion integrals taken at zero energy. Usually the Optical theorem 

is employed to replace the imaginary part of the forward scattering 

amplitude by linear combinations of total cross- sections belonging 

to definite polarisations of the incident particles. Certain assumptions 

about the asymptotic behaviour of these cross sections being equi­

valent to the postulation of unsubtracted dispersion relations in the 

case of magnetic moment sum rules I 3,41 are necessary to guarantee 

the existence of the inteerals. 
A direct experimental test of the mentioned sum rules seems 

to be difficult since it requires the knowledge of the polarized cross­

sections in a large energy region. It is therefore interesting to look 

for other possibilities of evaluation which are based on known data. 

Drell and Hearn I 61 and Pagels I 21 have estimated directly the 

continuum contributions of the nucleon magnetic moment sum rules by 

insertion of low energy and resonance approximations. They obtain 

ev.\den ce for the validity of the sum rules if there is no large con-
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tribution for the ener12v re12ion above 1 GeV and if the nonr.esonant 

ba::::kground is small ( see also the more indirect test by GerasimoJ 
4

/ 

in connection with the decrease of the magnetic moment when the 

n•.Acleon is bound). Another ·possibility of evaluation is studied in 

L'lis paper. We consider nucleon and deuteron targets and investigq.te 

the isoscalar Drell- Hearn sum rule together with the deuteron mag­

nP.tic moment sum rule/ 2,5/ using the fact that all magnetic moment 

sum rules have the same cross- section structure, i.e. the imaginary 

parts of the forward scattering amplitudes are given by analogue 

cross- section expressions/ 3/. Since the deuteron binding energy 

pla.ys no role in the asymptotic limit both sum rules are guaranteed 

by the same asymptotic condition. Morebver, assuming that for for­

ward Compton scattering above the pion production threshold the 

deuteron may be replaced approximately by the free nucleons and 

neglecting electromagnetic interactions ~f order •" -we combine the two 

sum rules to an equation containing only known terms and a low 

energy cross section integral between the deuteron photodisinteg­

ration threshold and the pion production threshold. This integral can 

be evaluated by standard methods with the help of low energy deu­

teron photodisintegration data/ 7/ • The appearing polarized c~oss­
sections are obtained conveniently from the helicity amplitude-a. The 

result -agrees with the predicted value (a 10%-deviation is due to 

the used approximations) showing the validity of the considered sum 

rules. 

In sections 2 we study the sum rules and their combination to 

an evaluable equation. Section 3 deals with the calculation of the 

low energy integral. Finally in section 4 the result is discussed. 

2. The Magnetic Moment Sum Rules 

The kinematical structure of the y N forward scattering ampli­

tude containing two independent invariants is / 8/ 
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is valid. Considering in addition to eqs. ( 5) and ( 6) the corres­

ponding d~uteron magnetic moment sum rule and following ref./ 5 / we 

write the T-matrix element for yd fo111ward scattering in the form 

T ( k, d ; k , d) = !_ I
1 

T
1 1=1 

where the four independent kinen1atical invariants I are 
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The deuteron and photon polarisation vectors are denot~d by f!, 
and -; 

1 
( i = I, 2 ), respectively. Sum rules can be derived for the 

amplitudes T 
2 

and T 
4 

• The desired magnetic moment sum rule reads 
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Pere IL 0 and M denote the magnetic moment and the mass of the 

deuteron. The limit B of the integral is the threshold for deuteron 

photodisintegration. Assuming now that for forward Compton scatter­

ing above the pion production threshold the deuteron may be rep­

laced approximately by the free nucleons we get the cross- section 

relation 

X) + s + 
We note that the substitution u - -> u - , where s indicates the 

d d 

isoscalar oart. leaves the sum rule un~hanQ.ed because of the isosca,... 
tar Born term. 
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containing the polarized photodisintegration cross- sections or 

low the pion production threshold. Concluding this section "' 
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approximation. Thus results the sum rule 
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evaluated in the following section. 

3. Calculation of the Low Energy Integral 

+ 
The polarized photodisintegration cross- sections u d a 

cctn be expressed by the corresponding helicity amplitudes 

ing to longitudinal deuteron polarisatk>n. Using the notation c 

and Wick/ 11./ and Le Bellac et al./7/ we write them in t1 
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F = F = --- ~ D a ( J ) , 

I± 1,1, ±i-•±~ 87T.j2 l 0,0 1 

7 



( 
! 

r;) 

,I 
.!, 

S± 
ad(w a±(wl + a±(wl, w>m 

p n = TT ( 14) 

i The exact validity of eq. ( 14) in the asymptotic limit shows that the 

sum rule ( 13 ) also is guaranteed by the asymptotic assumption ( 7). 

Writing eq. ( 13) in the from 

Jl 
{II 

I. 
Y' 

./'' 

Ill·' 
(I 

4rr2 a 
m s+ s-

00 s + s-
M 2 IT ad -a a d-ad 

-- (1- -- p. ) = J d dw + J ( 15) dw M2 2m D 
B w w m 

IT 

and inserting eqs. ( 14), ( 5) and (6) into the high energy integral 

we obtain the relation 

4rr
2 

a 
--(1 

M2 

.s+ s-
M 2 m" a d 7 a d 211 

2a 2 2 
--p.) ==J dw+--(K +K) 

2m D B W m2 P n 

( 16) 

containing the polarized photodisintegration cross- sections only be­

low the pion production threshold. Concluding this section we note 
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approximation. Thus results the sum rule 
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which will be evaluated in the following section. 

~~ 3. Calculation of the Low Energy Integral 

'\ The polarized photodisintegration cross- sections a: and a d 

cctn be expressed by the corresponding helicity amplitudes belong­

ing to longitudinal deuteron polarisatiOn. Using the notation of Jacob 

and Wick f 11/ and Le Bellac et a1./ 7/ we write them in the form 
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tPron and the two nucleons respectively. The well known parity for-

mula 
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gives the other eight necessary helicity amplitudes. Since we need 

only the longitudinal deuteron polarisations the angle cp plays no 

role. Below the pion production threshold the dipole and quadrupole 

bur 1sitions are dominant. Neglecting higher multipoles and using ap­
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The two necessary total cross- sections as functions of the helici­

ty amplitudes read 

+ m 2 p 1 
a = 41Ta ( ---)-- IH! :£ 

d SITE (lJ 2 -\-All 

,., •I' 'l 

12 -
FA1A2p.lp.2 

(38) 

:a II (+) ll (-) 2 
•a<-m-) ....l!....-1-:£ <_!_>[la<+?i>f +lal-><J>I

2
+Ia <J>I +Ia <nl 1 • 

SITE llJ S J..O 2 j+ 1 I I 4 4 

m 2 1 
.. 41Ta ( ) ...L -I d{} :£ 

d SITE llJ 2 A,
1
__,\

2 

I',• I' :a 

a I :a .. 
F A./- 2 1' 1 I' :a 

(39) 

m ll 1 8 1 <+> 2 (-\ :a <+> a .<-l a. 
=a(--) L -:£ ( HI a (j)l +I a (J)I +I a (j)l +Ia (J)I J 

S trE llJ S 1=<> 2 j + 1 a 8 8 8 

ll 2 ~ 
where p = ( E - m ) is the centre of mass nucleon momentum and 

v.rht~re the solid angle integration can easily be performed after 

insertion of the explicit expressions ( 19)- ( 22). Retaining only the 

isoscalars i,n eqs. (24)- (37) we use the tables of ref./7/ contain­

ing the needed multipole transitions. The phase shifts appearing in 

th.e interference terms are given in ref./12/. What remains to do 
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after interpolation of the cross- sections between the discrete energy 

values of the table is the numerical integration leading to the result 
m s+ .s-

IT ad -ad 
I ----dllJ 

-II -2 
-17,2a•10 [MeV] ( 40) 

B 
(lJ 

4. Discussion 

Comparing the result ( 40) with the predicted value given by 

the left hand side of eq. ( 18) 

2 tr 2a ll ll -5 -ll 
( K + K ) = 15,4 a • 10 [MeV ) ( 41) 

m :a p D 

we note satisfactory agreement. The 10o/o- discrepancy should be due 

to used approximations and errors of the included parameters. These 

are: 
1) replacement of the deuteron by the free nucleons in the 

rc)gion llJ > m , 
.IT 

2 ) neglect of octupoles and higher transitions in the region 

llJ < m IT and neglect of e 4- corrections, 

3) errors of the phase shifts, the n- p . effective range r t and 

of the d- state probability contained in the tabulated multipole fran-
• 

sitions, 
4) uncertainty of the c.;ross- section interpolation between the 

discrete energy values. 

Rough estimations indicate that these uncertainties can lead to an 

ecror of about 10% in eq. ( 40). 
The result ( 18) was obtained by insertion of the isoscalar 

Drell- Hearn sum rule 

+ 
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2
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into the deuteron magnetic moment sum rule ( 15) which shows 

same behaviour of the integrand in the high energy limit. 

numerical result shows the validity of these two relations 

· by the asymptotic condition 

+ 
£im [ u ( cu ) 0 . u (cu >] 

('<)-too " 8 

The deuteron sum rule may be considered as a tool to test eq. ( 42) 

Concerning the validity of this equation we agree with the earlier 

results of Gerasimo.J 4 /, Pagels/ 2 / and Drell and Hearn/ 6/ • Since 

our result was obtained in a completely other wa)' it supports these 

tests which are based on low energy and resonance approximations 

for pion photoproduction below 1 GeV and shows that the continuum 

in equation ( 42) contains no essential contribution from the high 
• energy region above 1 GeV and from the nonresonant background. 

The discrepancy between the isoscalar and measurable yd 

cross- sections is lar~e near the threshold B where the dominant 

isovector transition M ( 
1 

S ) contained in u + leads to a positive value 
1 0 d 

of the difference u + - u - while the corresponding isoscalar expres-.t <I 

sion is negative in thE7 whole energy region B <cu < m, . 
Eq. ( 17) shows that the left hand side of the sum rule ( 15) 

is small of third order compared with the left hand side of the iso-

scalar sum rule ( 42). This means that the two integrals in eq. ( 15) 

almost compensate one another. So it seems difficult to calculate the 

deuteron magnetic moment from the integrals since now the inser­

tion of the sum rule ( 42) would be too rough and in addition elec­

tromagnetic interactions of order e • should become important. 

Concluding we remark that for the other scalar amplitude F 
1 

in 

eq. ( 1) only a subtracted dispersion relation may be postulated 

since the unpolarized y N cross- section appears in eq. ( 2). This 

fact also follows directly from the consideration of unpolarized yN 

forward scattering (see f.i. ref./ 2/ ) where an unsubtracted disper­

sion relation leads to the well known contradiction with Thomson's 
theorem. 
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