L-85

> ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна
A.A.Logunov, Nguyen Van Hieu

ON SOME CONSEQUENCES OF ANALYTICITY AND UNITARITY

1967.

A.A.Logunov, Nguyen Van Hieu

ON SOME CONSEQUENDES
 UF ANALYTICITY AND UNITARITY

1. Cipper Bounds ior the Cross-Sections of Binary Processes

First we consider some process of elastic scattering

$$
\begin{equation*}
a+b \rightarrow a+b . \tag{I}
\end{equation*}
$$

We assume the amplitude of this process $\mathrm{F}(\mathrm{s}, \mathrm{i})$ to be analyticai in $z=\cos \theta, \theta$ being the scattering angle in the centre of mass swstern, inside the Mandelstam ellipse E_{c} with foci at +1 and with the major semiaxis $c=1+\frac{\gamma}{s}, \gamma>0$ at $s \rightarrow \infty \quad$. For a number of processes such analytic properties were proved on the basis of the fundamental postulates of the local quantum field theory $/ 1 /$. Let us expand $F(a, z)$ in partial waves

$$
\begin{equation*}
F(s, z)=0 \pi \frac{\sqrt{s}}{p} \sum_{l \ell}(2 \ell+1) q(z) P_{Q}(z) \tag{1}
\end{equation*}
$$

As is well known, from the analyticity in 2 and from the polynomial boundedness at $s \rightarrow \infty$ it follows that $a_{\ell}(s)$ decreases exponentially when ℓ increases $/ 2 /$

$$
\begin{equation*}
\left|\mathbf{a}_{\ell}(s)\right| \leq \mathbf{R}(s)\left[c+{\left.\sqrt{c^{2}-1}\right]^{-\ell} ~}^{-\ell}\right. \tag{2}
\end{equation*}
$$

where $R(s)$ is a polynomial in s. Let L be that value of \mathbb{Z} at which the r.h.s. of the relation (2) equals 1 , and L_{o} be the smallest integer number still greater than L . Now we rewrite the sum in (1) as follows

$$
\begin{aligned}
& F(s, z)=8 \pi \frac{\sqrt{s}}{p} \sum_{\ell=0}^{n t_{0}}(2 \ell+1) a_{P}(s) P_{\ell}(z)+ \\
& +B \pi \frac{\sqrt{s}}{P} \sum_{\ell=n L_{0}+1}^{\infty}(2 \ell+1) a_{\ell}(s) P_{\ell}(z)
\end{aligned}
$$

By using the inequality (2) we can prove that a finite integer number n can always be chosen to make the second term in the r.h.s, of (3) decrease faster than any power of s at $s \rightarrow \infty$. We remember that if we substitute for ${ }_{\ell}{ }_{\ell}(8)$ in the first sum their upper unitarity bound

$$
\begin{equation*}
\left|a_{p}(s)\right| \leq 1 \tag{4}
\end{equation*}
$$

then, in virtue, of the relation

$$
\begin{equation*}
n L_{0}=\operatorname{const} \sqrt{\mathrm{s}} \mathrm{las}_{\mathrm{a}} \tag{5}
\end{equation*}
$$

we obtain the Froissart bounds

$$
\begin{gather*}
F(\mathrm{~s}, 1)<\text { Const } \ln ^{2} \mathrm{~B} \\
|F(\mathrm{~s}, \cos \theta)|<\operatorname{const} \frac{s^{3 / 4} \mathrm{ln}^{3 / 2} \mathrm{~s}}{\sqrt{\sin \theta}}, \theta \notin 0, \pi \tag{7}
\end{gather*}
$$

It is possible to improve these results using in the first sum of (3) the Schwartz inequality instead of the substitution $\mid a_{p}(s) \rightarrow 1$. Then we have

$$
\begin{align*}
& |F(s, z)|^{2} \approx\left|\sum_{k=0}^{n}(2 \ell+1) a_{l}(s) P_{\ell}(z)\right|^{2}< \\
< & \sum_{\ell=0}^{L_{0}}(2 \ell+1)|P(z)|^{2} \sum_{\ell=0}^{\infty}(2 \ell+1)|a(s)|^{2} . \tag{8}
\end{align*}
$$

We denote by $\frac{d \sigma_{0} \ell}{d \cos \theta}$ and $\sigma_{0} \ell \quad$ the differential and the total cross sections of the process (I). We obtain, as a consequence of the relation (8), the inequalities $/ 3 /$

$$
\begin{align*}
& \left.\frac{d \bar{\sigma} \cdot \ell}{d \cos \theta}\right|_{\theta=0}<\operatorname{Const} \cdot \ln ^{2} \cdot \sigma \cdot \ell \tag{9}\\
& \left.\frac{d \sigma}{d \cos \theta}\right|_{\theta \neq 0, \pi} \leq \operatorname{Const} \frac{\sqrt{\log \ln }}{\sin \theta} \theta_{\bullet l} . \tag{10}
\end{align*}
$$

We con wider now any binary process

$$
\begin{equation*}
a+b \rightarrow c+d \tag{n}
\end{equation*}
$$

and we decompose its amplitude $T(B, z)$ in partial waves

$$
\begin{equation*}
T(s, z)=8 \pi \frac{\sqrt{s}}{p} \sum_{\ell=0}^{\infty}(2 \ell+1) b_{\ell}(s) P_{\ell}(z) \tag{11}
\end{equation*}
$$

This always can be done in the interval $-1 \leq 1 \leq 1$. The contribution from the partial amplitude $b_{l}(z)$ in the imaginary part $I_{m} a_{\ell}(s)$ equals $|b(s)|^{2}$

$$
\begin{equation*}
I_{0} a_{l}(s)=\left|a_{l}(s)\right|^{2}+\mid b_{l}(s) f^{2}+\ldots \tag{12}
\end{equation*}
$$

Since all the terms in the r.h.s. of (12) are positive, we can write

$$
\begin{equation*}
\left|b_{\ell}(s)\right|<\sqrt{l_{m} a_{l}^{(s)}}<\sqrt{\left|a_{\ell}(s)\right|} \tag{13}
\end{equation*}
$$

We conclude thus on the basis of relations (2) and (13) that also ${ }_{\ell}(s)$ decreases exponentially when ℓ increases and for the differential and total cross sections $\frac{d \sigma \operatorname{dol} \ell}{d \operatorname{den} \theta}$ and ${ }^{\boldsymbol{\theta}}$ In el we get the same inequalities as for the elastic processes

$$
\begin{align*}
& \left.\frac{d \sigma_{\operatorname{ing} \ell}}{d \cos \theta}\right|_{\theta=0}<\operatorname{const} a \ell_{\mathrm{a}}{ }^{2} \operatorname{s} \sigma_{\operatorname{in} \theta}, \tag{14}\\
& \left.\frac{d \sigma_{\operatorname{lnc} \ell}}{d \cos \theta}\right|_{\theta \neq 0, \bar{n}}<\operatorname{const} \frac{\sqrt{\sqrt{s} \ell n s}}{\sin \theta} \sigma_{\operatorname{Inol}} \tag{15}
\end{align*}
$$

If the differential cross sections are considered at fixed t instead of $\operatorname{Cos} \theta$ then we have

The relations (16), in particular, show that the width of the diffraction peak for elastic and inelastic processes

$$
\begin{equation*}
\Delta_{d}=\frac{\sigma_{0 l}}{d \sigma_{a l} d t / t=0} \quad, \quad \Delta_{\text {incl }}=\frac{\sigma_{\text {anol }}}{d \sigma_{\theta a d} / d t / t=0} \tag{18}
\end{equation*}
$$

can not decrease at $\rightarrow \infty$ faster than $1 / \ln ^{2}$. This result for elastic processes was obtained earlier in a paper of Bessis who used a different method $|4|$.

2. Upper Bounds for the Cross-Sections of Inelastic Processes of
 Multiple Production

Now we are intended to show that the results obtained before are true also for the processes of multiple production of the type

$$
\begin{equation*}
a+b \rightarrow e+B_{1} \tag{III}
\end{equation*}
$$

where B_{1}, denotes a system of hadrons. We denote the angle between" $a^{\prime \prime}$ and " c " particles momenta in the centre of mass system by 0 . The amplitude of the process $\mathrm{III} \mathrm{T}^{\mathrm{jo}}(\mathrm{s}, \cos \theta \ldots$....) will be presented in the form of
a function of $s, z=\cos \theta$ and other independent variables, which always can be chosen in such a way that the integration domains in these variables are independent of the angle θ. The amplitude $T^{10}(\mathrm{~s}, \mathrm{x}, \ldots$) can always be decomposed in the Legendre polynomials

$$
\begin{equation*}
T^{j 0}(s, 2 \ldots)=h m \frac{\sqrt{B}}{p} \sum_{\ell=0}^{\infty}(2 \ell+1) b_{\ell}^{10}(B, \ldots) P_{\ell}(x) . \tag{19}
\end{equation*}
$$

The contribution from the process 111 to the imaglnary part of the partial amplitude is equal to

$$
\begin{align*}
& I_{m} q_{l}(s) L_{I I}=\nu_{l}^{j 0}(s)=\frac{1}{2 \pi} \frac{\sqrt{B}}{p} \int(2 \pi)^{4} \delta^{4}\left(p_{a}+p_{b}-p_{0}-\sum_{p_{i} i}\right) \times \tag{20}\\
& \quad \times \frac{p_{0}^{2} d p_{0}}{2 Q_{0}} \square \frac{d^{8} p_{i}}{(2 \pi)^{3} 2 e_{i}}\left|b_{l}^{10}(s, \ldots)\right|^{2},
\end{align*}
$$

where p_{s}, p_{b} and p_{0} are the momenta of the corresponding paricles, p_{f} are the momenta of the particles of the system B_{1}, and $\epsilon_{0}, \epsilon_{1}$ are the time components of p_{0} and p_{1}. The differential cross section of the process III at a given θ, integrated over all other variables, reads

$$
\begin{equation*}
\frac{\mathrm{d} \sigma_{\operatorname{in} \theta \ell}^{10}}{\mathrm{~d} \cos \theta}=\frac{2 \pi}{\mathrm{P}^{2}} \sum_{\ell, \ell^{\prime}}(2 \ell+1)\left(2 \ell^{\prime}+1\right) P_{\ell}(\cos \theta) P_{\ell},(\cos \theta) \mathrm{C}_{\ell \ell^{\prime}}^{10}(\mathrm{~s}), \tag{21}
\end{equation*}
$$

where

Due to the Schwartz inequality we can write

$$
\begin{equation*}
\left|C_{l \ell^{\prime}}^{10}(s)\right|^{2} \leqslant v_{l}^{10}(s) v_{l}^{10}(s) \leqslant\left|a_{l}(s)\right|\left|a_{l},(s)\right| . \tag{23}
\end{equation*}
$$

As a consequence of this inequality we have, on the basis of the relation (2), the exponential decrease of $C_{\ell \ell^{\prime}}^{10}$ in ℓ and ℓ°. By means of the arguments used above it is easy to derive inequality of the type (14) and (15) for $\frac{\mathrm{d} \sigma_{\ln 2}^{10}}{\mathrm{~d} \cos \theta} \quad($ see $/ 5 /$)

$$
\begin{align*}
& \frac{d \sigma_{\operatorname{inc} l}^{j 0}}{d \cos \theta} \quad b_{10, \pi} \leq \operatorname{const} \frac{\overline{\sqrt{s} \operatorname{lns}}}{\sin \theta} \sigma_{\text {ind }}^{j 0} . \tag{25}
\end{align*}
$$

Performing summation on the cross sections $\frac{d \cdot \sigma^{10}}{d \cos \theta}$ over all the pos sible system B, we obtain the expression for the total cross section for the production of a particles " c " at a given angle θ.

$$
\frac{d \sigma_{\operatorname{ind} \ell}^{0}}{d \cos \theta}=\sum \frac{d \sigma_{\operatorname{ing} \ell}^{1 \sigma}}{d \cos \theta}
$$

Similar relations can be established also for these quantities

$$
\begin{align*}
& \left.\frac{d \sigma_{\text {ind }}^{0}}{d \cos \theta}\right|_{\theta=0} \leq \text { const } \operatorname{sen}{ }^{2} \text { s } \sigma_{\text {inol }}^{0}, \tag{26}\\
& \left.\frac{d \sigma_{\operatorname{in} \alpha}^{\circ}}{d \cos \theta}\right|_{\theta \neq 0, \pi} \leq \operatorname{const} \frac{\sqrt{\mathrm{a}} \ln \mathrm{~s}}{\sin \theta} \sigma_{\operatorname{in} 2}^{\circ} . \tag{27}
\end{align*}
$$

Similarly to (18) we introduce the notion of the width of the diffraction peak for the inelastic processes

Then, due to the relations (24) and (26), it follows that these widths can not decrease faster than $1 / \ell_{n}{ }^{2}$..
3. The Exponential Increase of the Imaginary Part of the Amplitude of the Elastic Scattering at Reals >1.

We have in the foregoing sections established a number of relations assuming polynomial boundedness of the elastic scattering amplitude F(s,a) for ary finite z inside the ellipse E_{0}. Using the unitarity condition we can replace this assumption by a weaker one, the polynomial boundedness of I $F(s, z)$. If, at least, one of these inequalities is not fulfilled, it could mean that either $I_{m} F(s, z)$ is not analytical in E_{0} or it increases faster than any polynomial in this ellipse. We denote by $N(s)$ the maximum of the modulus of $I_{m} F(s, z)$ for arry z inside E_{0}. It can easily be proved that $I_{m} F(s, z)$ reaches this maximum at $z=c$.

$$
\begin{equation*}
I_{m} F(s, c)=N(s) \tag{29}
\end{equation*}
$$

Again we assume $I_{m} F(s, z)$ to be analytical in E_{s}. Then, even in the case when only one of the established inequalities is broken this would mean that $N(s)$ at $s \rightarrow \infty \quad$ increases faster than any polynomial. We show now that the study of the behaviour of the corresponding quantities (the cross section or the width of the diffraction peak) enables us to guess the character of the increase of this function.

Indeed, by means of calculations used above we can, instead of the inequality (6), for example, derive the relation

$$
\begin{equation*}
F(s, 1) \leq \text { const } s \ell_{\mathrm{n}}^{\mathrm{Z}} \mathrm{~N}(\mathrm{~s}) \tag{30}
\end{equation*}
$$

where $N(5)$ is determined by (29). This gives

$$
\begin{equation*}
N(s) \geq \exp \left[\text { const } \frac{|F(\mathrm{~B}, 1)|}{\mathrm{s}}\right]^{1 / 2}=\exp \left[\left.\operatorname{const} \frac{1}{\mathrm{~s}} \frac{\mathrm{~d} \theta}{\mathrm{~d} \cos \theta}\right|_{\theta=0}\right]^{1 / 4} \tag{31}
\end{equation*}
$$

which is a generalization of the inequality

$$
\mathrm{N}(\mathrm{~s}) \geq \exp \left[\text { cons } \sigma_{\text {tot }}\right]^{1 / 2}
$$

obtained by Martin in a different way $/ 2 /$. The following formulae can be derived analogously

$$
\begin{align*}
& \mathrm{N}(\mathrm{~s})>\exp \left[\left.\cos t \frac{\sin \theta}{\sqrt{s}} \frac{\mathrm{~d} \sigma}{d \cos \theta}\right|_{\theta \neq 0, \pi}\right]^{1 / 8}, \tag{32}\\
& N(s) \geq \exp \left[\operatorname{const} \frac{1}{\operatorname{so}} \frac{d \sigma_{\theta l}}{d \cos \theta \theta=0}\right]^{i / 2}, \tag{33}
\end{align*}
$$

$$
\begin{align*}
& N(s) \geq \exp \left[\left.\operatorname{const} \frac{\sin \theta}{\sqrt{s \sigma_{\theta \ell}}} \frac{d \theta \theta \ell}{d \cos \theta}\right|_{\theta \neq 0, t}\right] \quad \sim \tag{34}\\
& N(s) \geq \exp \left[\left.\operatorname{const} \frac{1}{s} \frac{d \sigma_{\operatorname{in} a l}}{d \cos \theta}\right|_{\theta=0}\right]^{1 / 4} \text {, } \tag{35}
\end{align*}
$$

$$
\begin{equation*}
N(s) \geq \exp \left[\operatorname{const} \frac{3^{\prime \prime A}}{\sqrt{s^{-}}}-\left.\frac{d \sigma_{\operatorname{lne}}}{d \cos \theta}\right|_{\theta \neq 0, \pi}\right]^{1 / 8} \tag{36}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{N}(\mathrm{~s})>\exp \left[\left.\operatorname{const} \frac{1}{\mathrm{~s} \sigma} \frac{\mathrm{~d} \sigma_{\operatorname{in} \theta \ell}}{\mathrm{d} \cos \theta}\right|_{\theta=0}\right]^{1 / 2} \tag{37}
\end{equation*}
$$

$$
\begin{equation*}
N(s)>\exp \left[\left.\operatorname{conat} \frac{\sin \theta}{\sqrt{B \sigma_{i n o l}}} \frac{d \sigma_{\text {Inol }}}{d \cos \theta}\right|_{\theta \neq 0, \pi}\right] \tag{38}
\end{equation*}
$$

where $\sigma_{\text {ind }}$ is either the cross section of a binary inelastic process, or the cross section of an inelastic process of multipole production.

4. Lower Bound for the Cross Section of Inelastic Processes

In this section we establish some lower bounds for the cross sections of inelastic processes of the type (III). Let the differential cross sect tion have the form

$$
\begin{equation*}
\frac{d \sigma_{\ln \alpha l}^{j o}}{d \cos \sigma}=\frac{g^{2}}{P \sqrt{B}} G^{j}(s, \cos \theta) \tag{39}
\end{equation*}
$$

where

$$
\left.G^{j 0}(0, \cos \theta)-\int \delta^{4}\left(P_{A}+P_{b}-P_{0}-\sum_{i} P^{\prime}\right) \frac{P^{2} d P}{2 \epsilon} \prod_{i} \frac{d^{8} P_{i}}{(2 \pi)^{\delta} 2 \epsilon} \right\rvert\, T\left(a, \cos \theta 1 \|_{1}^{2}(40)\right.
$$

We denote by $I_{n} F(5, \cos \theta) /$ ic the contribution to the imaginary part of the amplitude of the corresponding elastic process (I). Then we can write

$$
\begin{equation*}
\left.1 P(s, \cos \theta)\right|_{10}=\min a^{i a}(s, \cos \theta, \cos \theta) \tag{41}
\end{equation*}
$$

where

$$
\begin{aligned}
& T^{\prime 2}\left(\mathrm{n}, \cos \theta_{1} \quad \ldots . \mathrm{T}^{\mathrm{te}}\left(\mathrm{~s}, \cos \theta_{2}, \ldots\right)^{*},\right.
\end{aligned}
$$

θ_{1} and θ_{2} denote here the angles between the momenta of initial and final particles " a " and that of the intermediate particie " c ". The total cross section is

$$
\begin{equation*}
\sigma_{\text {ind } \ell}^{j e}=\int \frac{d \sigma_{\ln \ell \ell}^{j c}}{d \cos \theta} \mathrm{~d} \cos \theta=\left.\left.\frac{1}{2 p \sqrt{s}}\right|_{\mathrm{m}} \mathrm{~F}(s, 1)\right|_{\mathrm{fc}} . \tag{43}
\end{equation*}
$$

We remind that Martin, has proved the analyticity in z of the imaginary part of the amplitude of the elastic scattering $F(s, z)$ inside the Mandelstam ellipse/1/. By the arguments, similar to those in the preceding section, it can be shown that $I_{m} F(s, z) f_{j 0} \quad$ is also an analytical function in this domain. Ine study of the analytic properties of the Feynman diagrams shows, however, that the contribution from some simplest diagrams of the perturbation theory to the amplitude $F(s, z)$ satisfies a dispersion relation in z for the values of s in the physical domain of the s-channel. This was the motivation for the assumption that $F(s, z)$ is analytic in Z in the complex plane with the cuts and poles on the real axis. It is quite natural to assume that $I_{m} F(s, z)$ for the values of s in the physical domain of the s channel is also an analytic function in z in the complex plane with singularities on the real axis. Let us assume that $\left.1_{m} F(s, z)\right|_{1}$ is polynomially bounded, i.e. an n exists, such that

$$
\left|I_{m} F(s, z)\right|_{10} \mid \leq \operatorname{const}^{s} \quad, \quad \mathrm{~s} \rightarrow \infty
$$

for all z from any finite domain. Then a certain relation between the behaviour of this function at $z=1$ and their behaviour at $s \rightarrow \infty$ in the interval $-1<z<1$ can be established Let us assume that the total cross section $\sigma_{\operatorname{in} \boldsymbol{l}}^{\mathrm{j} \ell}$ does not increase faster than some power of $1 / \mathrm{s}$ at $\mathrm{s} \rightarrow \infty$

$$
\left.\mathrm{I}_{\mathrm{m}} \mathrm{~F}(\mathrm{~s}, \mathrm{l})\right|_{10}>\frac{\text { const }}{\mathrm{s}^{\mathrm{m}}}, \mathrm{~s} \rightarrow \infty \quad,
$$

where m is some positive constant (see relation (43)). Then the following lower bound can be written $/ 6 /$

$$
\begin{array}{r}
\left.\operatorname{If}_{\mathrm{m}}^{\mathrm{F}}(\mathrm{~s}, \cos \theta)\right|_{\mathrm{j} 0} \geq \mathrm{const} \mathrm{e}^{-0(\theta) \sqrt{\mathrm{s} \ln }}, \mathrm{~s} \rightarrow \infty \tag{44}\\
\mathrm{c}(\theta)>0,-1<\cos \theta<1
\end{array}
$$

We show now that the inequality (44) will be broken at $\pi-2 \theta_{0}<\theta<2 \theta_{0}$ if the following inequality holds for all θ in the interval $\pi-\theta_{0} \leqslant \theta \leqslant \theta_{0}$ for some θ_{0} satisfying $\frac{\pi}{4}>\theta_{0}>0$

$$
\begin{equation*}
\left[\mathrm{G}^{j c}(\mathrm{~s}, \cos \theta)\right]^{1 / 2}<\text { cons } \mathrm{e}^{-\mathrm{b}(\theta) \sqrt{s} \ell \mathrm{Rs}} \quad, \mathrm{~s} \rightarrow \infty \tag{45}
\end{equation*}
$$

Hence we conclude that there exists a certain interval of angles in which we have

$$
\begin{equation*}
\frac{\mathrm{d} \sigma_{\operatorname{in} \theta}^{j n}}{\mathrm{~d} \cos \theta} \geq \text { cost } e^{-2 \mathrm{~b}(\theta) \sqrt{\theta} \mathbb{R}_{\mathrm{n}} \cdot} \tag{46}
\end{equation*}
$$

To this end we consider the function $H 1^{10}\left(s, \cos \theta_{1}, \cos \theta_{2}\right)$. Comparing the expression (42) of this function with the expression (40) of $G^{j o}(s, \cos \theta)$ and using the Schwartz inequality we get

$$
\left|\mathrm{H}^{10}\left(\mathrm{~s}, \cos \theta_{1}, \cos \theta_{2}\right)\right|<\left[\left.\mathrm{G}^{j 0}\left(\mathrm{~s}, \cos \theta_{1}\right) \quad G^{10}\left(\mathrm{~s}, \cos \theta_{2}\right)\right|^{1 / 2} .\right.
$$

Typos.

Now, assuming (45) it is easy to derive on the basis of the last relation an inequality reciprocal to (44). We have thus proved the lower bound (46).

We have introduced the notion of the total cross section $\frac{d \sigma_{\operatorname{tn} \theta}}{d \cos \theta}-$ $w_{i+i_{1}}$ the production of a particle " C " at a given angle θ. 1 it possible to write a similar inequality also for this quantity

$$
\frac{d o_{\ln \ell \ell}^{s}}{d \cos \theta} \geq \text { monst } e^{-2 b(\theta) \sqrt{s} \rho_{n}}, \quad \begin{align*}
& \text { a } \tag{47}\\
& b(\theta)>0
\end{align*}
$$

for the values of θ in a certain interval.
We point out that our assumption that the cross sections $\sigma \frac{10}{10}$ and $\sigma_{\text {inel }}^{c}$ do not decrease faster than a certain power of $1 / \mathrm{s}$ can be also proved experimentally. In the framework of the Regge theory such a behaviour of the cross sections for zero angles is valid for the majority of processes.
5. Asymptotic Equality of the Cross Sections of Crossing Processes of Multipole Production.

We consider now the inelastic crossing processes

$$
\begin{align*}
& a+b \rightarrow a_{1}+a_{2}+\cdots+a_{n}+b^{\prime}, \tag{1}\\
& a+b^{\prime} \rightarrow a_{1}+a_{2}+\ldots \ldots+p_{n}+b{ }^{n} . \tag{2}
\end{align*}
$$

We denote the momenta of particles " b " and " b " in (IV ${ }^{\prime}$) and those of particles " b " and " b " in (IV ${ }^{\prime \prime}$) by p and p "the momenta of particles " a " and "a " (or those of their antiparticles) by q and q ". We put $\sum_{k=1}^{n} \sum_{i=}$.
We can chose

$$
s=-(p+q)^{2}, \quad t=-\left(p-p^{\prime}\right)^{2}
$$

$$
\begin{equation*}
W_{i}^{2}=-k_{1}^{2}, \quad t_{i}=-\left(q-k_{i+1}\right)^{2}, \nu_{1}=\frac{q_{i}\left(p+p^{\prime}\right)}{k_{i+1}\left(p+p^{\prime}\right)} \tag{48}
\end{equation*}
$$

als suitable independent invariant variables.
Let $T^{1,2}\left(s, t, W_{1}^{2}, t_{1}, \nu_{1}\right)$ be the amplitudes of the processes under consideration. These amplitudes for fixed values of the variables t, t_{1}, v_{1} generally speaking, do not satisfy the dispersion relation
in s. At $s \rightarrow \infty$, however, they tend to certain asymptotic amplitudes $T_{\infty}^{1,2}\left(\mathrm{~s}, \mathrm{t} \mathrm{W}_{\mathrm{i}}^{2}, \mathrm{t}_{\mathrm{j}} \mathrm{J}_{\mathrm{i}} \quad \mathrm{v}_{\mathrm{i}}\right.$) analytic in s in the complex plane with cuts on the real axis $3 /$. The crossing-symmetry relation holds for these asymptotic amplitudes

$$
\begin{equation*}
T_{\infty}^{1}\left(a, i, W_{i}^{2}, t, \nu_{1}\right)=T_{\infty}^{2}\left(s, t, W_{1}^{2}, t_{i}, \nu_{i}^{*}\right. \tag{49}
\end{equation*}
$$

where $s+u+t=m^{2}+m_{b}^{2}+m_{b}^{2}+w_{1}^{2} \quad$. From this relation we can prove $/ 7 /$ that for non-oscillating amplitudes $T^{1,2}$ at $s \rightarrow \infty$ we have the asymptotic equality of the differential cross sections of the processes (IV) and (IV) for the finite values of the variables $t, W_{i}^{2}, t_{i}, v_{i}$

Let us ${ }^{2}$ consider the processes (IV_{1}) and $\left(\mathrm{IV}_{2}\right)$ at fixed values of 1 and W_{1}^{2}. The physical domains of the variables $W_{i}^{2}, i \geq 2$ and W_{i}^{2} depend on s, t and \mathbb{W}^{2}. . However, these domains remain finite at $s \rightarrow \infty$. It means that at very high energies the domains of integration over the variables $W_{1}^{T}, i \geq 2$ and $t_{1}, \nu_{1}, i \geq 1$ are practically independent of s and the values of these variables are finite. Both sides of the asymptotic equality for the differential cross sections of tive processes $\left(1 V_{1}\right)$ and $\left(V_{2}\right)$ can therefore be integrated over all possible values of $w_{1}, i \geq 2$ and $i_{i}, \nu_{1}, i \geq 1$. As a result we have

$$
\begin{equation*}
\frac{\partial^{2} \sigma_{1}}{\partial t \partial W_{1}^{2}}=\frac{\partial^{2} \sigma_{2}}{\partial t \partial W_{1}^{2}} \tag{50}
\end{equation*}
$$

where o_{1} and σ_{2} are the cross sections of the processes u_{1}, and $\|_{2}$, . For fixed values of w the number of possible systems $a_{1}+a_{2}+\ldots \cdot a_{n}$ is finite. We can tiperefore perform a summation in both sides of the relation (50) over all possible channels. As a result we obtain

$$
\begin{equation*}
\frac{\partial^{2} \sigma\left(a+b \rightarrow \ldots+b^{\prime}\right)}{\partial!\partial w_{1}^{2}}=\frac{\partial \sigma\left(a+b^{\prime}+\ldots+b\right)}{\partial t \partial w_{1}^{12}} . \tag{51}
\end{equation*}
$$

Tie dots in the brackets denote the particle systems with the effective mass \mathbb{W}_{1}. We note that for the determination of the cross-sections appearing in the relation (41) it is sufficient to measure the momentum of one of the particles (particle "b" or particle "b") since this allows the definition of t and w_{1}^{2} (the mixing inass method). Because of the C-invariance the cross section of the process $\left(\mathrm{IV}_{2}\right)$ is equal to that of the process

$$
\begin{equation*}
a+\tilde{b}^{1} \rightarrow a_{1}+a_{2}+\cdots \cdot+a_{n}+\vec{b}^{3} \tag{3}
\end{equation*}
$$

So we have, besides the relation (51), another equation

$$
\begin{equation*}
\frac{\partial^{2} a\left(a+b+\cdots+b^{\prime}\right)}{\partial t \partial W_{1}^{2}}=\frac{\partial^{2} a\left(a+b_{b} \rightarrow \cdots+b\right)}{\partial t \partial \#_{1}^{2}} \tag{52}
\end{equation*}
$$

Concluding this section, we present some concrete relations to be checked experimentally:

$$
\begin{aligned}
& \frac{\partial^{2} \sigma\left(\pi^{+}+p \rightarrow \ldots+p\right)}{\partial \mathrm{i} \partial W_{1}^{2}} \underset{1}{ } \frac{\partial^{2} \sigma\left(\pi^{-}+p \rightarrow \ldots+p\right)}{\partial t \partial W^{2}} \\
& \frac{\partial^{2} \sigma\left(\pi^{+}+p \rightarrow \pi^{+}+\cdots\right)}{\partial t \partial W_{1}^{2}}=\frac{\partial^{2} \sigma\left(\pi^{-}+p \rightarrow \pi^{-}+\cdots\right)}{\partial t \partial \pi_{1}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{2} \sigma(p+p+p+\cdots)}{\partial t \partial W_{1}^{2}}=\frac{\partial^{2} \sigma(p+p \rightarrow p+\ldots)}{\partial t \partial w_{1}^{2}}
\end{aligned}
$$

The corresponding relations for the resonance production cross-section were obtained earlier in ref. $/ 8 /$.
References

1. A. Martin, Nuovo Comı, 42A, 930 (1966); 44A, 1219 (1966). J.D. Bessis and V. Glaser, Nuovo Cime, $50 A_{2} 568$ (1967). G. Sommer. Nuovo Cimes 48, 92 (1967); 52A, 373 (1967).
2. M. Froissart. Phys. Revor 123, 1053 (1961). O.W. Greenberg and F.E. Low. Phys.Rev., 124. 2047 (1961); A. Martin. Phys.Revor 129, 1432 (1961).
3. A.A. Logunov, Nguyen Van Hieu, Lectures given at the international School on High Energy Physics,Czechoslovakia,1967.
Preprint IFVE 67-62, 1967.
4. J.D. Bessis. Nuovo Cim., 45, 974 (1966).
5. A.A. Logunov, M.A. Mestvirishvili, and Nguyen Van Hieu. Phys.Lett. 25B 611 (1967).
6. F. Cerulus and A. Martin. Phys.Rev., 8, 80 (1964).
7. L.Van Hove. Phys.Letton 5, 252 (1963).
A.A. Logunov, Nguyen Van Hieu, and I.T. Todorov. Ann. Phys. 31. 203 (1965).
8. A.A. Logunov, Nguyen Van Heiu, and I.T. Todorov. Nucl. Phys., 67. 666 (1965);

Nguyen Van Hieu, K.V. Rerich, and A.A. Khelashvili. Nucl.Phys., 76. 551 (1966).

