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1. Introduction

Recently an essential progress has been achieved in the interpreta-
tion of the structure of nonrenormalizable theories intensively investiga-
ted by the "model" and "axiomatic" approaches. The model approach con-
sists in that the exact solutions of approximate (or exact) equations are
studied in various sin models of nonrenormalizable field theories. This
approach has resulted in the accumulation of a rather large amount of
information which allows one to make a detailed comparision of renorma-
lizable theories with nonrenormalizable ones going beyond the framework
of perturkation theory.

The results of investigation of the models have underlied the axioma-
tic approach to nonrenormalizable theories. The main task of this approach
consistss in such a modification of usual axioms of the general quantum
field theory which would allow to include into the axjomatics the properties
of nonrenormalizable theories which are characteristic of investigated simple
models. The necessity of modifying of the ordinary axiomatics is explained,
first of all, by the fact that in all reasonable nonrenormalizable models
the asymptotic behaviour of the amplitudes in the momentum variables off

[ 1~3/ /3]

references to other papers can be found), This contradicts the usually

the mass shell turns out to be exponential (see, e.g. in ref.

used postulate of the polynomial boundedness which is, as is well-known,



equivalent to the fact that the amplitudes in co-ordinate space are tempered
distributions (see e.g. ref, /4 ). The present situation in nonrenormalizable
theories is such that it seems most advisable to use a certain combination
of the two approaches described. In other words, we shall investigate the
solutions for model theories which obey the general modified axioms of
the field theory.

The exclusion of the polynomial boundedness and the inclusion af
nonrenormalizable field theories into the axiomatics is explained not only
by the interestis of the theory. Experimental investigations of the large
momentum transfer form factors and of the fixed angle elastic scattering
amplitudes at high energies gave ’the exponential decrease behaviour for
these quantities (see, e.c. ref, /el x ). As far as we know, one has
succeeded in finding such a behaviour in no one of remormalizable theori-
es. On the contrary, in nonrenormalizable medels the exponential behaviour
occurs in almost ail models and there are various arguments in favour of
the fact that it is just this property that distinguishes essentially nonre-

/ 1-
normalizable theories from renormalizable ones ' 1 3/.

2., Localizability and Asymptotics

We consider briefly the modification of the axioms of quantum field

theory, which is necessary for the description of nonrenormalizable theori-

esxx'). New formulations of the postulate replacing the polynomial bonnded-

x) Using the analyticity conditions we can show that this is the reason for
their exponential increase in some other domain of the variables, perhaps
in the unphysical one.

xx) The convinction is widely spread that for all nonrenoruilizable theorie=
the locality postilate is not fulfilled. As we shall see thi= convinction is not
quite founded and, generally speaking, is wrong.



ness were suggested by Meiman /7 and later on by Jaffe /8 . Meiman
started from the necessity of retaining the causality condition, while Jaffe
started from the condition of field localizability, We give here the Jaffe's
formulation and its simplest consequences (very similar consequences
follow from the Meiman formulation).

The field A (x)} i called localizable at the point x, if for suffi-
ciently smooth functions i{{x) with the support localized in an arbitrarily
small vicinity of the point x, there exists an operator (in Hilbert space

of states)

4
Alfl= fdxf(x)Alx), (2.1)

For localizable fields the usual locality condition may be formuated as

[A[f],A[gHt:O, if <upp[f}=supp[gl (2.2)

or in the limiting form,

(A(x),A(y)]+=0, if X ey, (2.2)
where = denotes "space-like", A field is called localizable, if it is
localizable at any point of space-time, The localizability postulate repla-

ces the postulate of polynomial boundedness, the remaining postulates
being unaffected. From the requirement of localizability under some addi-
- tional assumptions on the choice of the space-tine functions f(x) one can
obtain restrictions on the increase of the Green functions, the vertex func-
tion and the scattering amplitude and, owing to analyticity, on their de -
crease, too [9] . For example, for the form factor of a scalar particle these

I8/,

restrictions are of the form

|F‘(q2)T_<_Cg(|q2 BE

(2.3)
Vv 2
2 sV ~aq
[F(qg )l > ¢ e D X CER R " = .
a®s e a0 8 (3 )
where & (z) is the integer function obeying the condition:
e fog +| g (z)]
d . < o (2‘4)
xf z 377



in this case log *{x|=Flog} x| provided that | x|>1 and log*x ] =0

provided that | x [ <1 . Similar restrictions can be obtained on the in-
crease and decrease of the Green functions and the scattering amplitudes.
Thus, localizable fields satisfying the locality condition (2.2) can lead to
the exponential behaviour of the Green functions, the vertex functions and
the scattering ampllitudes, In simple models of nonrenormalizable field
theories the general restrictions found are fulfilled and, in addition, the
exponential asymptotics appears in fact. There exist however models in
which these restrictions are not fulfilled and which are consequently non-

/

localizable ( see, e.g. paper 10/ ). Unfortunately, no criterion has been found,
as yet, which would allow to say, basing on the form of the Lagrangian,
whether the theory is localizable or not. It is extremely necessary to find
such a criterion for understanding more .deeply the structure of nonre-
normalizable theories as well as for applying them to the elementary par-
ticle physics.

The experimental data on the proton electromagnetic form factor do
not contradict the estimates (1.3). They can be represented by the for-
mula /5

. —1,67y ~q° G
F(gq2)=07c¢ where F = X : (2.5)

However, errors are still very large and the formula can change as it
was the case with the Orear formula [ for the proton elastic scattering
at large angles. According to the recent data /6/, instead of the Orear

e -0 \/tu

asymptotics can not be obtained in localizable theories, However this

formula it is necessary to use the function but such an
does not mean that the localizability condition really contradicts the expe-
riment, In fact, at momentum transfers of the order of the mass of two
nucleons the coefficient suddenly decreases. If the interpretation of this

12/

discontinuity as in ref, / is true, then similar discontinuities will occur

also for further energy increase so that the asymptotic decrease may turn

-0y tu

it would be desirable to find an analogous discontinuity in the proton form

out to be much more slowly than e . To prove this hypothesis

factor behaviour and besides to find a mechanism which provides this

rapid decrease at finite intervals.



Tht for the time being we have no quite convincing evic 1ce fi
the vioclation of the axioms of the general localizable field theory. There-
fore we shall use consequences drawn from these axioms in order to
overcome difficulties which arise in constiucting the solutions of concrete
nonrenormalizable models and which are due to the increase of these so-
lutions, In the previous paper we have constructed an exponentially incre:-
sing solution by means of the analytic continuation in the momentum va-
riables (this increase is in accord with (2.3)). In the present paper we
shall consider the application of the analytic continuation in the coupling
constant. In o broader sense we try to tind & general method for working
with exponentially increasing functions by using some concrete models. A
similar problem was considered by other methdds in refs. [13,14/ where

there was a difficulty in going over from the co-ordinate space to the r

mentum one,

3. The Dyson FEquation in an Exactly Solvable Model

Let us consider the well-known exactly solvable model in which the
interaction of spinor particles ¥ and scalar particles ¢ is described by

the lagrangian:

- n a
L =80 )y " w0 25 (3.1)
X

Under the gauge transformation of the field ¥ such a theory reduces to
a free theory for the transformed operators ¥ = elg¢ ¥ and therefore
does not lead to physically observable effects, However, the Green function
G of the spinor field, the vertex function I' and so on in this theory are
different from the free ones and, using them as aniexample, we may in-
vestigate a number of general features of nonrenormalizable theories. The
calculation of G by means of this transformation was made in many papers

/ 15,16/ ).

(see refs, Here we use a quite different method.



To obtain the exact solution for the theory we make use of the con-

rection between the vertex function I (p,q) and the Green function G(p)

I'(p,q) =il e~Up) ==t ()i, (3.2)

where 94 and P are the momenta of incoming and outgoing fermions,
respectively. This is easily obtained from the definition of the vertex func-

tion in the co-ordinate representation:

3
Dilx,yle) = ——
\ P

z

TP (x g (y)j (2)>, (3.3)

where j"(z) =@ (2)y" ¢ (z) and the operators ¥ and @ satisfy the
Heisenberg equations of motion. Eq. (3.3) is easily obtained by means
of variational derivatives (see, e.g. ref./ 17/ ). The ideniity (3.3) allows to
resolve the set of Dyson- Schwinger eaguations for the Green functions
and to obtain a closed equation for G (see,e.g. ret./ 17 )

The Dyson- Schwinger equations for the fermion function and for

the meson polarization operdtor are of the form:

2

-1 4 A .
Clp) =12 S(p) + "“S“TG (p) [d qT(p, p=qXMG(p—q) qS(pID(q) (3.4)
(27m)
2 4 A

H{k)a —B8  Sp{ fd"qC(q=-K)T{(q,q-k)G(g)k 1},
(zn W (3.5)
where $5{(p) —is the free causal Green function of a fermion, D{(q) is the
total Green function of a meson ,ll (k} s the polarization operator of a

meson, Z is the renormalization constant of the fermion Green function,
First let us consider eq. (3.4). Using eq,, (3.2) we get

.2

ig

fd qaspilClg—k) = Gig)Ik }.
(2m?

II(x) =

By the obvious shift of the integration momentum gq in the first term
of the integrand it is easily seen that (k) =0 ., This

means that the meson Green function D(k) coincides with the Green



ain eq.(3.2) we get a linear

4 ~ ~
-1 2 d ' q {q —p)
G(p)=27Z S{p) ~ig e G (g ) e —5(p)
/ (274 m° ~{(q-p)? (3.6)
. o . . 12,18,19/
Equations of such a type were considered by us earlier and we

2
shall attempt to apply the method of ref./ 2/ to the study of this equation

as well,

To simplify the calculation we consider the case when all masses

are zero, Then ¢ {(p) is of the form G {(p) =~ —E-:-— f(p2) hence it
p?
follows that { obeys the equation:
- 4t 2o q)
tp2)r= 27 g7 4 d P £(q2).
(2m) 4 q2(p-q)? (3.7)

We assume at first that in eq. (3.7) one can make the ordinary Wick rota-
tion of the integration contour and thus pass to the Euclidean momenta p

and q . Then eq. (3.7) takes on the following from:

2

1 A 1 x
f(x)=2 - b —— Jdy tny+
2 x 0
(3.8)
oo ol fly)
+ 2 fdy f(y)—- X fdy—————‘,
x
where x ==-p? | y=-q? | rA-_E
4
This equation reduces to the differential equation/ 3
e 3P v atct =0 (3.9)

x) The same result can be obtained from the Heisenberg equation of
motion for ¢: ( []-m?)é=d j". From the equations for ¥ . ¥ it follows
that d_j"= 0 i.e. ¢ is the free operator.



with the boundary conditions

x{{x) >0, f{x} - const .

x o0 X0 (3.10)

It is not difficult to see that this boundary problem has no solution.
In fact one of the solutions decreases at infinity and two of them increase,
Since the increasing solution should be rejected, then there remains only
one solution by means of which it is impossible to satisfy the condition
at the origin, it being = ——‘1‘— at x » 0 . Note that if in eq. (3.9) one
changes sign of A’ then the probilem (3.9)-(3.10) has a solution. In this
case two solutions decrease and one increases. Therefore choosing a
suitable linear combination of the two decreasing solutions we satisfy the
boundary condition at the origin, too. In this case the initial integral equa-
tion has a solution only for unphysical (negative) wvalues of A .
In the next section we shall try to make the analytic continuation to the

physical values.

4. Analytical Continuation in the Coupling Constant

We consider an explicit form of the solution of the problem (3.9),

(3.10) for negative aA%:

g 20 w g
LG, M) = 6 (A x (10,21, {4.1)
S 2 2 . . |20/ o
where A%= ~2A and © is the Meyer function the expansion
of which for small X? is of the form:
(A"

(‘,20 (7\2 x]l,O,—l Y= 1 +7\2 X fog(xzx)
03 I

L4 g
|

al{a +1)!' (o + 2)1

oo 2 n (4'2)
= ’ 1
- X% 2___(h)\i)__(llf +y Y 2)+,..,1/;=_..£._(n.+_)_ .
"0 o i(n 4+ DWa+ 2y ° "7 nt n C(a+ D

10



The solution (4.1) is normalized by the condition

=3
f_{0,A ¥)=1 |,
Y2 =2
This solution has a branch point in A plane at AT =0,
2 g
Therefore the transition from X >0 to A <0 i.e. to the physical

values s, at first sight, ambiguous and depends on the methed of the ana-

2

lytic continuation, In fact, the singularity is described by the function Kogj\
a2

which has a cut for A <0 . The result will depend on the side of the

cut from which we come up to the physical values A2<o .

We will try to find an unambiguous receipt of the analytical continua-
tion, which is singled out by the physical requirements. To this end we
consider the complex A? plane (see Fig.1). Making continuation by the

method I we have:

3 a % (-2%)®
P A?) 1= 2% xlog (A Tx) 3 +
A% =R8 "at{n + D (ak2)! (2.2)
. @ ( ) w0 -Ator
FAZc T (=A20r ‘/l“ +l/’“+l+‘/l“+2 - irA?x 3 (=A7x
n=0 n!'( o+ 1)1 (on+ 23! n=0 5t {(n +1)n+2)! ‘
Making continuation by the method II we have:
f(x,t\,2)=f‘l"(x,)\2) ' (4.4)

u

None of these methods is satisfactory from the physical point of view
since according to the causality and spectrality conditions the function
f(x, )\2 Ymust be real for x >0 , In order that f (x , A2 ) be real we should
use the following method of analytic continuation, As { we should take the

half-sum of f; and {

11



20 o -
= G (AT T 0-1)  d o gy (AT ST 10,
2 n B
R 9 o0 (_)‘2x)n g (=A"x) (¢ln+wn+l+¢’n+2 )
= 1= A xlog (XA x) ¥ _____ L+ A x 3 .
=0 i(n + 1)!(n+ 2)! n=0 al(n+ 1) ! (o4 2)!

The question may appear why it is impossible to add to this solution an
integer function which is also the solution of eq. (3.9) and which is real
on the real axis. To answer this question we make a more detailed con-
sideration of eq. (3.7). lt is obvious that any solution of this equation is
of the form: f(x, A ) =aF(g x) , and in this case F(;’)

satisfies the equation:

- 4 2 .
Fie®y=2z27ty [ 9 s . i (S‘)T_ F(s?), (4.6)
(2m)4i s [(s =) + ieg |
2
where s = ggq, Lt =gp In eq. (4—.6) the change of g in

sign results only in deformation of the integration contour, i.e. the causal
function is replaced by "anticausal" one, When F( s¥) is decreasing
function for which the usual spectral representation can be written, a rule
can be easily formulated which allows one to find a solution with € <0

using the solution with ( s g . To this end it is sufficient to insert in

eq. (4.6) the spectral representation for F and take the integral over
s . This reduces to the calculation of the self-energy diagram in which
one of the propagators has € with a changed sign., This calculation

allows one to justify the rule (19) when eq (20) has the solution.
If the solution does not exist it should be derived using the obtained

receipt of analytical continuation which is meaningfull for the increasing

12



asymptotics as well. The analvtical continuation in 8 variable for the

. : . . . 16
Green functions in the x - space was considered earlier in ref./ /

A wrong result has been obtained there since one has not singled out

/2

tion has been made only by one way. In making calculations in the

)
the singularity in & at g=0 (se« ref, /) and the analytic continua-
x~space we have to work, as was already mentioned, witl, nontempered
distributions. ©0, when passing to the p-space there arise difficulties con-
nected with an unambiguous determination of the Fourier transform for such

such function (see refs.‘/ 16,13/

). The advantage of the p-space is a more
obvious correspondence with usual diagram methods and the possibility
of applying customary and reliable methods of the theory of analytical
functions.

Thus, we have found an unambiguous receipt of the analytical corn-
tinuation of the function from the negative values of the squared charge
to the positive ones. Now we consider the properties of the solutinn ob-
tained in such a way, The solution has correct analytical properties,
i.e, it is analytical in the whole complex plane x with the cut along

the negative real axis. The discontinuity on this cut is

23 n
2 > - A
2ilmf(x,A2)=—2iA x7 2% ¢ x) =
0 Tp (a4 1) (o 2} (4.7)
. ~10 02
==2rmi G (A"x | 1,0,-1), x <0 -
3
This function creases at * * == as explcy ~A%x ] and therefore

it is impossible to write for it a dispersion relation with a finite number

of subtractions. The real part on the cut is

20

08(—A2x|1,0,-—1), x <0 (4.8)

G

and decreases at x » == ., The function increases exponentially over the

whole complex plane, in paticular‘, the asymptotic behaviour is of the

| S ”3‘ P
L4
l—a-— \/)\ix -ty \/)‘ x
3 e - 8e
a a

e + T ¢ 4.9
(A V3 (A21)V/8 (4.9)

form

13



From here it is clear why we have not succeeded in obtaining this functi
as a solution of the boundary problem (3.9), (3.10).

In previous papers [23/ we have investigated in detail similar prob
lems in which the solution was found however to be decreasing througho
the whole complex plane of the momentum variable, As an example w
have also considered the problem in which the solution decreased only

/18]

lytic continuation of the solution from the region of decrease to the regic

a part of the p-plane « In this case it was necessary to make an an
of increase. In the problem considered here the analytic continuation (unds
the condition that the general restrictions following from the axioms of tt
field theory should be obligatorily fulfilled) is the main tool for the coi
struction of the sdution. We may hope that this method will be also usef

in investigating more realistic unrenormalizable theories,
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