C 1358 L-35 объединенный институт **ЯПЕРНЫХ** ИССЛЕДОВАНИЙ Пубна

and the second

20/x11-67

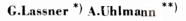
E2 - 3583

G.Lassner A.Uhlmann

FAITHFUL REPRESENTATIONS **OF ALGEBRAS OF TEST FUNCTIONS**

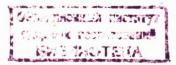
1967.

E2 · 3583



FAITHFUL REPRESENTATIONS OF ALGEBRAS OF TEST FUNCTIONS

2494



^{*)} On leave of absence from Mathematisches Institut, Karl-Marx-Universität, Leipzie, DDR

^{**)} Permanent address: Theoretisch Physikalisches Institut, Karl-Marx-Universität, Leipzig, DD-R

1. Introduction and Definitions

This article is a continuation of a recent paper $^{|1|}$ about the topological *-algebra of test functions $^{|2,3|}$ in the Wightman axiomatical quantum theory. The results are obtained for a more general class of "test functions" algebras \mathbb{R} . It is shown that the topological *-algebras \mathbb{R} are reduced (semisimple, in the sense of Rickart) and consequently, they can be faithfully represented as an algebra of (unbounded) operators in a Hilbert space \mathbb{H} . If the topological algebra \mathbb{R} is separable so the representation space \mathbb{H} can be chosen separable, too.

We repeat the definitions of $\binom{1}{1}$. The topological *-algebra is the topological direct sum $\mathbb{R} = \bigoplus_{n=0}^{\infty} \mathbb{R}_n$, where $\mathbb{R}_0 = \mathbb{C}$ is the field of complex numbers and \mathbb{R}_n for n = 1, 2, ... is a locally convex. linear topological space (over the complex field) of complex-valued functions on $\mathbb{M}^{(n)} = \mathbb{M} \times ... \times \mathbb{M}$ (n times). \mathbb{M} is a point set (the Minkowski space, for example). We assume $||a_n||_0 = \sup_{x_1,...,x_n \in \mathbb{M}} ||a_n(x_1,...,x_n)||$ to be a continuous norm on the topological space \mathbb{R}_n . The multiplication in \mathbb{R} for two elements $a = \sum_{n\geq 0} a_n$ and $b = \sum_{n\geq 0} b_n$ is defined by $a \cdot b = \sum_{n\geq 0} (a \cdot b)_n$ with $(a \cdot b)_n = \sum_{k+1=n}^{\infty} a_k(x_1, ..., x_k) \cdot b_k(x_{k+1}, ..., x_n)$ and the *-operation is defined by $a^* = \sum_{n\geq 0} (a^*)_n$ with $(a^*)_n(x_1,...,x_n) =$ $= \overline{a_n}(x_n,...,x_1)$ (the bar labbels the complex conjugate function). The existence of a^{*b} and a^* in \mathbb{R} and the continuity of these ope-

3

rations are assumed. With these operations 🕺 is a topological

* -algebra over the complex field. In the usual cases in $\binom{2,3}{}$, where $R_n = S (M^n)$ resp. $D(M^n)$ (the well-known Schwartz' spaces) and M is the Minkowski space, all assumptions are satisfied.

For two sequences $a_0, a_1, ...$ and $\beta_0, \beta_1, ...$ of positive numbers we define in \mathbb{R} the norm $||a|| = \sum_{n \geq 0} a_n ||a_{2n}||_0 + \sum_{n \geq 0} \beta_n ||a_{2n+1}||_0$ Beside the basic-topology, this means the direct-sum topology, we regard in \mathbb{R} a second topology defined by the norm || || which is called the norm-topology in \mathbb{R} . With respect to this topology \mathbb{R} becomes a normed linear space, but not a normed algebra. This norm-topology is weaker than the topology in \mathbb{R} , defined by the topological direct sum.

Let K_0 be the convex cover of the set of elements a^*a for $a \in \mathbb{R}$. It is easy to see that K_0 is a cone in \mathbb{R}_{-1} , i.e. for k, $k' \in K_0$ and two arbitrary positive numbers s, t it is $sk + tk' \in K_0$ and if $k \in K_0$ and $k \neq 0$ then $-k \notin K_0$.

In $\frac{1}{1}$, Theorem 1, it is proved the following

Lemma 1

The sequence a_0 , a_1 ,... in the definition of the norm || || can be chosen so that in R the topological closure $K_{||} ||$ of K_0 with respect to the norm || || is a cone. Consequently, the topological closure

 \overline{K}_{0} of K_{0} in R with respect to the direct-sum topology is a cone, too, because $\overline{K}_{0} \subset K_{||}$ holds.

The sequence $\beta_0, \beta_1,...$ can be chosen arbitrary positive. In the following $|| \quad ||$ is always the norm from Lemma 1.

Theorem 1

For each $b \in \mathbb{R}$, $b \neq 0$, there exists a positive continuous linear functional $W_{b}(a)$ on \mathbb{R} with $W_{b}(b) \neq 0$ and $W_{b}(k) \ge 0$ for $k \in K_{||} ||$. For $b \in K_{||} ||$ the functional $W_{b}(a)$ can be chosen so that $|W_{b}(a)| \le ||a||$ holds. Consequently, the topological * -algebra \mathbb{R} is reduced (|4|, p.270).

Proof:

Let first $b \neq 0$ be an element of $K_{||}||$. It is $0 \notin b + K_{||}||$, because $K_{||}||$ is a cone. Further let $U = ||u|| || < \delta |$ be such a neighbourhood of the origin, that $U \cap (b + K_{||}||) = g$ holds. Now we define $L = \{i(k_1 - k_2): k_1, k_2 \in K_{||}||, i^2 = -1\}$ and $K_1 = \{k + sb + su: k \in K_{||}||$, $s \ge 0$, $u \in U |$. L is a real linear space in R and K_1 a cone with the interior point b and we find $L \cap K_1 = \{0\}$ (the origin). For if $a = i(k_1 - k_2) = k + sb + su \in L \cap K_1$, $k_1, k_2, k \in K_{||}||$, $u \in U$, $s \ge 0$, it follows $a^* = -a$, i.e. $k + sb + su^* = -k - sb - su$ and finally $k + sb + su_1 = 0$, $u_1 = \frac{1}{2}(u^* + u) \in U$. If $s \ge 0$, then it would be $\frac{1}{s} + k + b \in U$ and this is a contradiction to the construction of U. Therefore we have s = 0 and consequently k = 0, too, i.e. a = 0. Now we use

NOW WE use

Lemma 2 (Mazur S.)

Let K be a convex set with an interior point b in a <u>real</u> locally convex space R and L a linear subspace of R which does not contain an interior point of K. Then there exists a linear continuous functional f (a) on R with $f(k) \ge 0$ for $k \subseteq K$, f(b) > 0 and f(a) = 0for $a \in L = \frac{\int 5}{d}$. If we regard R as a normed linear space over the <u>real</u> field, it follows from this Lemma the existence of a <u>real</u> linear continuous functional f(a) on R with f(a) = 0 for $a \in L$, $f(k) \ge 0$ for $k \in K_1$ and f(b) > 0. Then $W_b(a) = f(a) - i f(ia)$ is a linear functional on the complex linear space R, continuous with respect to the norm-topology in R and it holds $W_b(b) \ne 0$ and $W_b(k) = f(k) - i f(ik) = f(k) \ge 0$ for $k \in K_{||} ||$, because $i k \in L$. This implies $W_b(a)$ is a positive functional on the algebra R . Evidently, we can choose $W_b(a)$ so that $|W_b(a)| \le ||a||$ holds. Of course, these functionals are continuous with respect to the basic-topology in R , too.

Because for every $b = a^*a \in K_{||} ||$ a positive functional $W_b(a)$ with $W_b(b) \neq 0$ exists if $b \neq 0$, there exists such a functional for an arbitray $b \neq 0$ of R (|4| p. 271) which is continuous with respect to the basic-topology. In general, it is not continuous with respect to the norm || ||.

Corollary:

The set $\{W_b: b \in K$ $\}$ of these positive functionals is a relatively bicompact set in the weak topology in R' (the dual space of R).

The Corollary follows from well-known facts $\binom{|6|}{}$, because for these functionals $|W_{b}(a)| \leq ||a||$ holds and consequently, they are equicontinuous.

3. Faithful Representations of R

Theorem 2

The topological *-agebra R can be faithfully represented as a *-algebra of (unbounded) operators in a Hilbert space II . If the algebra ${\,}^{R}$ is separable, the Hilbert space ${\,}^{H}$ can be chosen separable, too.

Remark:

In the usual cases for Wightman fields, where R is the tensor algebra over S (or D) $^{/2,3/}$, i.e. $R_n = S^{4n}$ (or D⁴ⁿ), R is separable.

Let us first recall the definition of a faithful representation. <u>Definition</u>: A representation of a topological *-algebra R as (unbounded) operators in a Hilbert space H is given, if for every $a \in R$ there is a linear operator A(a) in the Hilbert space H so that

1. for all $a \in \mathbb{R}$ the domain D(A(a)) = D is the same dense subspace of H and D is invariant for all A(a), $A(a) D \subset D$, and it holds $D(A(a)^*) \supseteq D$.

2. for a, b $\in \mathbb{R}$ and $\phi \in D$ it holds $A(ab) \phi = A(a) A(b) \phi$, $A(a + \beta b) \phi = a A(a) \phi + \beta A(b) \phi$ and $A(a^*) \phi = A(a)^* \phi$

3. $(A(a)\phi,\psi)$ with $\phi,\psi\in D$ is a continuous function on R. The representation A(a) is said to be faithful if $a \rightarrow A(a)$ is an one-to-one mapping.

Proof of Theorem 2

Let \mathcal{F} be a system of positive functionals on \mathbb{R} such that for each $a \in \mathbb{R}$, $a \neq 0$, in \mathcal{F} one can find a positive functional $\mathbb{W} \in \mathcal{F}$ with $\mathbb{W}(a^*a) \neq 0$. By Theorem 1 such a system \mathcal{F} exists for \mathbb{R} . Then for each positive functional $\mathbb{W} \in \mathcal{F}$ by the Neumark-Gelfand-Segal construction there exists a cyclic representation $A_w(a)$ of \mathbb{R} in a Hilbert space \mathbb{H}_W with an invariant domain \mathbb{D}_W and a cyclic vector ϕ_W . For this representation it holds $\mathbb{W}(a^*a) = ||A_w(a)\phi_W||^2$. Let $A(a) = \bigoplus_{W \in \mathcal{F}} A_W(a)$ be the direct sum all these representations $A_w(a)$. This is a representation of \mathbb{R} in the Hilbert space $\mathbb{H} = \bigoplus_{W \in \mathcal{F}} \mathbb{H}_W$ with the invariant domain $\mathbb{D} = \sum_{W \in \mathcal{F}} \mathbb{D}_W$. This representation A(a) is faithful, because for each $a \neq 0$ there exists a $\mathbb{W} \in \mathcal{F}$ - with $||A(a)\phi_W||^2 =$ $= ||A_w(a)\phi_W||^2 = \mathbb{W}(a^*a) \neq 0$. Now we must yet prove the second assertion of the Theorem. If the algebra R is separable so the Hilbert spaces H_w are separable, too. Consequently, the second assertion would be proved, if for a separable R the system f could be chosen countable. To prove this we use the

Lemma 2

If X is a separable linear topological space and G a bicompact set in the weak topology in X' (the dual space of X), then the weak topology in G can be given by a metric $\binom{1}{6}$.

Let 6 be the weak closure of the set $\{W_b: b \in K_{||}\}$. 6 contains only positive functionals and by the Corollary to Theorem 1.6 is bicompact in the weak topology in R'. In consequence of the last Lemma, 6 is a bicompact metric space and therefore separable. Let \mathcal{F} be a countable dense subset of 6 , then \mathcal{F} has the desired properties.

References

- 1. G.Lassner, A.Uhlmann. On Positive Functionals on Algebras of Test Functions for Quantum Fields. Dubna preprint, Comm. in Math.Phys., to appear.
- 2. H.J.Borchers. On the Structure of the Algebra of Field Operators. Nuovo Cimento, <u>24</u>, 214 (1962).
- 3. A.Uhlmann. Über die Definition der Quantenfelder nach Wightman und Haag.Wiss. Z.Karl-Marx- Univ. Leipzig 11, 2, 213 (1962).
- 4. M.A.Neumark. Normierte Algebren. Berlin, VEB Deutscher Verlag der Wissenschaften 1959.
- 5. M.M.Day. Normed Linear Space. ch.I, §6, Springer-Verlag, Berlin-Göttingen-Heidelberg 1958.

8

6. N.Dunford, J.T.Schwartz. Linear Operators, I. ch.V New York-London, Interscience Publishers.

9

Received by Publishing Department on November 4, 1967.