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1 
In papers we h ave s ugg e s ted a mechanis m of CP- invariance viola-

tio n in the interactio ns of spinor s p articl es 
with photons on a weak 

eledroma gne tic leve l. For t t"ansitions w ithout cha nge of the inn er quantum 

numbers of particles (e.g . of s trangenes s x)) the a ppropriate interaction 

Lagrang ian is o f the fo rm 

L tnt i A { <!J } ' m ( 1 + y 
5 

) ---"-ax 
m n 

ym(l+y
5
)tf;f F (x), ( 1) 

where 

chu rge, G 

i s the consta nt of the o rder e 
10-~ is t he weal.- intera c tio n constant, G ... ----

eG xx) 

stands for the ele ctromagnetic field te nsor. m2 
p 

i s the e l ectron 

Fm "c x) 

x) 
To expla in the decay mode K L .. 2 rr it is recessary, of course, to 

conside r transitions w ith chunge of s tra ngen ess 

XX) Generally spe a king, it may be possible thu.t 111e inte r action of s uch a 
type e xis ts ulready on the electroma gnetic level , i.e. >. .. ~ (where M 
is a mass of the order of the nucleon mass). In th ts case Wansitions 
must be pure l y didgona l a nd the terms containing the y 

5 
matrix should 

be excluded from the Lag r a n g ian ( 2). 
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Attempts to apply the hypothetic interaction ( 1) for calculating 

some effects in higher o r ders of perturbation expansion lead to difficulties 

connec ted with nonrernormalizability of the theory x). In particular, the 

expressions for physical quantities c.::tlculated by perturbation theory c on­

tain divergences o f increasing power s whi c h can n o t be r e move d by 

the usual no-norma liza tio n procedure. Therefore it seems a d visable to 

u s e in nonre norma lizabl e theories a p p roxima tions which do not reduced 

to a s imple applica tion of perturbation theory. The choice of s uch appro-

ximations is hinted by quantum- m e chanic al theory 

strong ly sing u l ar r epul sion potentials V ( r) ~ 7- , 
in thi s c a se the perturba tion s eries r e p roduces the 

res of nonrenorrnalizable field theory xx) n a mely: 

of scattering on 
3-6 

r ... 0 • Indeed, 

cha r a cteristic featu-

power divergences of 

increasing o r der a nd infinitel y increasing power s of the momentwn tra n s fer 

in the asymptotics . Nevertheles s , there exists the unique exact s olution for 

L1ppm a n- Schwinger e quatiOn for the sca t tern·,g a mpl1tucte l s ee ret?). 

This s olution decreases at large momentum transfers and has a logarith-

mic bra nching point with respect to the coupling constant g for g = 0 • 

We believe tha t these peculiarities of the s catte ring on the sin­

g ular r e puls i o n potential a re a l s o valid for nonrenormalizable fie ld theo­

ries, a t least, for some of the m ( see lectures 
9 

where there a re refe­

rence s o n other papers). Therefore, o f especial importance "is the inves-

x } Her e we a re not dealing w ith troubles ansmg in the canonical con­
s truction of the 5- matrix defined by the La%ang ian ( 1) which contains . 
the derivative spinor field. As is show n in - in constructing the 5- ma trix 
in the interactio n repre s entation it i s also possible to sturt from L tnt 

without recourse to canonical the ory. 

xx) This circums tance is fY no means accidental. Indeed, application of 
the q~~potential method to nonrenormalizable theories allows to obtain 
(see ) potentia ls h a ving jus t such a behaviour a t r "' 0 • 

4 



tigation of the approximate equations which generalize the Lippman- Schwin­

ger equations to the case of relativis tic field theory. Such equations for 

the scattering amplitude ( BethE-- Salpeter) and for the vertex function 

(Edwar ds) have been investigated in a number of nonrenormalizable 

theories 
1

0-
14

• The results indicate that it is worth- while to continue 

the study of the abovementioned analogy x). 

Though we may not expect to construct in such an approach a 

consistent theory which ' "''Ould a llow to calculate any quantities, neverthE-­

less calculatio ns performed with the aid of the equations in the ladder 

approximation allow to obtain certa in i nteresting, results and, what is the 

main, to obtain the value of the energy, of the momentum transfer and so 

on, for which the amplitudes begin to decrease. 

It should be noted tha t u sing these methods o n e has made the 

mos t consistent study of the s olutions decreasing over the whole complex 

domain of the energy variable, which directly c orresponds to strong rE-­

pulsion at small distances of the potential scattering theory. However we 

can not assert that in au the cases quantum field theory lea ds to a simi­

lar situation. ln particular, there may appear functions exponentially increa­

sing in a part of the complex plane of energy v a ria bles .or even in the 

whole plane. The con s idera tion made by Jaffe 15 shows tha t without 

contra diction with the basic assumptions of quantum field theory the ampJi-

tudes can behave at infinity as exp yS where s i s an invariant va-
riable, e.g. the s qua red total energy in the c.m.s. ln a number of nonre­

normalizable theories functions incredsin g at infinity were a l so obtainect15. 

X) I 
10• 11) I 1 tt t t t . ln a number of recent works 1 s ee e.~. t ·,s. u er sa emen 1s 

called in ques tion. The ntuin argument is that when the amplitudes increctse 
exponentially it is impossible to perform the trans ition to the Euclidean 
n•omenta and, s trictly speaking, the so•lution for the Euckidean equ a tion is 
not the solution for the Jniticll L orentz- invariant equation. It seems to us 
that this ur!}ument may be r emoved if o n e formulate un unambiguous pro­
cedur e for obtaining solutions a l so when the quantities increase with 
r espect to the momenta. This problem is, in particitlu1·, con sidered in the 
pre,..,e nt paper. 
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The problem a rises as to how to g et s ych s olutions s tarting from c er­

tain a pproxima te solutions. In the present p a per we shall deal with one 

of the a s pects of this problem . 

H e re 'M2 c o n s ide r the Edward s e qua tio n for the vertex fu n ctio n in 

the theory with Lag r a n g ia n ( 1 ) u s ing the m e th od develo p e d in r e f.
1 4 . 

The equa tion for the v ertex func tion i s g r a phically rep res ented in 

Fig . 1 , where the circle i s the comp lete vertex functio n and the point i s 

the vertex corresponding to the Lagra n g ia n ( L). This e quation i s of 

the form 

4 

" " 1 d q r Cp,k >= F Cp,k >+ - - -
4
- r--

2 
(21T ) i (p-Q) 

p m + k+q 
F (k+q , p-q) -;;;~~ x ( 2) 

u m +q xr ( q , k) Fn(p,q-p), 
2 2 .. r p'' m - q 

w h e r e F · ( p, k) = i A f y P ( 2.( p k ) + k 2 l - ( 2 p + k ) k l ( 1 + y 
5 

) i s the free v e rte x. 

The nota tions f o r the mome nta a r e g iven in Fig .l. Owing to purely techni­

cal difficulties we can s uff i c i e ntly c omp lete l y inve stigate this equation 

only fo r s mall k • F o r k = 0 , F ( p , k ) vanishes. Expandi n g r n ( p, k ) 

in powers of k n a nd retaining only terms of the first o rder we rep­

r e s e nt r"(p,k) in the form: 

r"cp,k) ~2iAifr"Cpk)-p"k lf Cp 2 )+(k"-y"k J t (p 2 )1Ct+r > 
l 2 5 

(3) 

Here we have ta ken into o.ccount a l s o the gau g e inva ria nce condition 

k " r " = o . • Simple c a lcula tions l ead to th e follo ·,'ll ing equa tions tor 

the func tions f 
I 

f(p 2 )~1-
l 

a nd 

i A 2 

( p k ) 

f 2 
x ). 

d 4 q q2fl(q2)<fl(p,q,k) 

6 IT 
4 

(m2-q2) 2 (q-p) 2 

·2 4 2f(2)"' 
2 tA d q q 2 q •a-(p,q,k) 

t <P > ~- r ----, . 4 

( 4 ) 

( s ) 
' ( p k ) 6 IT ( Tl' 2 -q 2 \ 2 ( 'j _ I' ~ 2 

x) N o te that a s imilu.r re s ult i s obtGinc d a l s o for V +A v ..:1ria nt ( 1- y J 
in the Lug rang ia n ( 1)). F o r i.l p ure ly v ector c ase ( w ithout y 

5 
) the 

equa tion for the mos t s ing ulu r p o. rt is of the s a me form ( if the c o e ffi­
c ient for the inte g r a l i s di v iEic d b y 4). 
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whe re 

F or the functio n f 1 ( p 
2 

) w hich i s the coefficient for the free ver­

tex s tructure we h a ve obta ined a n inhomogeneou s e qua tion w hile the 

equa tion fo r f 2 ( q 
2

) i s homog eneou s a nd, as we s h all s ee, h a ve o nly 

a trivial solution f ( p 2) ~ 0 
2 

W e c ons ide r i n m o r e deta ils the e q u a ti o n fo r f 
1 

( p 2 ) 

having rotated, as u s u ally , the con tour o f integr a tio n over 
A fter 

a t the 
a n g l e rr I 2 we go over to the E uclidea n four- momenta p a nd q 

14 Afte r the integra tion ove r the a n g l e s we get th e integr a l e qua tion (see ): 

f( X) ~ 1 + 2 
g 

4 4 
3 d y Y (Y-2x ) f(y)+ x J""dy(x - 2y) 

(Y+m2)2 x (Y+m2)2 
f(y)f . ( 6 ) 

2 2 ,\ Here f 1 (p )ef(x),xe-p '\~-q, g e 

417 
This integ r a l equatwn r educ e s to the differentia l one 

d d 16g 2 x 4 f(x) (x-+ 2)(x-d-+l)(x--L-t)(x---2)f(x) +-----...-.:_ 
dx dx dx dx (x+ m2)2 e 4 ( 7) 

with the bounda ry conditions : 

1) xf(x) ... 0 for x .. co 

2 ) !f(x)l<oo fo r x ... 0 . 

for this equa tion f 
0 

. . 
The general solutio n for eq.( 7 ) i s the s um of a particular solution 

a nd an o. rl •itra ry linear c ombina tion of th e 

four-linearly independent s olutio n s for the appr o pria te homogeneous 

e quatio n. The solutio n s for· the homogeneous equa tio n a t x ... .., 
the nsymptotics 

7 

h a ve 
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-3/4 ± i-7-
f 

3
, 

4 
( x ) ~ x exp ( 4 e \! g x ) . ( 9) 

Since the functions f 
3 

( x) and f 4 ( x ) do not satisfy the first boundary 

condition then the general solution for eq. ( 7) should be found in the 

form 

f(x)= f
0
(x) + c

1
f

1
(x) + c

2
f

2
(x). ( 1.0) 

The solution for the inhomogeneous equation ( 7 ) has obviously the 

asymptoti.::s 

f O (X ) 

X -+ 00 

4 g 2 X 2 
( 11) 

Let us now consider the behaviour of f ( x ) at x -+ 0 • It can 

be shown (see 
14

) that the second boundary condition allows to choose 

in a r a ther definite manner the coeffi cient s c 
1 

a nd 

the obtained solution for eq. ( 7) being unique. 

c2 in eq.( 10) , 

For the function f 
2 

( x ) we have just the same boundary problem 

but without inhomogeneity in eq.( 7 ) , therefore there exists only the 

trivial solution f
2 

( x ) = 0 In the case m 
2 

0 the solution for eq.( 7) 

can be found in an explicit form 

f (X ) 
30 2 

G 0 4 ( g x 2 I 1, 1/2, -1, -1/2 ) , Re x > 0 , 
( 12) 

4 g 2 x2 2 

W!ere G
3

0

1

4 ( Y\ 1.1/2,-1,-1/2) isthe Meyer function
18

• Notice that this 

function has a singularity a t g 2 = 0 , in this case i n the expansi on 

there a r e te r ms v g 2 u nd lo g g 2 • To demonstrate this we wri te 

d own sever al first terms of ( -!12) 

2 If 2 2 z 2 2 2 2 2 2 2 ( 37 . f(x )~ l-- y g X - -g X Jog( g X ) +--g X ---4y - 4Jo g 2] (13) 
3 3 3 6 , 
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-3/4 ± ,_'!.__ 
f ( x ) ~ x exp ( 4 e ~ 

3. 4 
,l)! x ) . ( 9) 

unction s f 
3 

( x) and f 4 ( x ) do not satisfy the first boundary 

:hen the gen eral solution for eq. ( 7 ) should be found in the 

f( x) ~ f
0
(x) + c

1
f

1
(x) + c

2
f

2
(x). ( 10) 

>n for the inhomogeneous equ ation ( 7 ) has obviou s l y the 

f O (X ) ( 11) 4 g 2 X 2 
X -+ 00 

s now consider the behavio ur of f ( x ) at x ... 0 • It can 

see 
14

) that the second boundary condition allows to c hoose 

definite manner the coeffic i ent s c 
1 

a nd 

l solution for eq. ( 7) being uniq u e . 

c 2 in eq.( 10), 

'le function f 2 ( x ) we have just the same bound ary probl em 

inhomogeneity in e q . ( 7 ) , therefore there exists only the 

.on f2 ( x ) = 0 • In the case m 
2 ~ 0 the solution for eq. ( 7 ) 

1d i n an explicit form 

: ) ~ - - - 3 0 2 2 
G 0 4 ( g x \ 1, 1/2, -1, -1/2 ) , Re x > 0 , 

( 12) 
4 g 2 x 2 2 

Y \ 1,1/ 2, - 1. -l/2) i s the Meyer furi'cti on
18

• Notice that this 

s a singu lar ity at g 2 = 0 , in this case i n the expan s i on 

e r ms ..; g 2 a n d log g 2 • To demonstra t e th i s we w r i te 

~al first terms o f ( ''1_ 2 ) 

rr V g2 x 2- _2_ g 2 x 2 lo g ( g 2x 2) + _2- g 2 x 2 [ ~ - 4y - 4 Jog 2'] ( 13) 
3 3 6 • 

8 

w h e re y is the Eule r con s tant. These s ingularitie s rema in in the 

solution in the c a se m2 f, 0 too (for the account of m 2 I 0 s ee 
23 2 paper ) • The appearance of the r·oot singularities in g i s due to a 

very s trong s ing ula rity of the kernel of eq. ( 6) . The solution ( 12) is 

dete r rr>ined by the equatio n o nly for Re x > 0 • It cannot be directly appli­

ed in the r egion and the analytic continua tion into this region s h o uld be 

performed car efully . T o this end we u s e the series wh i ch is obtained 

after the expa nsion of the solution 

"" rr2 
f (x)~ 1 --- ..j g2x2! 

2 

(-g2x2)n 

c 
1 

( n ) 

TT 
g ~ x 

2 
log g 2 x 2 I 

2 n 
( _ g2 X ) + ( 14) 

2 n = 0 n e Q c 
2 

( n ) 

+-"-g2 2 
00 

( 22n 2 X ~ __ - g X ) 
n=-o -------c ( n) X n . 

2 

w here 

C I ( n ) = [' ( n + 1/ 2 ) [' ( n + 1 ) [' ( n + 2 ) [' ( n + 5/ 2 ) 

c 2 ( n ) = [' ( n + 1 ) [' ( n + 3/ 2 ) [' ( n + S/ 2 ) [' ( n + 3 ) ; 

X n = of; n + tU n+ 1/2 + t/1 n + s / 2 + t/1 n + 2 ' tU • - I = 
r · c z ) 

r c z ) 

I n ord e r to perfor m a c o rrect a n a lyti c continua tio n of the s olu tio n into 

the plan e X vvith the c ut a l o n g the n egative real a xis we s hould 

make the tra nsfo r mation o f the serie s wh i c h is identic a l i n the r egion 

X > 0 

W e wri te f( x ) i n the form 

"2 .. (-g2·x2 ) .. (- g 2x 2 )n 
f ( x) = l -- g X I -rrg 2 x 2 log g X I ------ + ( 1 5 ) 2 n= o c 

1 
( n ) n = O c 

2 
( n) .. ( _ g 2 x2) n TT 2 2 I + -- g X X n 2 n=O c 2 ( n ) 

This fun_ction p o ssesse s "correc t" a n a l y tic properties, i.e. it i s defined 

over the w hole complex p l a n e w ith the c ut a l o n g the n egative rea l a xis 

9 



from zero to - .. The discontinuity on the cut is 

(- g2 X ' ) n = - 2 1T 2 g 2 X 2 G 10 ( g 2 X 21 0,-1/ 2,-3/2,-7)( 10 ) 
O< 

lm f ( x ) = - 2 rr 2 g 2 x 2 I 
n=o c

2 
( n) 

and for x -+ oo , lm f ( x ) e xponentially increases according to the la~ 9), 

It is inte resting to note that initia lly the function ( 15) is determined by the 

series ( 14) only on that domain ( Re x > 0) w here it falls off. Our pro­

cedure of analytical continua ti o n allows u s to pass uniquely also to the 

reg ion where this function increases. In this case the unambiguity i s 

provided b y the con dition that the function f( x) have "cor rect'' analytic 

p roperties. The fa ct that the imaginary part of f ( x ) increases means 

that for f ( x ) it is impossible to write dispersion relations with finite 

number oi subtractions. W e have not suc ceeded also in rotating the 

integ ration contour back to the rea l axis a nd thereby the solution found 

here is not (generally spe aking) the solution of the ini tial equation. The 

interpt·etat ion of this result may, e.g. consist in the following. We c a n 

o btain a receipt for summing the class of diagrams by means of 

which it is possible to find a vertex func tion which is not, strictly 

speaking, the solution of the initial equation ( in the pseu doeuclidean 

space) x). This receipt appEar s to reduce to the presc ription of the 

rules how to handle the products of strongly singular distributions ( see 

16 -17 d d . . b ' 'ty ) papers , the a vantage of o u r metho 1s 1ts una m 1gu1 . • 

Thus, the a n a lysis of the e q uation for the verte x functi o n in the 

theory w ith interaction ( 1) in the la dde r approximation leads to !hat we 

can ascribe the mea ning to the summation of this class ot diagrams, the 

nonrenormalizability of the theory bein12, as u s ually revealed in the 

nonana lytici:Y in the coupling constant. We would l ike to stress e spe­

cially the modification of th e method which h a s been made her e a n d 

which consists in the use of the analytical contin uation procedure, We 

b e lieve tha t some analytical continuation of solutions with r e s pect to 

e n ergy variables or coupling constan t etc. will turn out to be n ecessary 

x) For more cor-rect formulation of this recei'I L it seems u seful to intr·o­
duce a subsidk1ry re ;.;uJurizati .. n (see e .g ., ::>) . 

10 

in aJJ. proble ms w here w e mus t dea l w ith amplitudes inc re 

Note that the exa mple chosen here is, of cours e 

studying the properties of the hypothetic intera ctio n ( 1) 

out to be responsible for CP- in var ia nce violation. In < 

us the possibility of fdemonstrating the modified method 

singular EdwardS.: type e quations. 

R eferenc es: 

1. B,A..Arb4zov,, A,T,Filippov. Phys.Lett., 2 0, 53 7 ( 1 

1092 ( 1967 ); Preprint P 2- 3067, Dubna , 1.966. 

2. N.N.Bogolubov, D.V.Shirkov. Introduction to the Thee 

Fields , Addison Wesley, N .Y. ( 1 9 59) . 

3. B.A.Arbuzov, A.T.Elippov, Phys. Lett,, 13, 95 ( 1.96~ 

4. NN.Khuri, A.Pais. Rev,Mod,Phys., 36, 590 ( 1.964 ). 

5, A,Pais,, T.T.Wu. Phys.Rev., 134, B1303 ( 1964). 

H,Cornille. Nuovo Cim., ~ 5 57 (1.965). 

7. A,A,Logunov, A,N, Tavkhelidze. Nuevo Cim., ~. 3€ 

8, A,T,Filippov. Phys,Lett ., 2J 78 ( 1964); Preprint P-1.4 

9. A.T.Filippov. Lecture in "High Energy Physics and 

ticles", IAEA Vienna ( 1965), 

10, B ,Schroer, J ,Math.Phys ., ~ 1.364 ( 1964). 

11. K,Bardacki, B.Schroer, J.Math.Phys., L 10 ( 1.966) 

12. G,Feinberg, A,Pais, Phys,Rev., 131, 2 7 24 ( 1963). 

13. G,Domokos, P.Suranyi. Nucl.Phys., -~ 1. ( 1964). 

14. B ,A,A.rbuzov, A.T.Filippov. Nuovo Cim., ~ 796 ( 

JETP !2t 990 (1965). 

15 . . A.M.Jaffe, Phys.Rev., 158, 1454 ( 1.967). 

16. W,Guttinger, Fortschr.der Phys., !1z 483 ( 1966). 

17, M.K.Volkov. Preprints P-2-32 7 0, E2-3266, Dubna ( 

18. A.Erdelyi ( Ed). Higher Trans cendental Functions, 

-Hill, N.Y. -London ( 1953). Received by Publi 

on October 1 
1.1 



zero to - oo The discontinuity on the cut is 

= - 2 " 2 g 2x 2 ~ 
n=o 

(-g
2 

x")" = _ 2 " 2 g2x 2 c 10 
(g 2x 2 j 0,-1/2,-3/ 2. ~7) ( 1 ti ) 

O< c
2 

( n) 

::>r x .. oo , Im f ( x ) e xponentia lly increases according to the lalh{ 9). 

nteresting to note tha t initially the function ( 15) is determined b y the 

; ( 14) only o n tha t domain ( Re x > 0 ) where it falls off. Our pro-­

= of analytical continuation allows u s to pas s uniyuely also to the 

• wher e this function increases. In this case the una mbiguity is 

led by the condition that the function f( x) have "correct'' analytic 

rties. The fact that the imaginary p art of f ( x ) increases means 

)r f ( x ) it is impossible to write dispers ion relations with finite 

~r oi s ubtractio n s . We have not succeeded a l so in r otating the 

'ilion contour back to the real axis and thereby the solution found 

s not (genera lly speaking) the s olution of the initia l equation. The 

relation of this result may, e.g. consist in the following . We can 

a receipt for summing the class of diag rams by means of 

it is possible to find a vertex function which is not, strictly 

ing, the s olution of the initial equatio n ( in the pseudoeuclidean 

) x). This receipt appEars to reduce to the presc ription of the 

1ow to handle the products of strongly singular distribution s (see 
16 -17 

the advantage of our method is its unambig uity) . 

Thus, the a nalysis of the equation for the vertex function in the 

with interaction ( 1) in the la dde r approximation leads to !hat we 

;cribe the meaning to the summation of this class of diagrams, the 

.ormalizability of the theory bein12, as u s ually revealed in the 

'llytici:Y in the coupling constan t. We would like to stress e spe­

the modification of th e method which h as been made here a nd 

consists in the use of the analytic a l continua tion procedure. \Ve 

tha t some analytical continuation of solutions with res pect to 

variables or coupling constant etc. will turn out to be n ecessary 

more ~~rrec t formula tion of this r ecei'ib it seem s u s eful to intr·o-
' s ubsld K.try r e g ulu n zah .. n (see e ._u ., ) • 

10 

in ali problems where we mu s t dea l with amplitudes increasin g a t infinity. 

Note that the exa mple chos en here is, of course, interesting for 

studying the properties of the hypothetic intera ction ( 1) w hich may turn 

out to be responsible for CP-invar ia nce violation. In a ddition, it gave 

us the possibility of !demonstra ting the modified method for solving the 

sing ula r EdwardS.: type e q uations. 
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