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i .
In papers we heve suggested @ mechand

m of CP-invariance viola-
tiori in the interactions of spirors particles v with photons on a weak
electromagnetic level, For transitions without chiange of the inner quanturm
numbers of perticles {e.g, of strangeness x)) the appropriate interaction

Lagrangian is of the f{o'n,

L= ou LA mn (1]
Ly =iatw ,'m(l+)'5)———-~—;——~-—~T ym(l+y5)w¥F (x), ° %
ax ax
. . o, XX ) .
where A is the constant of *he order e G ( e s the electron
charge, G  is the weal interaction constant, G w _I_(.’.:i. ) FT ")

2

stands for the electromaagnetic field tensor, mp
x) To explain the decay mode K, +2¢ it is pecessary, of course, to

consider transitions with change of strangeness °,
*xJ Generally speaking, it may be possible that the interaction of such a
type exists already on the electromagnetic level -, i.e. /\u-.i! (where M
is a mass of the order of the nucleon mass ). In this case %'ansitions
must be purely diagonal and the terms containing the matrix should
be excluded from the Lagrangion (2). s



he hypothetic interaction (1) for calcuating
:rs of perturbation expansiqn lead {o difficuities
ializability of the theory x)' In particuwar, the
uantities calculated by perturbation theory con-
asing power:s which can not be removed by
procedure. Therefore it seems advisable to
theories approximations which do not reduced
rerturbation theory, The choice of such appro-
ntum-mechanical theory of scattering on
potentials V{r) > _"gT , t - 0 . 6. Indeed,
N series ruproduce; the characteristic featu-
ield theory xx) niviuely: power divergences of
ely increasing powers of the momentumn transfer
eless, there exists the unique exact solution for
on tor the scattering amplitude ( see ret’.3).
. large momentum transfers and has a logarith-
2spect to the coupling constant [ for g=10 .
e peculiarities of the scattering on the sin-
re also wvalid for nonrenormalizable field theo-
them (see lectures ° where there dare refe-

Therefore, of especial importance is the inves-

3 with troubles arising in the canonical con-
2fined by the Lagyangian (1) which contains
As is shown in in constructing the S~ matrix
ation it is also possible to start from L,

:al theory.

Y no means accidental, Indeed, application of
to nonrenormalizable theories allows to obtain
g just such a behaviour at t=0 |,



tigaiion of the approximate equations which Zeneralize the Lippman- Schwin.
Ser equations to the case of relativistic field theory. Such equations for
the scattering amplitude { Betre- Salpeter) and for the vertex function
( Edwards ) have been investigated in & number of nonrenormalirable

theories 10-14. The results indicate that it is worth- while to continue

the study of the abovementioned analogy X).

Though we may not expect to construct in such an approach a
consistert theory which would allow to calculate any quantities, neverthe-
less calculaticns performed with the aid of the equations in the ladder
approximation allow to obtain certain interesting results and, what is the
main, to obtiin the value of ihe energy, of the momentum transfer snd so
o, for whicihy {he amplitudes begin to decrease,

It should be noted that  using these methods one has . de the
most consistent study  of the solutions decreasing over the whole complex
domain of the eneryy variable, which directiy corresponds to strons re—
pulsion at small distances of the potential scattering theory, However we
Can not assert that in all the cases quantum field theory leads to a simi-
lar situation, In particular, there may appear functions exponentially increa-
sing in a part of the complex pline of energy variables or even in the
whole pliine, The consideration made by Jaffe Lo shows that without
contradiction with the basic assuinptions of quantum field theory the ampli-
tudes can behave at infinity as exp \/g_ where s is an invariant V-
riabie, e,g. the squared total energy in the C.ans. In a number of nonre-

.=
. N R . . . . L . el
normaiizabie theories functions Increasing at infinity were also obtained ™,

»J I a rumber of r ent works | fee e,o, “I'“‘H_) e datter staement (s
called in question. lhe main araumernt = that when the amplitudes increase
exponentialiv it is impossible to perfonn the transition to the Euclidean
momenta and, strictly speaking, the solution for the Euckidean equation is
not the solution for the initial Lorentz- invariant equation, It seems to us
that this argunent may be removed if one formulate ‘AN unambiguous pro-
cedure for obtaining solutions also when the quantities, increase with
respect to the momenta, This problem is, in particudar, considered in the
pre-ont paper,
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rises as to how to get such solutions starting from cer-
te solutions. In the present paper we shali deal with one
of this problem.

consider the Edwards equation f{or the vertex tunction in
n Lagrangian (1) using the metnod developed in rel’.14.
for the vertex function is graphically represented in

e circle is the complete vertex function and the point is

‘responding to the Lugrangian ( 1). This equation iz of

‘ A ”~
i 4 my k4
K+ L - Fl(keq,p—q) i oS N (2)
(27)i (p-a) mo— (ko q)”
xI' (g, k) =22 F i (p,q~p),
. ~ m - q :
iafyfl20pky+ k2 1 (2psi) k(14 vy ) 15 the free vortex,

or the momenta are given in Fig.1, Owing to purely techni-
we can sufficiently completely investigate this equation

k . For k=0, F(p,k) wvanishes, Expanding """ (p,k)
k, and retaining only terms of the first order we rep-

) in the form:
”~ ”

POym ) —p "k TH (™) + [ =y "k 11 (p®)F (14 y ) (3)

taken into cccount also the gauge invariance condition

. Simple calculations lecad to the following equations for

f and fz x):
1
42 4 f (q?) @ (p,q. k)
. i d*q 9 5t 19 (1)
4
(pk ) 6 n (m?—q?)2(q=p)?

P A2 . f.(qy @

ia ‘ d'q 9 1,(q") D (p,q,k) (3)
- ——— — . ’

(p k) 6t (mzfqz)"'(qulz

similar result is oblained also for V+ A variant (1 —-ys)
an (1)). For a purely vector case (withoul y ) the
- mosl singular part is of the same form (if the coeffi-
egral is di vided by 4).

&)



where

®(p,g, k) = 2(kg) Ta '+ p'-2(pq) 21— q2(px) (q-py?.

For the function f1 (p 2) which is the coefficient for the free ver-

tex structure we have obtained an inhomogeneous equation while the

equation for fz(q 2) is homogeneous and, as we shall see, have only
a trivial solution fa(pz) =9 .
We consider in more details the equation for fx(p 2 ) « After

having rotated, as usually, the coniour of integration over a, at the

angle /2 we go over to the Euclidean four- momenta p and q .
. . . 14

After the integration over the andles we get the integral equation (see? ):

4
2 x : -2x) =g -
f(x)=l+—4§-—-g i -rdy~3~—(1—~i-f<y>+x,ri(—’iiy-quH.(G)
x o (y +m2)y? * (y +m )2
2 2 2 A
Here f (p J=f(x), x=-p rY==-q", g= i . .
m

This integral equation reduccg 1% to the differentia) one

d 16g2*¢
(x -2 4 9)(4_d sy gy, 168 I, (2)
dx dx dx dx (x+m2)2

with the boundury conditions:

1) xf(x) s+ 0 for x4 o
2) Jf(x)| < w for x .49,

The general solution f - ea7T) is the sum of 4 particular solution
for this equation fo and ar, arbitrary linear combination of the
four- linearly independent solutions for the Appropriate homogeneous
equation, The solutions for the homogeneous equation at  x + have

the «asymptotics
n
—~a/ o
B = e (e T,

(8)



Vix ). (9)

Since the funciuons f (¥} and f,(x) do not satisfy the first boundary
condition: then the general solution for eq.(7) should be found in the

form
f(x)=fo(x)+clf‘(x)+c2fq(x). (1i0)

The solution for the inhomogeneous equation (7 ) has obviously the

asympiot:os

1
f (%) = .
a (‘ / 2 2 ( 11)
4¢°x
x - o
Let us now consider the behaviour of f(x) at x> 0 , It can

be shown (see 14} that the second boundary condition allows to choose
in a rather definite manner the coefficients ¢, and ¢, in eq.(10),
the obtamned solution for eq. (7) being unique,

For the function f _(x) we have just the same boundary probiem
but without inhomogeneity in eq.(7), therefore there exists only the
trivial soclution fz(x)= 0 . In the case m? = 0 the solution for eq,( “)

can be found in an explicit form

rd
]
-

H 1 20 2 .
f(2) = e '~~~———G“(g2x“ 1L 12, -1, -1/2 3, Rex> 0, (
4742 2

36
where G, (y]|1,1/2, -1, -1/ isthe Meyer fu ;ionlB. Notice that this
function has a singularity at g2 =0 , in this case in the expansion
there are terms / g? and log g2 . To demonstrate this we write

down several first terms of ( 12)

: 2 .
f(x) =1 __23’1. v g2x2——;- g2x%log (g%x?) + ngxz[—%z—-—4y—4log2), (13)
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where vy is the Euler constant. These singularities remain in the

solution in the case m2 £ 0 too (for the account of m2 40 see

23 . L. R .
paper ). The appearance of the root singularities in g2 is due to a
very strong singularity of the kernel of eq. (6). The solution (12) is

detrrisined by the equation only for Re x>0 ., i cannot be directly appli-

ed Iin the region and the analylic continuation into this region shouwld be
performed carefully., To ihis end we use the series which is obtained
after the expansion of the solution
2 ~o (- 2,2 n
flx)=1- -T2 yp2x? s & ) z
2 n=g Cx(") ne=g c2(n)

2
I E!2 X 2 ; -——.(:—-gw"x-)n— n ;
2 RTe e ()
where
(o) =T (n+ /DT (n+ 1) (n+2)T (n+52);
(n) =T (n+1) D (n+3/2)T (n+52)T (n+3);
e v , . , M (z)
Xn-un+un+1/2+un+8/2 +Un+2 ’ u:-—l = - N °
'(z)

In order to perform a correct analytic continuation of the solution into
the plane x with the cut along the negative real axis we should

make the transformation of the series which is identical in the region
x>0 .

We wrile f(x) in the form
2 o (-g%x? o —g 22"
f(x)=1-—-—-”—— gx ¥ —— o pg?x%log gx I ——(—-g-——_-)__ + (15)
2 n=g ¢ (n) n=0 c,(n)
. 80 2 2,n
L " e?x? S (~-g“x%) x. .
2 n=g cz(n)

This function possesses "correct" analytic properties, i.e. it is defined

over the whole complex plane with the cut along the negative real axis



from zero to - = . The discontinuity on the cut is

Im f(x)==2r2g?%x2 ¥
ne e, {n)

a

(__azx:)

2

o 10 » ; : .
= -2n?g%x?® G (g%« 216,-1/2,-3/2,-53( 1u

and for x = e , Imf{(x) exponentially increases accordirg tc the law 9 ),
It is interesting to note that initially the function (15) is deterinined by the
series (14) only on thal domain (Re x> 0) where it falis off. Our pr -
cedure of analylical continuation allows us o pass uniquely alzo to the
region where this function increases. In this case the unambiguity is
provided by the condition that the function f(x) have "correct’ analytic
properties, The fact that the imaginary part of [(2) increases means
that for f{(x) it i» impossible to write dispersion relations with finiie
numioer oi subtractions. We have not succeeded also in rotating the
inlegration contour back to the real axis and thereby the solution found
here i= not (generally speaking) the solution of the initial equéation, The
interpretation of this result mav, e.g. consist in the following. We can
obtain a receipt for summing the class of diagrams by means of
which it is possible to find a vertex function which is not, strictly
speaking, the solution of the initial equation {in the pseudoeuclidean
space) */, This receipt appears to reduce to the prescription of the
rules how to handle the products of strongly singular distributions (see
papers 10 —17, the advantage of our method is its unambiguity ).
Thus, the analysis of the equation for the vertex function in the
theory with interaction (1) in the ladder approximation leads to that we
can ascribe the meaning to the summation of this ciass ot diagrams, the
nonrenormalizability of the theory being, as usually revealed in the
nonanalyticity in the coupling constant, We wouwld like to stress espe-
cially the modification of the method which has been made here and
which consists in the use of the analytical continuation procedure, We
believe that some analytical continuation of solutions with respect to

energy variables or coupling constant etc, will turn out to be necessary

x R . . . .
)E‘or more correct formulation of this receqft_ it seems= useful to intro-
Lo

duce a subsidiar: resularizati n ( see e, ).
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in all problems where we must deal with amplitudes increasing at infi vy.

Note that the example chosen here is, of course, interesting for
studying the properties of the hypothetic interaction (1) which may turn
out to be responsible for CP-invariance violation. In addition, it gave
us the possibility of fdemonstrating the modified method for solving the

singular Edwards-type equations.
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