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1. Introduc tion 

In the last few years much a ttention has been devoted to the probl em 

o f expansions o f rela tivistic amplitudes for scattering a nd reac tion proces 

ses/1-23/. Such expans ions w ill clearly play a n important role in the in

vestigations of the general analytical propertie s o f amplitudes and they c a n 

serve a s n a tural means t o further develop a nd genera li ze various a ppr06 -

ches to the theory of strong interactions, such as the l::(egge p o l e method, 

asymptotic theorems etc. They help to g ive a natura l group theoretical 

interpretation o f suc h impo rtant concepts as complex a n gula r momentum, 

signature, etc. and they have become specially inte resting in v iew o f r ece nt 

developments in hig h-energ y scattering theory, like the hypothesis o f fixed 

poles, the oossible exis tence of daughter trajectories/
22

•
2 3

/ and c uts in 

the comolex J -plane. 

2. Two Approaches to l::(ela tivis tic Exp a n s ions 

In the paper of Vilenl<in and Smorodins~3/ (further refered t o as 

SV) a general the n ry o f Lorentz invariant expansions is deve l " ped. The 

ideology of this a ppr oac h (a pproach I) can be stated in the following manner. A~ 

plitudes for processes o f the type 1 + 2 -+ 3 + 4 depend upon t w o inde

pendent kinematical variables. The usual 'VIandelstam parameters s and t 

are not convenient for relativistic expansions, since the r egion in which 

they are defined (a sector in the Mandelstam plane) does not carry a ny 

reasonable geometry a nd what is more, if one of these para m e te r s is 

fixed, the other o ne does not give a con venient parametri zati o n of a n y 
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s ubg r o up o f the L o r e ntz or Poincar~ groups. Instead of s arrl t we can 
- p 

c h o ose the components of the 4-velocity u ~ ~ of one of the partie-
- Jl m 

les a nd - then consider the amplitude as a function defined on the upper 

sheet o f the hyperbolo id u
2 ~ 1 (in the zero-spin case the function does 

n o t depe nd on the a zimuthal angle ¢> ) • Various possible parametrizations 

g i v e ri se to various e xpansions considered in/3 •4/. 

The meaning of relativistic invariance for these expansions is two

fo ld. The first point o f vie w simply expresses the -Lorentz invariance (and 

a l so the Poi ncar~ invariance) of the amplitude, which means that we can 

place the kinema tica l g raph/Sf describing the scattering, arbitrarily on the 

hyp e rbo l o id u 2 ~ 1 , for instance by identifying the vertex of the hyper-

bol o id •vith the velocity of one of the particles or of the centre-of-mass, 

b rick-wa ll o r any othe r system and by choosing a convenient direetion 

o f the space axes. Lore ntz transformations from one system to another, 

will c orrespond to motions of the -kinematical graph as a whole on the 

hype rbobid and invariance of the amplitude means that the transformations 

of the expansion coefficients under irre ducible representations of the 

Lorentz g roup will be compensated by transformations of the relations 

connecting the chosen kinematic variables with s and t. 

The second implication of the considered expansions, which we shall 

c all "extended Lorentz invariance" is more interesting and expresses cer-

tain analytical properties of scattering amplitudes. Since the amplitude is 

now determined on a hyperboloid, 'the group of motions of which is iso-

morphous to the homog eneous Lorentz group, different values of the va

riables are connected by Lorentz transformations. The obtained expansi

o n s in terms o f the basis functions of irreducible representations of the 

L o r e ntz g roup, make it possible in principle to express the values of the 

a mplitude for arbitrary values of the parameters in terms of its value for 

o n e known set of parameters. It should be stressed, that contrary to usual 

Lorentz (or Poincar~) invariance, which deals with one and the same 
II 

amplitude as seen b y diffe rent observers, extended Lorentz invariance" 

deal s w ith d i ffe r e nt value s (fo r diffe rent values o f the kine matical para

met e r s s and /or t) a s seen by the s ame observe r. 
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The assumed convergence o f the expansions, in the direct sense 

(implying square-integrability for amplitudes expanded in ter>ns of unitary 

representations of the principal series) or in some generalized one, is a 

new assumption and leads to new physical res ults, such as asymptotic 

theore>ns/
7

/. Thus the content of extended Lorentz invariance are certain 

convergence assumptions and these c an be considered to be manifestations 

of the existence of certain (unknown) equations of motion or causality prin

ciples. 

A different approach (approach II) was developed in the papers o f 
/10 11/ 112 13/ /14 1 '5/ . 

Joos ' , Toller' ' 1 Salam and others ' . The1r treatment was bas ed 
I 

directly on the Poincare invariance of the scattering amplitude a nd the y 

consider two different types of "coupling schemes" for the irreduci b le r e

presentations of the Poincar~ group. Essentially, as stress ed in/
12

• 
1 1]/, 

this is equivalent to the following procedure. The amplitude fo r a fixed 

value of the total momentum P 1 + P 2 (direct coupling) or mome ntum trd n-

sfer p s- p
1 

("crossed channel coupling") is defined as a func tio n over the 

little group of the Poincare' g roup, corr esponding to this fixed momentum 

and then expanded in terms of the irreducible representations of this little 

group. VIathematically this corresponds to harmonic analysis of scattering 

amplitudes in terms of the 0 ( 3) 

and in terms of 0 ( 3 ) , 0 ( 2, 1 ) , E ( 2 ) 

group representations for p 
1 

+ p 
2 

fixed 

or 0 ( 3, 1) representations for P s - p 
1 

fixed and respectively timellke, spacelike, lightlike and zero-vector. 

The aim of this paper is to establish the relation between the two 

mentioned approaches a nd incidentally to stress that the first approach, ba

sed on the group of motions 0 ( 3, 1) of the space o f independent kinema-. 
tical variables is also explicitly invariant with respect to the Poincare 

g roup. 

To make the problem more clear, let us remind that Poincare' in

variance implies that the amplitude depends only on two "essential" kine

matical variables ( s and tor suitable c ombinations of these) and that all o the r 

variables (e.g. all other components of the 4-momenta of the initial and 

final particles) can ' be fixed ad hoc. In SV the choice of the coordinate 

system is equivalent to the choice of specific values of lhe une sse ntial 

parameters. The two essential pat·a"''leters serve as the expansion vari-
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abi es. In the method of Toller, Salam e t al. the restric tion of the Poincare' 

g roup to one of its little g roups corresponds to the attribution of a constant 

value t o one of the essential parameters. The little group is parametriz ed 

by the second essential parameter (and the angle ¢ ) 1 'Nhic h s erves as the 

only expansion variabl e . Thi s is equival e nt to the ·nore rigorous (but more 

complicated) procedure suggested by Joos/
1 0

•
11

/, based directly on the 

d ecomposition of direct produc ts of irreducible representations of the Poin

car~ g r oup, using explicit expression s for the Clebsch-Gordan coefficients 

o f this g roup/
20

/, in order to obtain ·Poincare: invariant expansions of am

plitudes. 

3 . Coordinate Syste"lls and Little Groups 

Let us now proceed to the explicit formulae for expansions in the 

individual coordinate systems a nd indicate their relation to the little group 

expansions. 

To simplify the argu"llentation we shall only consider the binary 

scattering of zero-spin particles. A considerati o n o f the gen e ral spin case 
. . /81 
ts tn pro~t·ess • 

In this paper we sha ll o nly co:lSider three of the thirty fou~ 24/ pos

sible expans i ons on a three-dimensi o nal hyperboloid (seven of which are 

related to subgr oups of the Lorentz g roup/
4

, 9/). 

a) The S pherical 3 ystem (S-system) 

The S-syste'TI in w h ich a four- vel ocity is parametri zed as 

u = ( u 0 , u1 , u ~· u 3 ) = ( cha , sha sin 0 c'ls cp , sha sin 0 sin ¢ , sha cos 0 ) 
( 1) 

O<a <oo 0 < 0 < " 0 <¢< 2" 

is specia lly s uitable for the consideratio n of scattering in the centre- of-

mass system. Really, let u s conside r the s- c h a nnel process 

1+2 --.3 + 4 (2) 

6 
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metrized as 
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r i n g in the centre- of-

~1 process 

(2) 

and choose the c oordinate system such that 0 xz is the r eactio n pla n e 

(i.e. cp = 0 for all particles) , that the thre e-momentum 

0 z and the four-ve locity of the centre-of-mass 

... 
P 1 is along the axis 

u • 
has the c o mpone nts 

particles now are 

v s 
u = (1,0,0,0) 
• 

(see fig . 1 a, 2 a) The m o m e nta o f the 

0 0 , sha 
1 

) 

p 
2 

= m 
2 

( cha 
2

, 0 0 

(3) 

P 
3 

= m 
3 

( cha
3 

, sha 
3 

sin () • 0 , sha 
3 

cos () • 

P 
4 

= m 
4 

( cha 
4 

, - sha 
4 

sin () 
8 

0 , - sha 
4 

cos () • ) . 

Momentum conservation and the choice of the c.m.s. in which .. .. 
P 

3 
+ P 

4 
~ 0 implies that 

m
1 

cha 
1 

+ m 
2 

cha 
2 

~ m 3 cha 
3 

+ m 4 cha 
4 

• 

(4) 

m 3 sha 
3 

= m 
4 

sha 
4 

Let us choose a 
3 

= a • and (} • as the independent variables. In terms 

of s=(p + p ) 2 and t = (p -p )
2 we now have 

1 2 1 s 

m 3 cha • 

2 s ( t- m;- m;) + ( s + m ~ - m2
2 ) ( s + m 23 - m 24 ) 

( 5 ) 

cosu. ---------------------------------------------------------------------
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The analogous formul~e for the physical region of the t-channel 

2 + 4 l + 3 (6) 

in which the 4-velocity 

u 
p 2 - p ~ 

yt 
is placed in the vertex of the hyperboloid u • = ( 1 , 0 , 0, 0) will be 

m 1 ch a t "' 

t+m~-m 3
2 

2 v t 
(7) 

2t(s-m 2 -m 2
) + (t+ m 2

- m 2 )(t + m 2 -m 2 

I 2 I 3 2 ~ 

cos e 
t 

[ t -( m + m ) 
2 

l [ t- ( m - m ) 
I 3 I 3 

2 2 
l r t- ( m2+ m4) ][ t-(m2-m4) l 

In terms of these variables the expansion of the scattering amplitude is 

v sh a 

-(P+~/ 2l 
p ( ch a ) p p ( cos e ) 0 

-th+tp 
(8) f ( a, 0) = ~ J 

P= o 0 

p 2 dp Ap(p) 

The inverse formula to (8), as well as to the expansion formulae in all 

other coordinate systems, is given in SV. P
11 

( z ) are Legendre functions. 
y 

In approach II the choice of the c.m. system just leads to the con-

ventional phase-shift analysis. Namely, the little group is chosen by fi

xing the vector p 
1 

+ p 
2

, thus also fixing the essential parameter a. The 

expansion is simply 

.. 
f(a,O)= ~ Bp(a)Pp(cosO) . 

r =o 

(9) 

8 
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(6) 

1,0,0, 0) will be 

(7) 

te scattering amplitude is 

I) 
( cb a ) p f (COB 0 ) . 

I 
(8) 

expansion formulae in all 

are Leg endre functions. 

em just leads to the con

group is chosen by fi

sential parameter a. The 

(9) 

• 

Thus, in this case the SV expansion can be obtained independently 

of group theoretical considerations by expanding the coefficient in (9) 

Bf(a) = f p
2 

dp Af(pl 
y sh a 

-(f+l/21 
P I ( ch a) . 
-I 2+ !p 

(IO) 

The more subtle question, concerning the conditions, under which (10) is 

convergent, the extraction of non-convergent parts of the amplitude and 

the extension to processes with spin, will be treated separately. 

b) The Hyperbolic Syste'TI (H-system) 

The H-system, in which we have 

u = (ch a ch (3 , ch a sh (3 cos ¢ , ch a sh (3 sin ¢ , sh a ) (11) 

-oo<a<oo,0<(3<oo Os_¢ <2" 

is specially useful in connection with the so-called brick-wall (or Breit) 

syste. ' ll]e define the b.w. system by placing the 4-velocity. 

u 

v- t v -t 

into the point (0,0,0, 1) on the one-sheet hyperboloid u 
2 

= -1. In the equal 

mass case m = m , m = m , for which the b. w. system is usually defi-
1. 3 2 • -l / 2 

ned, the 4-veloclty ( P 
2
+ p )[ ( p + p ) 2 ] then obtaines the' coordinates (1,. 0,0,0). 

4 2 4 
Fixing the remaining Unessential parameters by choosing the reaction pla n e 

I ~ 

as Oi z and the 3-vectors p 
2 

(and p • , along the axis 

P 
1 

• m 
1 

( cb a 
1 

ch f3, ch a 
1 

sh f3 , 

p 2 m
2 

( ch a 
2 

0 

p 3 = m 
3 

( ch a 3 ch {3 , ch a 3 sh,B, 

p • m ( ch " 0 • • 

9 

0 

0 , sh a ) 
I 

0 ' sh a 
2 

sh a 
3 

) 

0 ' sh a ) 
4 

0 z , w e obtain 

(12) 



with 

m 1 ch a 
1 

= m 
3 

ch a m 2 ch a 2 - m 4 ch " 4 
(13) " 

m sh a + m sh " E m sh a + m sh " 
I I 2 2 3 3 4 

The kinematical diagrams are g ive n on fig s, 1b, 2b, They are drawn for 

the case 

< - max ( I m 2 
- m 2 I , I m 

2 

I ! 2 
m 2 I) 

4 

~nd will be somewha t different in all other cases (e.g, for - I m 2 -m 2 1 < t < 0 
4 2 

the point B w ill lie on the 0 z axis to the left . o f both 1 and 2) but this 

does not influence the subsequent formulae. 

Choosin g a 
1 

= a 
0 

s - channel, we find 

and f3 • as the independent variables in the 

m 
1 

sh a 
t+m~-m~ 

2 v- t 
(14) 

2 2 2 2 2 ~ 
2t(s-m 1 -m

2
) +(t+ m

1
- m

3
)(t+m

2
-m

4
) 

ch f3 8 =- ----------------------------------------------------------
v[t-(ml-m3)

2
] [ t-(ml + m3)

2
1[ t-(m2-m4) 2 lft-(m2 + m4) 2 

Analog ous forrnulae form 
2 

sh a 
1 

and ch f3 
1 

i.e. the b. w. system in the 

t-channel are obtained by exchanging s and t and replaong ' all indices 

in the following manner 1-+ 2 , 2 -+ 4 , 3 -+ 1, and 4 -+ 3 . 

The Lorentz invariant expansion according to SV now is 

.. .. + 1 lq 
f ( a • f3 ) e r p 2 d p f q th " q d q l A ( p • q ) ---==- p I ( - i sh a ) + 

,t ch a -I 2 +tp (15) 

+A-(p,q) ---,-

V ch a 

P 
1 
ql ( i sh a \ I P I ( ch f3 ) . 

-1 2+lp • -1 2+ lq 

In the a pproach II we fix the momentum P 
1 

- p 
3 

i.e. the va-

riable a (or t according to (14)) and thus obtain the little group 0(2,1) and 
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• 
It is easy to verify that 

K ( s, 



ch cz 
4 4 

(13) ' 

;h (l 

·• They are drawn for 

.g . for - I m 2 - m 2 1 < t < 0 
4 2 
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(14) 
! 

- m 4 ) 

1e b. w . syst em in the 
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3. 

SV n ow is 

(- i sh a ) + 
Hp ( 1 5) 

a ) I P I ( ch {3 ) • 
-I 2 + lq 

P 1 - P 3 i. e . the va

Iittle group 0(2,1) a nd 

• 

an e xpansio n i n te r ms o f P •/ + .L( ch {3 ) whic h coinc id es with ( 1 5) if 
- · 2 l q 

w e put 

+ lq - lq ( "') J p 2 d p I A ( p q ) P . 1 ( -I sh o. ) + A ( p q ) P / (I sh o. ) l 1" 
-v 2+1p - 1 2+1p 

v ch o. 

c) The H orospherical Syste m (0-s yste'TI) 

T he fou r - vel ocity in the 0 - system is give n as 

(17) 

with - oo <y < oo O<r < oo. 

This system, according to the approac h I, can b e used to d escribe the 

sca ttering of partic les with arbitr ary masse s and arbitrary values of the 

kinematical variables. The corresponding L o rentz frame is c hosen b y 

fixing an "Inessential" light-like vector K ( s, t). T o clarify the relation 

between the 0- s y ste m a nd expa nsions in terms o f the E 
2
Uttle group, corres

ponding to t e ( p _ p ) 2 = 0 it i s conv enient to c hoos e the vecto r K ( s , t) as 
4 2 

m 
K(s,t)=Pc 

2 

with 

cb A (s,t) = 

• 
It is easy to verify that 

m m 
2 

2 
K (s,t)=O 

11 

-A( a, I J 
e -p 2 (18) 

2 2 
m + m - t 

2 4 
(19) 

2m
2 

m 

(20) 



The coord~nate system is speci fied as usually choos ing 0 x z as the reac t!-

o n plane , the mome~ta p 
2 

K (s ,t) In the standard form 

(and p 
4 

) alo ng Oz 

K(s,t) c (w, 0, 0, w). 

T he four-momenta of the particle s now are: 

p 
1 

a m 
1 

( ch y 
1 

+ 
2 

2 -y 
r I e I • r I 

- y 
e 1 , 0 , + ah 

and the vector 

2 
r 

)11 + - 1- e- y 1 
2 ) 

p ern (chy 
2 2 2 

0 , 0 , + sh y 
2 

( 2 1) 

p 3 ~ m 3 ( ch y s + 
2 - y 

r e 3 

2 
r e -y3 

3 
• 0 • + sh y + 1

3 -y ( 22) 
3 --

2
-- e 3 ) 

p . c m 
4 

( ch y 
4 0 , 0 , + sh y 

4 

with 

+y 2 . -y +y +y 
m (e 1 + r e 1 ) + m e 2 am ( e - 3 

I I 2 3 
2 -y + y 

+ r e 3 )+ m e 4 

-y 
m

1 
e 1 + m 

m 

"' = m 

. 3 4 

- y 
e 2 = m 

-y 
e 3 + m 

- y - y 
e 1 ~m r e 3 

+ )14 
e 

3 3 

sh ( y 4 - y 2 ) • 

12 

e - y4 

• 

~ . 

(23) 
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The corresponding kinematical graphs are given on figs. 1c, 2c. 

Note that if we introduce 
( K pI ) 

"' I m 

-y 
w e 1 (21) 

where "' 
I 

is clearly the frequency (energy) of the "photon" K as seen 

by an observer in the rest frame of particle 1, we obtain y ~ -ln 
I "-' 

Therefore w serves as a scale factor for the frequency and e--yl deler··nines 

the Doppler effect for the "photon" K , connected with the rest system 1, 

which clearly determines the velocity of the first particle. This is a mani

festation of a n interesting property of the 0-system (and of the geo'Tietry 

of a horosphere in Lobachevsky space) namely that w can be chosen 

arbitrarily. 

With our choice of (21). and (22) w is subject to the condition 

c "' s g n w 

Choosing y 
1 
= y 

m 

r 2 
(-") 

w 

with 

s g n ( m 

and = r as the new variables , we have 

- ( R 1 

(2 5) 

[ 21 [ m )2 R \ I t - ( m 
2 

- m • ) t - ( m 2 + • 

Comparing figs. 2b and 2c we see that the Lorentz frame of reference 

which we are using in the 0-system is very similar t o the brick-wall sys

tem. A different Lorentz fra•ne in the same channel is obtained bv standar-

rl;.,.;ng a different isotropic vector, namely K ·~ P 
3 
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tern is simila r t o the c.m. system a nd it has no direct connection with 

the little g r o up corresponding to isotropic •nomentum transfer. 

T w o analogous "horosph erica l" systems c a n be c onstructed in the 

t-channel a nd under the crossing transfor mation the "b.w.-like system" in 

one channe l goes over into the " c . 'TI.-like system" in the other. 

The Lorentz invariant e x pansions in terms of these variables are 

(we put w = 1 ) : 

00 

f( y ,r)=fp 2 dp f k d k A ( p, k ) e y K ( k / Y ) J ( k r) , 
1 p 0 (26) 

where K., ( z) and J m( z) are the Mac Donald and Bessel cylindrical func

. tions , respectively. They a re applicable for all values o f s arrl t. 

In approach II expansions with respect to the little group E 
2 

are 

obtained only for t=O. In this case formulae (25) simlify to 

m 
-y 

"' e • 

m 2 - m 2 
1 3 

2 (27} 

4 m - m r 
(--· )2 

w 
(m2-m2)(m2- m2) 

[s~m 2 (1+ 
I 

4 2 ----
m 2- m 2 

l-m 2
(1+ )] 

2 

I 3 4 2 1 3 

(in comple te agreement with/14/). 

In this s pecial case, putting 

B ( y ) = { p 2 d p A ( p , k ) K (k e + Y) e y 
k 0 lp 

we obtain from (26) the usua: expansion with respect t o 

d) The Little Group 0(3,1) 

E 
2 

m 2 -m 
2 

In the approach I the scattering amplitude is a lways decomposed with 

respect to the irreducible represe nta tions of the L orentz group 0(3,1) and 

this can be done for arbitrary values of the kinematical variables. 

In approach IT the group 0( 3,1) is a little group corresponding to a fixed 

null vector, s o that the corresponding expansions only occur in the specific 

case when the mo'nentum transfer P 
1 

- P 
3 is a null-vector. This corres-

ponds to elastic scattering in the forward direction i.e. 
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a tical variables. 
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!ly occur in the specific 

.1ll-vector. This corres-

i.e. 

' ,, 

~ 
I 

m = m m t = 0 0 

I 3 (28) 

Salam et al./
15

/ have suggested a generalization in ovhich the 0(3, 1) expan

sion is applied for arbitrary t and arbitrary spin amplitudes. Contrary to 

SV they only expand in terms of a single variable (namely ch f3 • of the 

H-system), keeping the dependence on t (or a ) inside the expansion 

coefficient. 

The expansions of approach I can of course also be applied in the 

case (28) and also reduce to one-di'llensional expansions. In the 5-system 

they can be obtained directly by putting () = 0 , in the H and 0 system a 

limiting procedure is necessary to turn the - chosen space-like or isotropic 

vector into a null-vector. Specifically for the H-system (28) implies a = 0 , 
(s-m2-m2) 

ch f3 = ----2...and from (15) we obtain the expansion 
2m m 

1 

f ( 0, f3 ) 
.. 
f q th 11 q d q B ( 0 ) P / ( ch f- ) 0 

q -1 2+lq 

(29) 

The corresponding expansion in the 0-system can easily be obtained and 

w e shall not go into the details here. 

e) Invariant Expansions and Crossing Transformations 

The question of crossing transformations from one reaction channel 

to another acquires special significance in connection with Lorentz invariant ex

pansions. If certain analytical properties of the amplitude are a c;sumed,then 

the crossing transformation can be considered to be an analytic~ conti

nuation from the physical reg ion of one channel into the physical region 

of the other. Performing such transformations for fixed values of the ines

sential parameters and for a fixed choice of the essential ones, we obtain 

a transformation from a standard Lorentz frame in one channel to a gene

rally speaking different fra'lle in the other channel, related to the first one 
. /25/ 

by a complex Lorentz transformation • 

SpeCifically, comparing the formulae (7) an? (14) we see that the 

parameters of the brick-wall system in the s-channel are related to those 

of the c.m.s. in the t-channel 
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a + a c I 1T 

t 2 (30) 

(3 (Jt 

These substitutions have a simple geometrical inte rpretation which is dis

cussed in the Appendixx/. 

ln/
16

/ Boyce considered the expansion in (I • corresponding tu the 

little group 0(2, 1) and proved that if the amplitude satisfies a o ne-dimensio

nal dispersion relation for fixed t, this expansion is an analytical conti

nuation of the t-channel 0(3) expansion in terms o f cos (J t 

• We postpone a discu ssion of the analytical continuation and cros

sing transformation problem for the two-dimensional expansion of approach 

I to a future publication. Here we would only like to stress that the cros

sing properties of these expansions should be simple, sin ce the parameter 

p figuring in them is related to the Casimir o pera tors of the Lorentz group 

and is thus also invariant under the complex Lorentz group, realiz ing the tran

sformation between the channel s. However, we exp ect that to prove the 

actual analytical continuation from (15) to (8) it will be necessary t o pas-
• 

tulate double disper sion relations of the Mandelst am type in s and t. 

Conclusions 

Let us summarize the main conclusions of the preceding sections. 

1. The methods of SV make it possible to write Lorentz invariant 

expansions in terms of the basis func tions of the irreducible representati

ons of 0(3, 1) for arbitrary values of the kinematical variables s and t. The 

coord inate syste'Yis S,H and 0 correspond to different Lorentz frames of 

x7F'ormula (30) may be called a substitution law; it g ives the connec 
tion between coordinates seen by two observer s (one at the p oint s and 
another at the unphysical point t) using the same families of coordinate 
surfaces. 
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> write Lorent z invariant 

irredu cible representati

:tl var iables s and t. The 

fferent Lorent z frames of 

law; it g ives the con n e c 
( one at the p oint s a n d 
families o f coordinate 

reference on one hand and to reductions of the 0(3,1) group with res

pect to its 0(3), 0(2, 1) and E 
2 

subgroups respectively, on the other. 

2. The expansions in the S and H syst'ems can be obtained from 
I 

the Poincare invariant expansions w ith respect to the 0(3) and 0(2, 1) little 

groups, by expanding the coefficients of the little group expansions in 

ter'T!s of the remaining essential parameter, in a definite manner, prescribed 

by the structure of 0(3, 1) representations. 

3. The 0-system expansion for arbitrary t is a g eneralization of the 

E 
2 

little group expansion applicable only for t= 0. 

For t=O the Lorentz invariant expansions in the 0-system are related 

to the E 2 little group expansions in the same manner, as the S and 

H-systern expansions are related to the 0(3) and 0(2,1) little g roup ones. 

4. It follows from the whole dis cussion that the considered expansions 

(of approach I) are not only P oincare: invariant in the usual sense, but al

so satisfy the condition of "extended" Lorentz invariance, defined in sec

tion 2. 

5. Vve have already stressed that "extended Lorentz invariance" is 

an assumption concerning the convergence of the integrals and series 

figuring in the expansions. The formulae, as '.'lfl'itten in this paper, assume 

square integrability, since the amplitude is expanded only in terms of uni

tary representations of the principal series. However, this is by no means 

necessary and the formulae of SV are equa lly applicable for ti-Je supplemen

tary series and for non-unitary representations (as given in/
3

/). Thus if 

we know the a symptotic behaviour of the amplitude ·ve can find more gene

ral expansions involving integrals over certain contours in the complex 

p -plane and afterwards move the contour towards the rea l a xis , c ollecting con

tributi ons from singu.larities in the P -plane (e.g. "Lorentz p o les" f 1 2
• 
13

/ ) • 

6. Expansions in the H- system are directly related to the oroblem 

f . d ht t. t. / 22•23/ . . th" 0(3) o aug er raJeC ones 1 s1nce tn 1s case ,1 is reduced with 

respect to 0(2,1). However, in this general for'Tlalisrn no definite c onclusio n s 

can be made 1 even for elastic scattering in the forward direction. Indeed, 

it can be seen from (29) that the expansion coefficient B q ( 0) ( t = 0 ) 

depends uoon the "complex angu.lar mo'Tlentum" q in a n unknown 'Tlanner 

(since the coefficients A+ and A- in ( 15) depend upon p and q 

so that the existence of a dominating Lorentz pole in p has n o definite 

17 



implications for p o les i n q. However, the · hypothesis of equally spaced 

daughter Regge trajectories can be built into the theory by onaking definite 

dynamical ·assumptions as to the behaviour of A+ ( p , q ) a nd A- ( p, q ) 

as functi ons o f q . On the o ther hand, phys ical a r g uments against the 

existence of dawshter trajectories have been g iven by various autho r s/
23

/ and the• 

question of corr ect dynamical assumptions is far from settled. Thus the 

exi s te n ce o f dau~?,hter traj ec tor ies is e quival e nt t o assuming some type 

" rr 
f) f d yt ltun icn] sy1n1netry .. 

7. Let us r emark tha t L orentz invariant expan s ions need n o t be tied 

up with little g roup expansions, but are more general, s ince many other 

coord inate s ystems exi s t in w hich the Laplace operator on a hyperboloid 
/21/ 

a ll ows the separation of variabl es • 

8 . There is one on o r e property o f invariant e xpansio ns, which will 

be discussed in a later publication. The coefficients of the expansions 

of a'Tlolitudes -nay be furthe r d ecomposed into terms which transform under 

irreducible representations of the group of permutations of the three argu

•nents s,t, and u (s + t + u = c a nst.). In this way •ve get additional quan

tuon nu•nbers. 

In future publications we plan to return to the problem of Lorentz 

invariant expansions for arbitrary spins, to discuss their relation to the 

analytical properties of amplitudes, specify their prope~ies with respect 

to c r ossing transformation and apply them to particular physical processes. 

In conclusion we thank R.Mir-Kasimov and M. Uhlir for helpful dis-

cussions. 

APPENDIX 

Coordinate Systeons in Lobachevsky Space 

vve shall bnetly recapttulate the main propertiE>s of the coordinate 

systems used in this paper. A detailed discussion of the related kinema

tics was already published in/S, -~ 6/. We would like to stress, that although 

the knowledge of Lobachevsky geometry is by no means essential for an 

understanding of Lorentz inva riant expans ions, it does simplify the kinema tics 

and ·nakes it possible to replace complicated algebraical calculations by 

simple g eometrical considerations. 
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.ace 

-ties of the coordinate 

of the related kinema

to stress, that although 

means essential for an 

;; simplify the kinematics 

·braical calculation s by 

The kinematics of the proc ess are illustrated by a "kine'Tlatical g raph" 

i.e. by four points representing the 4-velocities u ~ -
1- p on the upper 
m 

sheet of the hyperboloid u " = 1 in the Minkovsky 4-mo'Tlentum space. In 

this language the parametri zation of the process 1 + 2 .. 3 + 4 consists 

of the three steps: 

1) Choice of a definite type of coordinate system on the hyperbolo id. 

?.) Specific localization of the kinematical graph on the hyperboloid 

(i.e. identification of a certain velocity, e.g. that of the c .m. system, with the 

orig in of the coordinate system and of certain directions in velocity space 

with the coordinate axes). 

3) Expressing the momentum components of one of the initial or fi

nal particles in terms of the chosen coordinates. 

Let us discuss these steps separately. 

Ad 1. In this paper we only consider three types of coordinate syste ms, 

namely the S,H and 0- systems (see figs. 1a,b,c).Group theoretically the se 

systems correspond to the reductions 0(3,1) ) .0(3) ) 0(2), 0(3,1) ) 0(2,1) 

) 0 (2) and 0(3,1) ) E
2
) 0(2) respectiv ely. Geometric ally the se are s ystems 

pos sessing a single t:entre and axial symmetry. This means that in eac h 

of these systems one family of coordinate curve s is a family of concentri-

cal spheres (hyperspheres, horospheres, ), the second is obtained by 

rotating a bundle of lines, intersecting in the corresponding c entre , abo-

ut the axis 0 z 

along the axis 

and the third family is a bundle of planes, intersec ting 

0 (f . d f . •t• f / 2 4 /) z or n g orous e 1ru Ions c • • 

Let us describe the individual systems. W e always c hoose V e( 1,0,0,0) 

as the orig in of the coordinate system on the hyperbo l o id and use the axial 

symmetry to choose an angle <!> in the 0 xy plane as one of the coordina-

tes. This angle is not drawn on the three-<iimensional fig s. 1 • 

In the S-system we place the centre in the point V thus obtaining 

a family of spheres, one of which is indicated by the circle on fig. 1a 

and a family of straight lines, intersecting in the vertex V . Point A is 

now parametrized by the "distance" a ~ V D (more precisely by the area 

under the hyperbola on fig. 1a) to the sphere on which it lies arrl by the 

angle () (on the sphere). 
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In the H-systern we pla<;;:e the centre in the point ( 0,0,0,1) on the 

one-sheet hyperboloid (imaginary Lobachevsky space) obtaining a family 

of hyperspheres (hyperboloids obtained on fig. ~b by cutting the original 

hyperboloid by a plane, perpendicular to Oz ) and a family of divergent 

lines (one of which passes through V ). Point A is now parametrized by 

the distance a c VD to the corresponding two-dimensional hyperboloid and the 

distance f3 = DA along this hyperboloid. 

In the 0-system we place centre in the ooint ( r.J, 0, 0, r.J ) of the light 

cone, obtaining a family of horospheres (parabolas on fig . ~c ), obtained by 

cutting the hyperboloid by planes perpendicular to the generating line 

( w, 0, 0, -w ),and a family of parallel lines, one of which passes through V. 

Point A i s parametrized by the distance y, VD to the horosphere and by 

r, where r e -y is the distance along the h orosphere. These geometrical 

properties a re best seen by introducing the new coordinates 

-y 
w ==re ,Ct> -=u 

I 2 
+ u 

3 
= e y + r 2 e -y , cu = u 

3 0 
-u 

3 

~e-y 

Thus y fixes the section u 
0 

- u
3 

c const(the horosphere) and w , w are 
-y I 2 

coord inates on the horosphere (parabola) w
2 + 1 = e w Thus r = const 
1 2 

corresponds to a bundle of parallel lines and the paraboloid carries an 

euclidean geometry with a scale factor e -y determined by the distance of 

the section fro~ the origin. 

The 0-system in vel ocity space has an interesting physical inter

pretation. The (relative) veloci,ty of an observer can be measured by deter

mining the ratio of the frequency w ' of a real photon as seen by the ob

server and some standard frequency w (confront formula (24) and the 

following text). 

Thus an additional point has to be chosen in the 0-system, namely 

the system in which K has the frequency w . This is the ambiguity in 

the definition of K mentioned in the text and it is due to the fact, that 

the "distance" to K is infinite in every coordinate system and only the 

differences between two such distances have a physical meaning. From 

this point of view one set of coordinate lines corresponds to observers, who 

all measure the same frequency and the other set to those, who measure 

the same direction of propagation. 
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Ad 2 and 3. '~'e shall now discuss the localization of the kinema-

tical graph on the hyperboloid, i.e. discuss the choice of special Lor'§!ntz 

frames of reference. It is convenient to illustrate these by kinematic g raphs 

drawn using the Beltrami model of the Lobachevsky space. In this paper 

we always set ¢ e 0 se> that we can use a two-dimensional "Tlodel, in which 

the light-cone is represented by a unit circle, the interior of which is the 

real Lobachevsky space, corresponding to u 2 ~ 1 and the exterior -the ima

ginary space, corresponding to u2 =-1. The connection between the kine"Tla

tical graphs on the hyperboloid and the Beltrami model is given by intro

ducing the inhomogeneous coordinates 

th z 
p 0 

(A.l) 

so that the distance between two points is equal to the hyperbolic tan

gent of th<"ir relative velocity. In the Beltrami model straig ht line s are' 

projected into straight lines, but angles are distorted. 

The kinematical graphs on the Beltrami plane are given on fig s. 2a, 

b,c for the S,H and 0 systems respectively. The points X and Z are 

always the inhomogeneous coordina tes o f the parametri zed velocity (i.e. they 

are obtained by drawing perpendic ulars from the corresponding point to 

z and z axes). The point D is the intersection of z and the 
~ 3 3 

the 

sphere (hypersphere, horosphere) on which the parametrized point is lo-

cated, so that its distance from the origin (the v e rtex of the hyperboloid) 

is respectively th a, th a and th y . 

The line Pl(P2)on figs. 2c, (2c') is parallel to . z 
3 

• 

The distances along the z 1 , z 3 axes are actually measured a s th z ( th z ). 
1 3 

Using figs. 2 and elementary trig onometric formulae of the Lobachev-

sky geometry it is easy to check that the inhomogeneous coordinates 

of the parametrized point are exactly those, which we would obtain from 

formula (A.l). 

The S-system is specially suitable for a description of scattering 

in the c.m. system. "Ve identify the velocity S of the c.m.s. with the v e rtexV 
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(the origin of the coordina£e system on fig. 2a) and direct the axis z s 

along ii 
1 

in the c.m.s. 

It is convenient to associate the H~ystem with the brick-wall sys

tem and to identify the velocity B of this system with the vertex V and 

direct the axis z s along u 
4 

in the b. w.s. 

As was mentioned in the text, it is possible to introduce two diffe

rent types of 0-systems. Fig. 2 c corresponds to the "Breit-l~e" ~system, 

in which ii 
4 

is along z s and the point B' corresponding to the stan

dartization of K (cf. (21)) is indentified with the vertex V .The "c.m.-like" 

~ system is illustrated by. fig. 2c
1 

in which zs is along ; s and the vel~ 
city s' obtained by standartizing K's Ps~ , -A'+ p4• is identified with the 

m3 . 

ori~in. 

The figures, as described above, always correspond to the physi

cal reg ion of the s channel. We can however, also use them to de scribe 

t-channel ' processes and thus obtain geo'Tletrically the substitution laws 

(30). Indeed, consider the point on fig. 2b (the point ( 0,0,0, 1) on fig.1b) 

as the origin of the S-system in the (unphysical) region of the t -channel 

(cf. fig .3). The distance betwe~n 8
0 

(velocity of the b.w.s. in the s-channel) 

and S 
1 

(c.m.s. in the t-channel) is th B S 1 ~"" thUs we have B S e ~, 
• • t 2 

Directly from fig. 3 we c a n n o w rea d off the relations (30): B • e i (), , 

fT 
tl + 8 e i -2-. 
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Fig. la. The spherical coordinate s ystem S. 
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Fig . lb. The hyperbolical coord inate system H. 
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lY -------- u, 

Ux 

Fig . 1c. The horospherical coordinate system 0. 

Fig . 2b. P roces s J 

z, 
l1 

SD-tha 

z~ 

Fig . 2a. Process 1 + 2 .. 3 + 4 in the S-s)rstem_ 

Pig . 2c. Process 1 + 2 ... 3 
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1 . 

__._ u, 

system 0. 

SD-tha 

1e 5-s)'stem. 

BD=tho< 
BX=thfi 

Fig. 2b. P r ocess 1 + 2 -+ 3 + 4 in the H - system. 

B'D= lh r 
WP=z 

Fig. 2c. Process 1 + 2 -+ 3 + 4 in the " Breit-like " 0-system. 
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2t 

S'D=th ~ 
S'p =- Z 

z:J 

F'ig . 2c~ Proc ess 1 + 2 -+ 3 + 4 in the "c . -n.-like" system. 
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2 Bs D 

F'ig. 3 . Relation between s and t < 



S'D=thl 
S'p =- z 

4 in the " c . '11.-like" system. 

85 D=-tho<s 

DSt= that 

-- --. 

Fig . 3 . Relation between s and t c hannel s catte ring in the H and S syst ems. 


