











1. Introduction

It has been observed many years ago that the energy spectra of
light nuclei show remarkable similarities which can be explained by the
charge independence of the nuclear forces. The energy levels of the
isobaric nuclei can be organized into charge multiplets characterized by
a given isospin. If the charge dependent interactions are completely neg-
lected then the isospin is a good quantum number, the elements of a
given charge multiplet are exactly degenerate and the states of the neigh-
bouring isobars are connected to each other by the isospin step-up and

step-down operators:

TMqp TM 41

. / , 1
'I+|xba >=VT(T+1)—-MT(.\1Tt1)]‘I’a > . ( )

In reality the charge dependent interactions do exist and they cian cause
a mixing among different isospin states,on the other hand tlie degenerate
charge multiplets split up. In the case of light nuclei the mixine and the

shifts ure not too large therefore the i-ospin cun be used as an appro-

3



xitnately good quantum number, Proceeding along the periodic table the
Coulomb shift is ever increasing and sooner or later it may happen that
some clemnents of a given charge multiplet are in the discrete spectrum,
the rest of them, however, are already in the continuum, During many
years it was expected that the importance of the off diagonal matrix
elements of the charge dependent interactions, giving rise to the isospin
mixing, are increasing together with the diagonal elements and it was as-
sumed that the isospin looses its meaning in the medium and heavy nuclei,
This state of affairs has changed remarkably since the beginning
of the sixties and the isospin has started to regain its credit. In 1961
Anderson and Wong 1 have discovered some narrow peaks in the
vield of direct (p , u) reactions. It turned out that the observed peaks cor-
respond  to highly excited states of the res=idual nucieus which are in
analogy with the low lying states of the target nucleus being shifted by
the Coulomb cnergy ‘! . '
The theoretic |l intepret:tion of these results was first given by
Lane and Soper - . It was pointed oul that in a direct (p,u  process
among others the proton can jumps into the sane single particle stite
from where the neutron was knocked out, ln this case the final state has
the same symmetries, the sine isospin as the ground state of the target
nucleu s, This state, the so called isobaric analogue state (IAS) of the
target was  identified by lkeda, Fujii and Fujita 3 as a coherent super-
position of monopole type (proton-particle) (neutron-hole) excitations. In
1964 Fox, NMoore and Robson 4 have observed some narrow resonances
in (p,p) elastic scattering. As far as the quantum numbers and the
energies are concern2d o surprisingly good correspondence was obser-
ved between these resonances and the low lying states of the target +
ncutron system except for an overall energy shift which can be identi-
fied with the Coulomb energy VF . . Since that time @ large number
of 1AS have becn observed in the proton induced reactions ) and
also o great deal of theoretical activity was devoted to the interpretation
of the LAS and to the study 2,6,7) of the "isospin impurity”. To anilyze
the proton scattering proklein a reach wvariéty of weapons were used,

In Robson’s approach 7) the R-matrix formalism was employed., Weiden-
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muller and Mahaux &) studied the different aspects of the IAS using

the tools of the extended shell model. Many investigation werc based

0)

. 9 . . .
upon the lLane’s equations™’, Feshbach’s projection operator te(;lmlcsl ,
which will be applied in this paper too, was used by Kerman and Tole-

11) and also by Stephen 12.)

do de Pisa

The starting point of the approach developed by Kerman and Tole-
do de Pisa is the definition of the LAS A > of the target + proton
system:

T_|® >

la > = N (2

[<h|T,T_|®>)"

~—

where | &> is some low lying state of the target +neutron aystem,
Comparing the equations (1) and (2) it is obvious that thi definition

3 based upon the hypothesis of the existence of an approximate charge
multiplet structure, Of course, |A> in itself can not be the eivenstate
of the system S.i-nce it is embedded into the continuum and surrounded by
the multitude of compound states, but it is eapected that | A > = the
dominant component of the scattering wave funclion [ W in some energy
range. In order to andlyse the structure of the scattering wave funclion

in a systematic way, it is convenient to introduce the projection operators

A, p and ¢ by the followirig definitions:

(i) p + g+ A =1

(ii) Pq = pA =qA =0

(iii) A=lAa><al

(iv) P projects out the "target ground state +proton component of

(1 -4)] ¥ > .

This kind of decomposition of the wave function is very advantigeous
because the coupling betiveen the components ATY> and (p+ )| ¥>
can be produced only by the charge dependent part of the llamiltonian,
Thus, in principle, we are able to calculate exactly the coupling , gsiving

rise to the width of the LAS, since the exact form of the Coulomb inte



raction is known., There is some drawback, however, in this decompo-
sition , namely the "target ground state+proton" component of the wave
function is splitted up and one part is contained already by AlW> and
orly the remaining part is represented by p | ¥ > . It is not cbvious
at all how to get an explicit repre=sentation for P|q' > since in A|Y¥>
all nucleons including also the last proton are in bound states, on the
other hand in p|¥> the proton is in a continuum state, Because of
this difficulty in this paper we choose another view point and apply a
somewhat different procedure the main points of which can be summa-
rized s follows:

a) The projection operators P, Q and R are introduced by
the following definitions:

(i) P+ +R =1
(i) PQ =PR=0R =0

(iii) p projects out the full target ground statetproton" compo-
nent of |4 > .

(iv) ) selects out the components of |¥> corresponding to
siich confisurations in whichi all nucleons are in bound states.
Boecause of the required orthogonality of the P and Q
subspaces the target ground state must be excluded from the
subspace O .

{(v) Rl¥> is the remaining part of |% > which corresponds
assymptotically to inelastic scattering and different fragmenta-
tion of the nuclear system,

b) The elements of the 0 subspace characterized predominantly by
!

the isospin eigenvalue T =T + % are picked out, llere T, stands for

the isospin of the target ground state (Tg =V )

o

c) An equation is derived for the component P!> containing all
tne information on elastic scattering, ln this equalion the coupling between
P|¥ > and the special components of Q{¥ > | labelled by T , is

expressed explicily by one term of the effective llamiltonian,

d) The special componenis of 0¥ > the so called "projected”



IAS's are expressed in terms of the wave functions of the target+neutron
system,

Using this method we will calculate the scattering amplitude, the
cross section and the polarization of the elastic proton scattering in the
energy range of the isobaric analogue resonances.

We conclude this introduction with a brief description of the contents
of the following sections., In Section 2 we give a formal derivation of the
scattering amplitude in terms of effective Hamiltonians obtained by means
of projection operators, Involving some heuristic arguments we replace
these projected llamiltonians by model operators, In Section 3 we formu-~
late a simple model for the target + one particle system and we calcu-
late the low lying states of the target t+ neutron system, Using these
model wave functions we construct the "projected" IAS and the scatte-
ting amplitude is expressed in terms of these states. In Section 4 we
outline the tnain steps of an application of the method for the calculation
of elastic proton scattering cross section and jolarization on the N=82

isotones.

2. Formal Derivation of the Scattering Amplitude

Multiplying the Schrodinger equation by the projection operators

P,Q and R we get the coupled system of equations:

(F —~PHP)IP|U> =(PHQO |¥>+(PHR)R | ¥ >

(3)
(K =010)YQ > =a{QHPIP|Y >+ (QURIR | ¥ >

(E=RHBIR ["¥ > = (RUP) P |W > + (RHOYQ | >

Eliminating the components Q| ¥ > and R]¥> |, the equation for

P|¥> can be wuritten as follows:



where
W _ =PHP
P
1
B _ =PHQ ——e— —— QRHT
@ FE —-QHQ (5)
(5
i
i =!lPHR +PHQ ——————— QUR | .
R ¥ - QHOQ
1 1
[ Il RHQ ——QHP+RUP]

E —RHR — RHQ - —— QHR + ic E~QHQ

F—~QHQ

t

Introducing the projection operator which projects out the subspace

characterized by the Isospin T =T, +% we decompose the second

term of the llamiltonian into two components:

~
H =PHQt —— - {QHP + H . (6)
Q E — QHQ
-~
where i, is given by
- 1
IIQ=PHQ(1—1) t QHP +

E ~QHQ

(7)
+ PHQ (1 =t) ——2t (1 ~-1t)QHP +
E - QHQ
+ PHQt —L (1~ 1)QHUP.
E~-Q
Now we can write the equation (4) in the following form:
~ 1

(E~PHP)YP|{¥> =(PHOQ t t QHP)YP |V >, (8)

E =-QHQ

where  PUP is defined by

A ~

PHP = H, + Mg + Hy . (9)



If we wanted to analyse the scattering problem in full details, then,
of course, equation (8) is completely useless because of the complexity
of PI;P . On the other hand, as far as practically applicable approxi-
mations are concerned, the form of the equation (8) seems to be rather
convenient.A

The formal solution of (8) can be expressed as

9 "0 ) -1 )
P{9> = ]‘Pv, >+ G PHQ t [E~QHQ -tQHPG PHQt ] QUP|Y >, (10)
P

(+) . . . .
where ]‘I’v > is defined as the solution of the homogeneous equation:

~ 11)
(E—PHP)[‘P:)>=0 (

- ~
and the Green operator (F ~PHP + ie ! is denoted by ¢ ®

By the help of this formal solution the amplitude of the elastic scat-

tering can be written as the sum of two terms:

- -
29 +<¥7 | pyot [ £ -Qug - QP ¢ PHO I~ ioup KA (12)
~
where the first term J is the amplitude of the elastic scattering
~
caused by PHP alone,

We expand the second term of the scattering amplitude using the

complete set of wave functions defined by the equation

(13)
(E, =-QHQ)|®, >=0.
Then
~
j=7+?<‘P(-1PHOt[® >(A-‘) <@ |:QHP]‘P(+)> )
I r s SV . (14
where the matrix elements (A'l)rs can be obtained by matrix inversion

of the matrix A L. defined by

-
+)

A, <0, | E-QuQ -~ 1oup ¢Prugc|o, > . (15)
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To start with o given form of the lHamiltonian H and to work
out m details all the quantities In the: scattering amplitude is rather hopeless
therefore, we are [orced to introduce some heuristic assumptions based
upon some phiysical considerations in order to get a more practical form
for the « cattering amplitude. Doing so, we shall replace the "exact" pro-
jected operators by model operators, At the same time we reduce our
procram and we are not going to analyse the "exact! scattering amplitude
in its total comyplexity, instead of that ae shall approximate it by an "ave-
nvq,c:” scattering aamptitude <d4 .l ocan be scen from thie definition of

rup thal in oddition to the so-called potential scattering (HP Yo,
the offect of the inelastic chanrels (B, ) and that of some kinf‘i of ir-
"
termediate states (B o) are incorporated into the amplitu.e B .

In most cases the nunber of open channels and that of the in-
tormedinte states is rather high and usually their effect can be treated
properly by a complex optical potential . We will adopt this procedure

-

and we define the average scattering amplitude < 9> reptacing PHP by
e optical model Hamiltonian u’ of the target+ protorn system, In
Oddition: to this we must introduce some as: wptions for the projected ope-
rators  OHP and  PHO they will be identified with the two-body resi-
dual nteraction, For the sake of simplicity we shall assume that the resi-
dunil Coudomb interaction is negligible, that is the residual interaction v
commutes with the isospin operators.

Adopting these assunptions the average scattering amplitude will
have the (ollowing form:

out = (=) -1 o)

<Y>= 1 + 3 <y v e >(a ) <(3)‘|tv}\{'p > (16)
- e

r ] r L]

=

The quantities involved in this expression are reinterpreted by the

following equations:

(F — 1 IRR > =0 (17)

Ref s}
(k= ) (¥ > =0
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opt -
G, = (E ~ H +ie)

1

(19)
. -+
Asy =<0, |E-QHQ =tVG, Vi |B, > . (20)

In the equation (18) (1™)*  stands for the complex conjugate of
the optical model Hamiltonian,

We must emphasize that this kind of decomposition of the scattering
amplitude into two terms is meaningfull only if the coupling of states having
different isospin is weak enough, On the other hand this decomposition
is useful only if the number of the intermediate states characterized by
the isospin Tis small enough comparec to that of other states, If these
requirements are not fulfilled then we are forced to treat all the inter-
mediate states on equal footing and we have no right to performe such
a separation of. Hg what we did in (6) A great deal of experimental
evidences, however, shows that the isospin of bound states is an appro-
ximately good gquantum number, that is, the intermediate states dominated
by different isospin values are weakly coupled, On the bther hand in the
interesting energy range the density of states characterized by isospin

w

T =T, +¥% is very low compared to that of the "normal" isospin
states (T =T  -%) . Consequently, we can accept the expression under
(16) as a good approximation for the average scattering amplitude at
least in a limited energy range .

It is expected that the cross section derived from (16) will show
intermediate structure, in addition to the broad single particle resonances,
we shall get narrow peaks due to some quamsistationary states characterized
by the isospin T =T +% .

Our next task is to establish a relationship between thc states |8, >
of the target + proton system and the bound states I G, > of the target+
neutron system, The wave functions of the low lying states of the target-

neutron systan, satisfying the equation:

1{{¢PTT>-{';,\¢PTT> (21)

11



are labeled by the isospin quantum numbers T and M (T = M_=T+h).

By means of the isospin step-down operator we get:

TT
Tl >y (s (o, Ty y_T-l0, >

H( — ' ’ © o (22)
[VaT,+1 2T + 1 VT, +1
or in the usual approximation
TT -1 TT =1
) >=(& +AE )|® >, (23)
r r [ r

where the Coulomb shift is denoted by AF . Manipulating with the pro-
jection sporators we get:

c TT—~1
(&, + AE, —QuUQ)IQ| @, > =

TT-1 TT=-1 (24)
= (QUPYP | @, > + (QURIR| D, > .

On the right hand side the second term is zero by the definition of the
projection operator R and the first term is rather small if the neutron

excess is large enouw::; neglecting this term we have:

(&, +AE, -QHOIQ|® "'>=0. (25)

Comparing the equations (13) and (25) we see that

. (26)

1o, >=n,01]d, ">,

T
where N stands for a normalization constant,

According to these relations the approximate eigenstates of (QHQ
TT-1

can be constructed from the "ideal" 1AS's [P, > by the help of the

projection operator  Q .
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3. A Simple Mode)

In this section we formulate a simple model for the description of
the target-neutron system, and in the frame-work of this model we calcu-
late the energy eigenvalues &, and eigenfunctions !¢;TT> for the low
lying states, furthermore using theée wave functions we calculate the
matrix elements involved in the scattering arr:plitude.

For the sake of simplicity we restrict ourselves to such cases when
the everreven target contains only closed neuiron sheils, The model Ha—
miltonian is written as:

B =H_ +h+ V

o

. (27)

where I | and h stand for the Hamiltonians of the target and the

last odd particle , respectively, and thie residual interaction is denoted

by Vv . The low lying eigenstates of #e targei+ neutron systemn take
the form:
TT o
-3 0t (28)
fo, > ”2 S i) P Xy

where ¢, is the eigenfunction of H, and the single particle wave
function for the last neulron outside of the closed shcils is denoted by
X nj . The amplitudes C ;i are obtained by diagonalization in a restric
ted space of the basis functions ,‘,i"l X . > . Now making use of these
model wave functions we compute the matrix elements involved in the
scattering amplitude. Let us consider at first the wave function [®_ >
given by

O, s e M r prT. (29)

—— r

\/2To+ 1

The "ideal" IAS as we pointed out previously has a "target ground
state + proton" component. In order to get the "projected" 1AS we must
eliminate this component, It i« easy to see that in our model the " tarpet

sround state + proton”  component of the  ideal WS hias the fortn
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C

R — >, 30
NELIEE L, X,y (30)
where  ¢g is the ground state wave function of the target and X,

is a bound neutron state occupied by a proton, in other words it is a
neutron orbital muiltiplied by a proton isospin factor, Substracting this

component from "ideal" IAS we get the "projected” one:

r
TT =1 TT=1 Coj
@, > =N Q& =N {[o ">~ VIt léox,, >t . (31)
where the normalization factor N_ is given by
(C 01)2 -y
N,m(lo ————— ) . (32)
2T +1
o]
In order to evaluate the effect of the isospin projection operator t on

|®, > we must manipulate with the second term of |8, >

K LTy gox,,> = —m— | @ >, (33)
t > @t —————t = —— ,
oxni 2T0+1 °Xpi 2T0+1 ° xni
where the relation
= 4
T box,, > | #e Xy ? (34)
was used, Introducing the notation
CP
TT TT o
A > =N, {|® >~ [y x,, >t (35)
nj
r r 2T, +1
we get
LT TT
‘]®,>=———__—:_‘A,>- (36)
V2Tg+ 1

+
The wave function i‘l’p > involved in the scattering amplitude can be

expressed in terms of our model wave functions as

14



(4) )
¥ > = >,
I » | ¢o 7 » (37)

+
P
satisfying the "Coulomb distorted plane waves +outgoing waves" boundary

where g stands for the optical model wave function of the proton

condition , Now the relevant matrix elements can be written as follows

1

<0, [tv]¥P 5.
V2 To+l

<A‘:T|VT e . (38)
+ P

1

<A™ v e
r n

VeT+ 1
where W w ( 39 )
(¥, > =] @y 7, >
and 7;“') stands for a scattering proton state occupied by a neutron.
n
By the help of similar manipulations we get for A, the following
expression
40)
A =(E~- & = AFE \X] -A + 2T , (
ra r L) rs rs 2 rs
where
(41)
By o —t e < AT [veP v AT
2T +1
[}
(42)
r o=- 2 wm<ATT [ve Py ATt
b 2T+ 1 f n s
) . )
and G is defined by
o) W (43)
Gp =-T+ t (}p tT. .
. ) oy s
Tosee the meaning of G(: it is enough to look at the spectral repre-
(¢2]
scntation of the Green operator, The operator G, is constructed
[€7]
from scattering proton states occupied by proton, the operator G, is

constructed from the same scattering proton states occupied by neutron.



«

The matrix elements involving the Green operator G, can be
written in the following form:
TT S TT
< A, |vGe, VIA, > = (44)

+

TT
e AT VTG x> 6Pk x < VAT

The Green function 6P (x. 1) s expressed by the regular and irregular

solutions of the Schrddinger equation:

“ , v 9 S i=
[ )a—-"-?“ Sim 6. ¢ .00y, (A7, ¢, 0 1(=1)
1tm .
(45)
vop (r)[\»jg(r')+ivﬂ(r')l rr
1
T I',
vﬂ(r )[wjf(r)a—ivie(r)l r>or )
The normalization and the assymptotic form of the regular v (r) and
irregular wje(r) solutions are given by
v (r)S\/_._k_.s‘n(kr— n +8 , +nlokr +o0, ) (4a6)
if mE 2 it 14
(a7)
" (r) =y — cos{kr ~ ﬂzg +8)V+r;('nkr +ay)v
where the phase shifts 5:’7 are complex numbers, It is .. orth e
to point out that in our case the level width - . in addition to the

escape width, due to the coupling of the "projected IAS to e contirmae o
states, contains the damping width too since our Familtonian has an e
ginary part givinu rise to a coupling among the doorvay tvps Tprorectou
IAS's and the more complicated states, or more hone=tly vreakins, thie
imagcinary part of the potential mitates such a coupling,

1

Because of the factor —-—————"  the level <t - guate snadl

2 +

¢

consequently the spacing of the isobacic anclogue resonc: ces are it
sinilar to the spacine of the low lying =tates of the peiohbhouring 1o obar,

Fron experinentd point of view thils factor s vers Doroortant, bheoouee

16



recognize the analogy among the various states would be rather difficult
if the shifts of the individual levels were too big. The explanation for the

surprisingly small widths of the observed isobaric analogue resonances

1
can be found also in the factor ;r—;—l— in frort of the level width for-
2T,
muwa {42),
4, The Cr Sectlion _and Polarization of the
140
Elastic Proton Scattering on 1 Nd

In this section we summarize the main points ard some re-ults of

a detailed calculation for the cross section and the polarization ol elastic

138y, 140 . 142

proton scattering on Ce, and Nd. In the case of such nuc-

lei the model outlined in the previous section is directly applicable because
the targel is of even-even type and contains only closed neutron -hells,
We shall compare our results with the experimental data obtained by von

13)

Brentano et al, in lleidelbers

142 . . . .
the 14 Nd because the most detalled experimental information was avai-

. We discuss in detail only the ~iuse of

lable for this case, on the other hand, our results obtained for the clas-

140

tiz proton scattering on ljSBa and Ce are qualitatively the same as

19
in the case of 14 Nd,
Our first task is to work out an aprropriate description for the Jow

) 2 .
lying states of the target (14 Nd) and the target + neutron system (143I\d).
li seems to be justified to treat the low lving states of the target

in the framework of the microscopic collective mbdel, because the energy

of the first excited state ( B2t =157 MeV) is appreciably less than the
erierdy gap in this region and the observed E2 transition probability 4
(B(E2) =047 o2 107 cpt ) is considerably higher then the single

particle estimate,
Azsuming a "pairing + quadrupole" type inieraction amcng the pro-
tons being in the last open shall the Hamiltonians h and 1, will

have the following form:

17



< n +
h =~ (’ b’m h im (48)
im
H =3 € at a - -G 3 at, ,d,-t , a a -
0 i im §m . S, dim j =m j~m jim
im imi’m
1 \ .o , o
- — b < r Xy 0. YY * (0,6 )
2 K, m 3w " 12"'2‘ ! #( 1 f(*sx a2 72 ”xmezm,)(‘}g)
112 2
by my i, my
+ +
a ’ ’ a , ’ a . a
T ™o PaMa Y9 Mo bymy
142 . . . . .
In Nd 10 protons are distributed in the single particle states lg_,/_, ,
. and 51 of the dou
2d5/2 ) 2d 8/2 » 3 1/2 , d 1h 112 outside 1 ouble

maglic core containing 50 protons and 82 neutrons., For the last neutron of
143 29
7/2 4 “Tn/2 '

arc available, In order to have correct as=ymiptotic form for

Nd the single particle states  2f LA , and
/
3
P2
the single particle wave funchons both the neutron operator= b+ 1

L jm
and the proton operators alt , a are defined on a Saxorn Woods

im jm

basis, The potential parameters are given n the Table L

Table 1, The parameters of the Saxorn-Woods potential,

v 50 ro a

MeV MeV fm fm
Troton -57 -7 1.25 0.65
1.25 0.65

Fentron —-47 =7

Havine ho reliable informedion about the locotion of the rolevent sincle

portic le stade= we have treated the single porticle energles i



€ 3
j
"best choice" of the Saxon-Woods potential,

as adjustable parameters instead of worrying too much about the

The effect of the pairing corrclations of the proton system wus
taken into account by the Valatin- Bogolubov transformation.,

The assumed values of the single particle energies (:’ and the
strength of the pairing force (G) together with the calculated values of the
quasiparticle energies (F,) , the transformation coefficients (uj s vj)
the energy gap 2A  and the Fermi level A are given in the Table I,

Table II, The parameters of the quasiparticle transfromation,

G = 28/A = 0.197 MeV 24 = 2.21 MeV A= 0.625 MeV
p
b ‘1(7'3 Fti uj VJ.
1€ MeV

1eq/2 0,00 1.27 0.504 0.864
250 0.76 1.11 0.749 0,653
thyy . 2,18 1.91 0.953 0.204
A3/ 2.88 2.51 0.974 .206
3s. ., 3,20 2,80 0.980 0.201

1/2

The lone ronge term of the target Hamiltonian . as treated by the method
i the quasiparticle random phasoe approximation,

Introducing thoe quadrupnle nhonon creation operator 1= the linear



combination of the quasiproton pair creation and annihilation operators

Asplia vi, ) and AL G

. ; I
EPRL R RE (50)

the Hamiltonian is transformed into the form

51)

—

+
Hon E +(u§ 02# 02#,

where ' stands for the enrgy of the one-phonon excitation and the
ground state energy is denoted by E, .
The coefficients X s Y and the excitation energy o

i 4
142
are determined by the sec!:uﬁar equation of the QRPA ., We have chosen

the value « =4.8 .10 °MeV  fm~*

for the strength of the quadrupole
force in order to fit the one phonon energy o to the energy of the

first excited state:

=1,57 MeV ,
The calculated values of the coefficients X and Y are

i,
2 142
tabulated in the Table I,

The eigenfunctions of H denoted by ¢ (N) are labelled by the
angular momentum 1 and the number of the quadrupole phonons N
The basis for the matrix representation and diagonalization of the Ha-~
miltonian can be constructed by wvector coupling the target states ¢I (N)

to the single neutron states y In this basis the matrix of the fa-

. ny "
miltonian has the following form:

J J
<[¢I(N)an1 fafle, (N x - Y os =

n J . , J
=§”,5NN,5“,(Nw +e ) +<[¢>1(N)an] [V[[(pl,(N )an’l >.



Table IlI, The coefficients of the quasiparticle pair creation and annihila-

tion operators in the quadrupole phonon creation operator.

i i, ‘;1,2 \,‘jd
1/2 1/2 0 0
3/2 -0,0275 -0.0150
5/° -0,105? -0,04450
7/2 0 0
211/2 0 0
3/2 1/2 0.0275 0.0150
3/2 -0.0338 -0,0177
5/2 0,0690 0.0:73
7/2 —-0.1204 ~0.0498
11/2 0 0
5/2 /2 -0,1052 -0,0450
3/2 -0,0620 -0.0773
5/2 ~0,5286 -0,091%
7/2 -0,1045 -0, 0216
1/2 0 0
A 11/7 0 0
3/2 -0.1204 -0,049%
5/ o104y 0,016
7/ -0, 3774 -0,0890
PAVE o} O
/ e

1/ ~0,1407 S ORTE



In the actual diagonalization we restrict our basis allowing only the zero
and one phonon states (N = 0,1) .
Let us see now the problem of the residual interaction V . In

general V can be written as the sum of two-body interactions:

(53)

Val Vix,x, V& (rr YW {x,x, ).
1 f 1 i

For the sake of simplicity we take into account only the lewest multipole
components of V{x,x, ) and W(x, x, ) . Adopting the well known
ideology, we can say that the monopole component of V(x, x ) is
already inc led into the Saxon Woods type single particle potential of
b therefore we approximate V{x.x; )} by a quadrupole term assuming

the same form and the same strength as in the Hamiltonian H

Vix.x, ) == ). (54)

Kt r2§v2“ (0.4)Y,7(8 &,

‘The monopole component of W{ x ,x ) cannot be included comple-
tely into the sirgle particle poterntial therefore we keep thig term and
neglect all the higher multipole components,

Thus the residual interaction in our schematic model can be expres-

sed as the sum of a quadrupole and a monopole term:

o) © (55)
VeV +V .

The relevant matrix elements of the quadrupole component can be computed

5 a6
easily and are given by 15,16)

[\8)

B2



¥ )
<[¢1(N)an Y |[¢I,(N'))< o] »o= (56)

nj

9 N(1§)J
- | ;>
<an s Y2(0,¢)|lxnj N
where
0(0 ) J
=0
0(03)J !
1(2j)J k& ‘g 2
R e —24I 3 <y |l 7Y (6, ¢6)]x >
0¢0 194 V5(2]+1) i, °y 2 pi,
(u v Y +u v X )
TR PP By gy
. (57)
10250 J J437 41 2 9 9
= (~1) 10« § , }
12499 it
1.+
LoD o ety e, e ilx >
EIE B pi 1 2 e,
12 3
2
N R TR L X o4y Y
. § H b b] P ) i i i
1] ] 1 2 1 2 13 3 13 2 3
172 8
Here the notation <|| [|> is used for the reduced inatrix elements
of the single particle quadrupole operator and the 6 j symbols are
denoted by { 1 .
The monopole component V o has only diagonal matrix ele-

ments in our restricted basis. These diagonal elements can be absorbed
into the single particle energies f’n if the same value is assuwued
for the zero - and the one-phonon states. As we see the monopole
term is rather irrelevant from the point of view of the target + neutron

problem, it will play an important role, however, in the case of the
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matrix elements between bound and continuum states of the target + pro-
ton system.

We have performed the numerical diagonalization of the Hamiltonian
for a few sets of the single particle energies in order to get the best
agreement between the energy eigenvalues & ., and the experimental spectrum
of 143Ncl. In this way we have obtained the eigenfunctions for the low

lying states of the target + neutron system

TT Je
O > =2 C
1IN

x
LN v‘[qf)I(N)xnjj > (58)

The reszults of the diagonalization, that is, the energy eigenvalues

and eizenvectors together - with the experimental energies 17 of the
low lying states of the 14314 are tabuwlated in the “Yable 1V,

Our next task is to specify the optical model parameters and to
solve the optical model problem, that is, to calculate the phase shifts,
the regular and irregwar solutions as the function of the energy E, First
of all we have calculated the average of the experimental cross section
and the optical model parameters were obtained by fitting to this smooth

cros= section, The form and the parameters of the optical model poten-

tial are given in obvious notation by the following formulas:

t
VTR e V() 4 Y £ 4 W gl 4V R . o),
ooul L] c so

.

Zez r2
5 (3 - 5 ) r <R,
R =
chul(r)z © Ro
, 2 (59)
Ze r> R

f(r)-:[]-{-exp((r—ﬂ Y/ a )}-l

v v

g(r):.miaw-«—-———([1+exp((!‘~RW)/a y o )

w

1 d ) -
hir) = = ([T ¢+ explie =R Y/ a Y] DO {



Table IV, The results of the diagonalization,

3

CUN
Beal. T1-0 N =0 I=2 N=1
eV By 10 |3y 570 2252 | 229/2 P1/2 3372 | 22 | 2Eqy0
0 0 0 0 0.9606 0 -0.1451 | -0,0419| -0,2334
0.743 0 0.8131 0 0 -0,1556 ~0.1849 | -0,0802| ~0,5236
1.284F 0.3745 0 0 0 0 0.3872 | =0,2922 0
1.531 0 0 0.7233 0 -0.1659 0.,1323 | -0.1623 00,6388
1.867 0 0 0.5860 0 -0,1651 0,0831 | -0,1725) -0,7699
1,877 0 0 0.2296 0 -0,0392 | -0.0193 0.9723
2.014 0 0.4527 0 -0.1734 ~0,2211 | -0.0702 0,8433




/8

V  a- 55MeV R.o=1254"21a |, & =065(m
o v v
1/3
W =-liMev R =124 tm |, & =047im (60)
o w w
1
V.  e-7.5MeV R =154 %0
a0 o

Using this optical potential we have calculated the phase shifts
8’3(1-:) » oy (E) the regular i) (r,E) and irregular solutions in
the 9,0 -11.5 MeV energy range.

Now all the necessary wave functions being at our disposal we cal-

culate the elments of the T-matrix which in angular momentum representa-

tion can be written as follows:

X 61)
opt 1 ~ (=) TT -1 TT, | (22} (
<3’J>-3.J +7IT2< 'W“lelAJr>(A )PA<AJ5|VIWnJ>’
opt
The amplitude fTJ can be expressed by the phase shifts and
it was computed including alf the partial waves up to Zm L = 8 . The

second term of < fTJ > must be computed only for the f{ <1 and {3

partial waves because In our model the contribution of other partial

waves vahishes,
In terms of our model wave function the matrix elements involved in

the second term of < § > are expressed as follows:
3 P

\TT v '{‘m N {1 ol )c“
< g >al —
Js l l nlJ Ja 2T0+1 oJo
{0) 'v(o) (0) (+) >
<g, O x I ¢, m, > (62)

+

i LA ¢ ] +) J
;?.(‘2“<[¢2(1)xn’ 1" v |[d>0(0)1]nJ >,

where the normalization constant is given by

I
Ny =1 - 2l (63)
2T0 + 1
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Instead of assuming a specific expression for the monopole term v , it is
enough to introduce an appreximation for its "expectation value"
0, . .
<¢~0 (0) v¢ \d)O(O) >, In order to have the same radial dependence
©) .
as ir CAS ole ¢ ¥ Wwe apr e < YV {or
as in the case of the quadrupole component we approximate -9)“(0/[\ ﬁqaa()b

by a simple quadratic expression

O3 . o2
< o]V P 0 >a ke, (64)
-
where the strength K iz treated as a free puarameter. Using the
expression given by (56) we get:
TT . + 1 Js
<A v ¥ > =N 1l —— 1y« K
Js ! 0J 3 0oJo
: 3 a 2T 4 1
0
< A VR <O (6
: r i 3 3
Xy 0 T M
I 2j)7 s . . 1)
+ = X ey (6., S6YH 777 >
§ 241 0(0J)J nd 2 ! nJ
The calculation of the matrix elements A | defined by the equation

(40) is quite straightforward and it is easy to see that both the level
shifis N and level width I' | cian be obtained as a quadratic
expression of the monopole strength K o

Substituting the partial scattering amplitudes < f‘:, > into standard
formulas we have computed the differential cross reaction and the pola-
rization of the elastic proton scattering., We have repeated the computa-
tion a few times in order to select out the best value for the monopole
strength K .

The calculated cross sections together with the experimental points

measured in lleidelberg are plotted on Fig.l. The energy and angle depen-

dence of the polarization is shown on the Fig,2,

It seems to be useless to describe in details the calculitions for

. 138 14 .
the nuclei 13a and OCe. It is enough to refer as an illustration to

the FEig,3 which demonstrates the qualitative identity of the cross sections

138I 142

for o and Nd.



5. Discussion

In addition tb the calculations described in the previous section we
have made a few tests in order to see what we can learn about the 1AS,
The first problem what we have examined is the importance of the "target
ground state + proton" component of the "ideal" IAS. We have repeated
the relevant part of the calculation using the wave functions of the
"ideal" lAS's instead of the "projected " ones, Comparing the results

it turned out that there is no appreciable dewviation, Of course, this is

not surprising at all, because the weight of the "target ground state +
proton" component in the "ideal" 1AS's is less the 5%. It is expected,
however, that in the case of lighter nuclei where the neutron excess is
smaller the situation is quite different and this component is much more
important,

The aim of the second test was to examine the coupling of the
IAS’s to each other via the continuum states. To see the importance of
such a coupling we have repeated the calculations neglecting the non-
diagonal elements cf the A, matrix, that is replacing the inverse

mairix (A" by the simple diagonal matrix:

sr

-1 1
(a™h =8 — (66)

rr

We have compared the results with the previous ones and only insigni-
ficant differences were found. This shows that the coupling among the
IAS’s completely negligible, they act independently and the scattering ampli-
tude can be written in the usual Breit- Wigner form:

£

‘-l’(_) v ATT ATT v ll'(+) 5
< >=3—°W+ 1 s < nJ vl ar 2% .n! l nJ ) (67)

FE ~(&, +AFo+A,., )+ - r,,

<

Von Brentano et a1.13) have performed the phenomenological analysis of
the cross sections for the proton elastic scattering on the isotopes N=82
using such a representation for the scafttering amplitude,

We have summarized the results of this analysis together with our

results for the 143'Nd in the Table V,
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the third resonance. It seems to us that the best tool for this purpose
is the pr.ton polarization measurement. As it can be seen on the Fig.2
the sign of the polarization is opposite for J=Ff + 1/2 and 1=1Ff -1/2
and it is enough to measure only the relative sign of the polarization at
the different resonances.
This possibility of the unambiguous spin assignment was pointed out
recently by Adams et al, 19 )
Finally we v.ant toemphasize that the method discussed in this pa-
per can be applied for more realistic residual interactions and for more
sophisticated models without difficulty, Of course, much more computer
time is required and to perform such an extensive calculation seems
to be reusonable only in such case where we have more detailed and
more reliable information about the circumstances e.g, about the single
particle energies, «bout the character of the excitations of the target and

tuvet + neutron systen,
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Fis.1. The encrgy (lc'fy(;pdence of the cro== section of the elastic proton
> . YN . s . .
scattering on Nd at different angles, le),?) expermmental points
were measured by the lleidelberg group 77,
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