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1, Introduction

‘The problem of solving the t-matrix equation in finite nuclei with
realistic forces is still of great interest, Most of the papers dealing with
this problem -5 can be characterized by the adaption of the methods which
have been developed for the nuclear matter {separation method, reference-
spectrum method ). Another approach ‘has been proposed by Eden and
Emeryé, and is based on a consistent use of the harmonic oscillatcr rep-
resentation which is motivated both physically ( shell-model calculations for
light nuclei) and mathematically ( great simplification of the equations ),

On the other hand, the use of this approach practically restricts us
to the study of the light closed-shell nuclei He4, ol6 and Ca4o since for
any other nucleus the problem of degeneracy arises which represents
still a principal difficulty.

The calculation of the ground state characteristics of the above men-
tioned nuclei can be performed by means of the Goldstone expansion in
t- interaction, However in actual calculations 6-8 a number of approximations
was introduced. These approximations refer on the one hand to the solution
of the t-matrix equation, on the other hand to the treatment of the higher
order diagrams in the Goldstone expansion (approximate self- consistence

etc.). In the present work attention is paid to the first group of them.



Probably the most important is the approximation of the exclusion
operator Q which neglects the influence of the motion of the centre of
mass of a given pair of nucleons. This neglection is either complete
or a correction is introduced in the selfconsistent part of Hamiltonian but
the accuracy is not estimated ?. Similarly the paper of Day and Kallio 8,
which otherwise seems to represent even in its preliminary results a con-
siderable progress, does not contain an estimation of the accuracy of the
used approximation of Q . A more complete attempt to handle exactly
this operator has been made by Wong 2. However , his estimation of
accuracy is closely connected with the reference- spectrum method and
cannot be applied in the harmonic oscillator formalism,

ln the present work we start with the usual assumptions:

1) a spherical harmonic oscillator representation is used;

2 )the unperturbed wave function of the nucleus is nondegenerate
i.e. we consider only He4, 016 and ca*?;

3) the nucleon~ nucleon interaction is supposed to be described by
a.general static potential with a hard-core ( Hamada~Johnson 10) or a
soft- core ( Bressel et al. 11) repulsion.

The t-matrix equation is transformed to an infinite algebraic system
for the t matrix elements in LS-coupling, the exclusion operator being
treated exactly, Further, generalizing the results obtained for & simplified
one-dimensional case 12, we obtain an approximate exclusion operator Qq
which depends only on the truncation constant M and converges rapidly
to the exact Q with increasing M, (For the lowest value of M which
is 0 for He4, 1 for 016 and 2 for Ca40, QM is identical with the appro-
ximation of Eden- Emery). .

With a fixed finite value of M, we can transform the algebraic system
into a finite system of coupled integral or integrodifferential equatibns for
the correlated two-particle wave functions plus a finite algebraic system.
However, solving such a system would result in great computational com-
plexity.

We therefore propose an approximate method, the main feature of which
is the replacement of the kernels of the coupled integral equations by fi-

. . . 13
nite sums. The convergence of this procedure Is proved . Then we can



return to the algebraic system for the t- matrix elements which is now fi-
nite. Choosing the dimension of the system sufficiently large, we obtain
the solution which will be very close to the solution of the exact infinite
system, Hence the results of the proposed algebraic method can be made
arbitrarily accurate, Moreover, the method is convenient for calculating
higher- order diagrams of the Goldstone- expension since all "on" and
"off the energy-shell" t matrix elements, which are necessary for calcu-
lating energy up to the second order and the mean values of such quanti-
ties as r.m,s, radius and nucleon density to the first order, are expressed

directly by means of the solution of the algebraic system,

2, The Exclusion Operator

First of all, we shall write down equations for those t-matrix ele-
ments which are necessary for calculating the first and second order
diagrams of the Goldstone expansion for energy and the first- order diagrams
which occur in the expression of the mean value of One-particle opera-
tors.,

For this purpose we need only matrix elements between fb , Cbo or
o, , b, (n or ¢o , @, ‘2) + Where @&, denotes the unpertur»
bed ground state , Cb(l” and fb("j) the unperturbed states with one- and
two - particle excitation, respectively. ‘lhus on the one side of the conside-
red matrix elements there are always only occupied states ( hereafter deno-
ted by the upper index O), while on the other side both occupied and
unoccupied states can occur. Further, the energy denominator e is for

such matrix elements always of the form

_toy (o) (1)
e =e ' +e, -~ H 0 ?
(0) (o)
where e . e 2 are the single-particle energies of the corresponding
occupied states and Ho is the unperturbed Hanniltonian,

This form of e and the whole formulation in the present paper
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admits the self-consistence procedure proposed by Day- Kalllo, This pro-
cedure seems to be very convenient for our method and hence we shall
not treat this point in more detail,

In LST-coupling the equation for the t- matrix elements reads
(01 (0)
PERITIIE T secn2 v 1'%, 2% secn 2l v — tl L2 s (2)
s -~ - s o

~—

where 1,2 means 10 quantum numbers of a pair of nucleons:

1 ? ¢ ¢ m SS_ TT (2’)
2 =0 LR AP PRt T T

— ) 1

*Here 8, Iis the oscillator radial quantum number, f, is the orbital an-
- -

-
gular momentum of the i-th nucleon (i=1, 2), 0, =t +0,, m, Iis the

z- component of V 2 ! s, S, is the total isospin of the pair and

z- component and similarly T, T, refer to the total isospin.
In this coupling the exclusion operator Q together with eq.(1)
gives

L2 . s ! s acl’ </ taltan(3)
e C’ =G el0)y o 10) e’ e’ ,,-"+z'l-g.")q, iy 212 1122
1 o 1 1 e

G;Ee‘o 2 vzn;+!;-6;
where &, denotes the oscillator energetic ‘number ie. € ;=20 + !’
and €, is the energetic quantum number of the first unoccupied shell
( €4 =1,2,3 for He4, 016, Ca49 respectively).x

Now Q/e must be transformed in the centre-of-mass (c.m.) system,

For this purpose it is convenient to introduce new summation indices
’ ’
v-Gl+G'2 i.e. 2G°5V<w

v’ =€ i.e. e°_<_v'<v-e°

’
2

’

The sum over VvV can be rewritten

—) Note that in the spin and isospin space Q is simply unity and
we therefore omit writing explicitely the spin and isospin state- vectors
in the expressions for Q0 .




T - 2 - = . 5 (a)

Substituting into eq, (3) and using unitary properties of the 'Moshinsky
transformation 1 » we obtain 8§ -functions in all indices in the first sum on
the right-hand side of eq, (4), while the other two sums cannot be simplj-.
fied, They are responsible for the fact that Q/e is not diagonal in the

c.m, system:

1

2. 5 : { s T |nfNLAp><nfNLA, -
¢ v=2& e(l°)+e(;”-‘h¢.,(p+3) 2n+f +oantL=p Ap
(5 )
(v, e
b3 T InINL S < PN LAy x f , g 1
2n+leoN 4L = Ap nfNL, a0 'NL°, A

20 "+0 4 aN 4L ey

whera (v, Cq) L+L’
npNL.n'?'N'L',t\=[l+(_l) Ix
€p-1
x b ) ) <nfNLA| n Pn f A P<APNLN n fon @ oA,
;] 112 2 Y12 g

vi=o  an 4l =peyp’ ap 4f oy
1 1 2 2
For obtaining this expression for f we have used the following pro-

perty of the Moshinsky- coefficients:

. L +A
<af NL)| nl?ln2?2>‘>=(—1) <afNL) | naﬂan»l ?l A,

(5*)

The fact that Qe is not diagonaj] introduces considerable complications
in the equation (2) ‘Therefore all the authors who have treated this prob-
lem used different diagonal approximations, The simplest one introduced by
Eden-Emery neglects the second term in eq.(5) at an, It is clearly a
serious simplification and it does not give any possibility how to estimate
the induced error,

The "diagonalization” may be achieved in another way by neglecting
all the coefficicnts f which are not diagonal with respect to all quantum

numbers afNL . This has been done by Day- Kallio and earlier,



together with other approximations, by Wong. Again the procedure gives
no possibility to estimate the accuracy. The € coefficient is an uncomplete
scalar product of the elements of an orthogonal matrix and this suggests
the rapid decrease of the magnitude of £ with increasing energy Vv
(the number of energy shells in the sum is constant). This was in fact
quantitatively confirmed for a slightly different representation LZ. However,
from the fact that the complete sum gives unity for diagonal and zero
for nondiagonal cases, Wwe can hardly conclude that the nondiagonal un-
complete sums are negligible with respect to the diagonal ones since the
Moshinsky- coefficients have both positive and negative signs and their
dependence on parameters is very compicated.

It is of course possible that the diagonalization of the f-coefficients
is a goo.d approximation. But the only argument for it would be a good
agreement of the calculated nuclear properties with experiment, On the
other hand, if this agreement were not sufficiently convincing we could not
exclude the possibility that the discrepancies are due to the uncorrect
treatment of the exclusion operator.

This suggests to introduce such an approximation of Q which
uses only the proved rapid decrease of the f-coefficients with v .
This can be dcne as follows: we divide the expression (5) into the
diagonal and nondiagonal parts leaving the first one unchanged, while
in the second part the infinite upper bound in the sum is replaced by a
finite number M, This gives an approximate operator (Q/e),, which,
in view of the dependence of the f-coefficients on V , can replace the
exact Q/e with arbitrary accuracy. Conséquently we must choose such
a value of M for which the change M — M + 1 will not practically
influence the calculated quantities. '

Such a tceatment of Q/e clearly leads to considerable complica-
tions in calculation. In the following sections we shall try to show that

even with these complications eq.(2) can be numerically solved,



3. _The Algebraic System for the _ ¢ Matrix Elements

.

Now we shall turn our attention to eq, (2) We must transform it
to such a form which will make it possible to use the approximate operator
(Q/e)y as derived in the preceding section, For this purpose we
introduce a mixed representation which does not change the state wvectors
on the right-hand side of the t-matrix elements, while on the left-hand side
we pass to the cim. system (cf. eq. (5)). For further simplifications it is
necessary to make use of the properties of the nucleon-nucleon potential v ,

It is well known that the most convenient representation for Vv s
that in which ¢ and § are coupled to the resulting | « On the
other hand, passing to the c.m. system we must couple [ with L to

A . For connecting these two couplings we introduce a "total" angular
momentum. ] by f - i + 5 + There are two representations in
which ] is diagqnal, the following unitary transformation connecting them9
(we omit wrifing the radial quantum numbers n,’ N )

: C+r 4
[EL)A, 8, 3)_>=(-1) [(LeyrA;S, ), >=

(6)

A Lfa
0"ty g §1, V@D IL, (91,17, >
3

Passing in the expression (5) for ¢/e and on the left-hand side of the
tmatrix elements to the state vectors |(fL)A,S, ]] . > We obtain from

%

eq. (2): '

(
at,NL)a,s, 53 1€7 1%, 2% saccat, NLYA, 5, 37 1957 119,200 5
2 — - - B s

+ b3 z 2 (7)

VvugG, e(l°)+ e;°’-1lm(v+ 3)

2a’+0’+aN‘+ L=y SAIE

\ (0)
<(at, NL)A,S,JJ | vt NL)AY, 8, T T > x (< (0T, N T 85T 170,250

tn ‘“’veo’
- e 4 ML» ’ S; g’ t 1 '2 >x .
b3 <(n" TN n,8%,] J' l l —~ n"',N'L',n"’",N"L",/\'
2n” 40" 42N "L Yy



(1)

1 .
Here r = -‘2<—- T, (T, +1) ile, Vv denotes the nuclear potential plus Coulomb

interaction while v (0 is the pure nuclear interaction, and the same re-
fers to ¢ .
For calculating the matrix elements of V we use (6) and then

pass to the state vectors 1284 > by

L, (0s)§,33 >= T (LM,if L 3] ) ILM>[SH) >
M4 g =T
In these representation the matrix elements of v are diagonal with res-

pect to 5,§, i, and do not depend on i' . Moreover, they are
diagonal with respect to ¢ , except of the tensor part which has non-
vanishing matrix elements for |~ '] =2 as well, Hence
(F) | grar 4o’ N
< =
gsyy v 0TSt 4y > 885,8“,8"1; LATY

Using futher the unitary properties of the Clebsh~ Gordan coefficients we
obtain

. <(af,NL)A, S JJ_[v" )10, NL), A7, 85 0 > =
(8)
| r,.J,8, L
=38 ,8 ., 8 , 8 , 8 _ _, <n,|v e >
NN’ LL 1.3, 88 13 [4 0x, 00 [4
where

¢, 3,8, L) A+’
<“E‘VEA,(Z’A"!""¢' >e= (=1) V((2A+1)(2)\’+‘1))x

!

) Y Lea
xE (2§+1)1 1 J<a n
j S

v L, >,
] S Jij 4 JS"E

e;

Similarly the inhomogeneous term in eq.(7) becomes

10



<CalNLYA, S, JT |y gt gt o

\

1 ml 8y (0 g0y X
' 1a z

0y (o) ta) (o) (o) (o o) g
x(P,m s s ptoigter gy > <a’0NL, 0 [l WO o ptoypren
12 a2 x 12 ] p 0 0 12 11 T2 20t
2n +l’=el +€2 —2N-L
(r,¥,s,L)
x<n v (0) |n* >,
PI [A,y;p ' P’

12

Substituting (8) and (8') into eq.(7) we see that in our mixed rep-
resentation there is no coupling with respectto §,], Jeo Further,
since the matrix elements of v connect only the states with the same
parity of I and so do the coefficients f with respect to L (cfieq.
(5)), it is obvious that eq, (7) couples only the t-matrix elements with
thg Same parity of 4 . Hence for a given set of quantum numbers

1(0),2(0’,8,1 .. (hereafter we shan call such a set simply a "case" )
eq.( 7) represents a system for the t-matrix elements coupled over aji
admissible combinations of indices n,0 N, L, ,. .

The form of the inhomogeneous term (8') leads to further simplifica-
tions when we note that the solution for a given "case" is nonvanishing
only if (8') does not vanish at least for one combination of the coupled

indices, Consequently, if it does not hold simu.utaneously

(0) (0) () (g to) o) (0) (o)
J--mn +S' and (Plzmu' S. [fnS

J, )y

then the "case" is trivial, If both these conditions are fullfilled then we
can divide eq, (7) by the Clebsh- Gordan coefficient of (8') and obtain a
system in which nothing depends on J, ,m“;;,s(:) K

In this way, we are led to "reduced" t matrix elements (denoted by a bar):

(o)
We supp(ose the singl?;})article energies e +e'(:’ to have the

x)
form e(0) 4 e2°’-_-1m[e‘,°’+c-, +3+ey, l,where ¢, can depend on n(l°’,l(°’,
(0 (o) !
nt® p 3 and ? but not on m‘9 .4 gt® .
2 "o 12 12 2

11



<(nl,NL)A,S,JJ It f1 5,2 >= 8, o, e
€ 12 x

(9)

ey (o) (031 t0) ;,(0}(0) t
v ( L, ,S,r, .
(om0 wnb 13 )<l NL AL ETA .S, 0, >
Here pp denotes the parity of P (p p= 0 for even parity and p ,=1
, 10y ¢(0)_ 0] H(0) (0
for the odd one), A ,, denotes a "reduced case' A12=n‘f),f’ x,nz),??),f(l; .

and on the left-hand side of the tmatrix element there remain only the

indices over which the system is coupled,
. . o) ptoy @ (o)
Further, interchanging o .(" X with n, , f
0 (o) +
relation (5’) and condition (—1)'7 v+ 0 =(~1) L

fies the Moshinsky=-coefficient in (8'), we find

, using the symmetry

which satis-

(M ()] {0)
L +p p+hyy -
<nl,NL,alt! A“,S,r, p, > .

<nr,NL,uF}Au,s,r,p‘,>=(-n ¢

lHence it is sufficient to consider for given 8,r, pp; only such "cases"

for which either 2n“ln +E(;” >2n_(°’+V;°) or 2n(|”+ﬂ(:”=2n;°’+ ?‘2"

2
(e
ana 150

Finally, the Moshinsky-coefficients impose two more conditions

° (o) o)
[P0t g0 gt Lt T 0t g, > 0.
! 2 -~ 12— 1 2 1 2 [
As to the dependence of the tmatrix elements on r , it can,

of course, be neglected in comparison with the proper nuclear force. On
the other hand, it is very simple to treat the influence of the Coulomb

force exactly. After calculating all the cases" with r=0 we must

perform the calculation with r =1 for those "cases" for which S+ r+ Py
is odd, Then the Coulomb energy of a given nucleus is the difference of
the binding energy calculated with the Coulomb force and the binding
energy calculated without it,

Summarizing all the conditions for the creation of "cases" ( the exact

treatment of the Coulomb force being included) we obtain for a given nuc~

leus (occupied energy shells G01L...,¢ o1 ):



(i) S=0,1;pz=0.l;r=0 or re 1 if S+r+pg is odd;

2n('|) +?(l"‘-0,1,...., € ,—1:

(ii) ; o 0 o) © . ,00)
2ﬂ2°)+?;’0.1.-.~.2n(=’+ﬂ(:)_1 or 2112)+32=2nwl)-1-?l and i’l >Z‘;’;
(0) {0) (o) (0)
(iii) each pair ?l 4 must satisfy , 4 2 —Pp >0

Ly . (o) Htof,
(w} for given ﬂl N :

(0) 0 (0) (0) (03
180 pD <t < ' (10)
) i PO ' Lsp< <ty
(v) for a given 2 e, ['<T < 12 .

As an example all "cases" for He? are listed in table 1 using no-
tation (11). Note that for Het only even values of { mow occur since
for odd F(Pp=1) the condition (11 -iii) cannot be sat: I ed jor any
"case", . .

Now we shall consider the coupled indices. For a given "case" it
is convenient to put together the angular indices f, L, creating all
admissible combinations of them and numerating these combinations (i=1,2,..).
Each i represents thus three numbers f ,,L ,A, . Now the values of A
are limited to [S~J] <A <S+] , As to the values of ! , they cor-
respond to the partial- wave expansion, It is well established that in nuclear
problems only several lowest values must be taken into account., Hence
we shall suppose the values of [/ not to exceed some upper bound Bm .

Because of the triangular condition between f, L, we see that the

number of combinations is finite, We denote R by YA and list the con-
ditions for the creation of combinations (f,L, A) for a given "case":
(1) E=pg,pp+2, pp+4,....,F'm

(ii) IS=JI<a<s +] (12)
(iii) [Pea] <Ll <Py

f 4L : o, g
(W)-1) =D A where  r,-l{1-(-p ' )
(v) at least for one combination it must hold simultaneocusly A and

k‘ >_U

_ ‘,(0)
1 12

(o) (0) 1 0y ° oy
n +n

where k,= ) R 4.-—2--({’1 +0, L, -1,

13



The last two conditions are due to the requirement that (8’) must not
vanish.,
Since the matrix elements of v are diagonal with respect to L ,

it is convenient to arrange the combinations (f, L,A) into subgroups ac-

cording to increasing L , and inside of each subgroup ( L is
fixed) according to increasing ? +» Thus if there are ZL different
values of L we have Ll <L,<...< L,L y and the s-th subgroup

(8 =12...,Z) consists of combinations, with the commom value L = L.
the indices of these combinations ranging from i=d, to iw= h, (ob-
viously d . =1 and h, L =Z ). In table 2 all combinations for the
He® - "cases" are listed for b =2 .

We introduce further for each i an integer quantity E, =sentier

+ +0 -1 t
(— ) = J L4 {cf, (12-1V)) and a new index

instead of an in (7): ven +N +E, . Denoting

(»)

<nl,NL.>\|'t'Au's"'r‘f>= “in v (9')

(]

where, according to our notation ?=?l sA=2 s, Lel «L, (sth
subgroup i.e. 1 satisfies d, i.i < h ), the explicit writing of the “case"
indices being omitted, we obtain from eqgs. (7), (8'), (9)

" (o)

(s) . % _ (0) o0y _(0)p(0) p (0}
Cin s 5 8A10‘2<k, NPGLNL A T 0 200, 0TS x
L]

h

(s) ¢ s - (s)
x<v-'N-E‘,ll|v” Tk, =N, >+ ’Idl p> Cawp
=sdy =max (€ , N+E )
b= ma o i (13)
(s)
<v-N-E, 0 |v  |p-N-E,}> hy o <v—N—El,¢‘|v‘"|p~N—E’,E’>
x - X 3 4 x

]

=4
4(k’ + E’ - u\+2c12 1L=max(G-a,N+E,) 4(kI+E’-u)+2c“

2 ’ -— , = .
L " k=E, —tr €0, $=L2,..., 2,
x X b3 by 8}\ A le ot € T iad Ld 41 b
’ parey
#’=1 j'mda, . N'=0 1% ! e N 0'1 s ®

V=m3X(G°,N+El),...

14



[Here we have denoted

£r,3,8,L,)
<n, @ 1 e > - < Lvygyy Mlay >,
U‘ @ 1 ' l’ ,y’ s
;“"Go) f(2,.¢+rA,€-u)
4 ’ ’ ’
IN LI ON u—N-—El,V‘,NL!,y—N —E’,p,,N L,,)\‘
For the definition of ¢ ,, see the footnote on p, 11, and k, is de-

fined by (12—V). Finally, the coordinate representation of the state vectors

ln, 0> s

r? 1
20! by — (04—

R _p (1) =y ( yite 2oL P ah,,
" F(n +0+3/2)

where L is a Laguerre polynomial and 1 is related to the internucleon
nw
2%
fixed oscillator frequency), the normalization being

distance b3 by =y

Yx (m is the nucleon mass, w -the

+00 2
J TR ()] de=1.
0

This system is infinite with respect to N and v , The infi-
nity in N can be removed introducing the approximate exclusion opera-
tor as proposed in sec,2, Hence we replace in the term containing the
f- coefficients the infinite upper bound of the sum over u by a finite
constant M and this automatically leads to the following limit of N

(for a given s ),

N=0,1,..., m whete m = max (M—E’). (14)

The system (13) is, of course, a generalization of both of the diago-

nal approximation discussed in sec.2; that of Eden-Emery is obtained

putting M=¢& ,-1,, while the other one means that we retain in the sum
over s’, }’,N’ only the term with s=g8’, =}’ and N=N’ , In both cases,
besides the coupling over v , the system remains coupled only over i

within the given subgroup 8 (this is due to the noncentral forces).

15



As to the infinity in » , we can remove it passing from the al-
gebraic system to equivalent integral or integrodifferential equations for
the correlated two-particle state vector |¢rl(., ,2“"> which is related to
the unperturbed state vector | 1(0’.2(°)>'by

(o)

(o)
viv =t[1 .2 >

pd
l(0)'2((!)

In our representation we obtain

h
s

. < (8} (s)
Cinvp o RV—N_E‘J;“ Vi (r)¢'m (r) dr. (15)

ts) +oo

1=d,

Using this relation we can transform (13) to a finite system of integral
or integrodifferential equations for 'le(r:) the coupling exténding over s ,
i and N ( s=12..", Z, ; i=d.,d_+1,...,h5; N =01,..., m_ )

However, solving this coupled system would result in very tedious cal-
culations, We assume the algebraic form to be much more convenient,
provided that (13) can be approximated sufficiently accurately by a fi-

nite system with respect to v ., The only possibility for this is replacing

operator
" o |n, ><n,]|
ath = 5 = d d (X real)
A Cm=o 4(A-n)
nfA

which is implicitly contained in (13), by a finite_sum, This replacement

is theoretically correct since the expansion of Gi") which occurs in (13)

. 13
is convergent

+60
te () - Rap (1) [ R p(e") £0x") de "
G, () f(r’) df’'= = .
’ == 40 -n)
ne A

where f is an arbitrary quadratic integrable function,
In practice, we must choose some upper bound D, this choice being
correct only if the results do not considerably change when D4D +1 |,
D+2 etc. Since the dimension of the system increases wvery rapidly with

D and, on the other hand, the correct value of D may be rather great,
it would be herdly possible to solve the complete system, The solution can

16



pe found in a simpler way if we start with one of the diagonalb approxima~
tions and consider the nondiagonal part as a perturbation, For this purpo-

se we rewrite (13)

. (o)
h Cpy=N -—N -
(») s g (s} N En’exlvu lu-N-E,. L,> hf (o)
“iny “inp = 8? P
1=d, pemax(€ ,N+E) 4(k ot E,"")*Zcu f=a, 12"
(16)

x<k —N,0 NL A ['0%®0@240p0 ) sy N_E ]! [k -N 0 >-
] ] J 1 1 2 2 ] 171 1) J I

)

.(8) .
hy M (o <v-N-E, ,2l|v” |p—N—E’,?.’> s=12%...,2,
- 2 y]Np. N=0,1,...,m,
1=4d - € _,N+E 4(k -
o HEmax(€ , )) ( ’+E’ l.t)+2<:u fmd, 4 adeeish )

v=max(€ 4 N+E’ }peeer D

where
ZL By weE, -y, E .
)
NI 3 NN fl;,:,,,'N,’v. (1)
tNp 2=l Jme_, N'=o )

For solving ( 16) the following iterative procedure is proposed: let the n-th
approximation of vy be known (in the zeroth approximation we put y=0~
the diagonal approximation of Eden- Emery). Then for each pair of indices
s , N we solve (16), the coupling refering now only to i and v .
This gives us the n-th approximation of ¢ . Putting these quantities in-
to the formua for y (17) we obtain the (n+1) -th approximation of y .
In this way our iterative procedure is uniquely defined,
The convergence of this iterative procedure seems to be guaranteed
from the following considerations:
(i) the diagonal approximation is undoubtedly a good zero-order appro-
ximation
(ii) the form of the f-coefficients (5) suggests that the nondiagonal part
of the exclusion operator Q can be. considered as a relatively
small correction,
For a numerical treatment this procedure will be obviously vety con-

venient even if the dimensions of the algebraic systems are large, since

17



we simply multiply the inverse matrices (which do not change by iterations )
by the right- handg side vectors, The only humerically tedious part is the
calculation of the matrix elements of v which must be performed before
starting iterations, Here we want to underline that the above method js
directly applicable only for the soft- core potentials for'which the matrix ele~’
ments are finite , For the hard- core potentials a modification ig necessary,

Regarding the hard- core as a limit of a finjte rectangular repulsion
Vo 1 the dimensionlesg hard- core radijug being a » We obtain for g
given v, from (15), (16), (17), for 0<r< q

Fd Vl(f.l*-l) € -1

. 1)
[ er 20777 Ak =N+ 24342¢ 9y, At P ) ey
de? 2 [ 12 ¢N 0 1N u=N+El INY
M
R X - -
x "‘”'“‘1'?1(') 3 leV Ru—N_g,f'(')+2clz 8)« P <k‘ N,E’,NL‘,AI[
v=mux(Go,N+ElJ 1t 112

[n(ﬂ)(’m,nm’pm)« >x R
T 2Ty Tty

a €o-1 a
fim [ v ™ ey ar - BIV ta) «+ 'y 2 Royonoe 00 f(r)dr 4
Yoot o u’=N+E! 0 11
M a a (18)
* z ym v f Rv-N-gl,?l(') f(r)dr—2c’28A p(mof Rk!-N}’l(') f(r)dr x
t 12

V%mcx(GO,N-#El )

- (0)p(o) (0)p(o0)
x<k‘ N,F’,NLl,A!lnl?. ,nzfz AL >

d
where B _ i (—— ! () .
N v 4460 dr N T
0
For a<t<4+m the functions v satisfy
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(03 g (@) _ (@) g (0)
P L 02 A > Rk‘—-N,f! (1) +

(s)
(o
Vo (1) =8 N <k, -N, 0, NL ,X,
12 1t
) R (r) M R (r)
() v-N-£, ! (s) v-N-E, [
+ pA < 1.4 b Yinw L4 —(19)
v V=max{& ,N+E ) Ak +E —v) +2c|2

v=maz (€, N+E ) 4k +E :"’) +2¢,,

Further we have from (15)
h
. a 8 +&
(2 . "lm [R 5 [R (v (ny'™ (dr.
! =
INY v 450 { v=N-E a v N_El'vl 4 IN
[}

y=d
[

(8)
'F(r) A wm (rydr +
11
For calculating the first term, we use (18),and for the second term (19).
Hence for each pair 8N (s =1%..., zZ,;N=01...,m ) we have

»
toy  Eo1 m : > (8
€ - € (a) - 2 h2 €
Ny INg “peN-E , p-N-E, INp
p=N+ E, J1=d_ pe=max(C ,N+E )
s d 1
=(s)
<y=N-E, 0 |v, [u=N-E 0> "
-B veng 1 () = X 5(0))‘ x
IN ANt e d. 12 ]

Ak, +E -p)+2c,

0) (@ _ (o} (0) ~(e}
wcky =N, 0, KL A 100 07 a8 ST N-E VT T N0 > - 28, ey x

h ~s)
(!’) M M () <V—N—El,v "Vl’hl—N—E’ ,P,)
*Jyon e x on(®1= p z Y ! -
Tt T INp
1=d_p=max (€, N+E, ) 4(kJ+F!_“)+2°x2
()
-8 x (a) ]
1 V—N—E‘,u-—N-—El
where v denotes the regular part of v(for a< <+ ) and
For the H] -potential the matrix

J(‘f) ( f R R
mn E)EJ ﬂ!(r) ml’(r) jf 15
elements of ¥ are available . In (20) there are, besides the quarn-
e ')
1INV

another unknown duantities Bi;)(i= d ,d +1,...,h ).
s [ ] s

tities ’
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The equations by which (20) must be supplemented in order to define all

the unknown quantities uniquely, follow from the boundary conditions

Tim w'!'N’ (a) =0 i=d_,d _41,... 1

A\ -5 4+ 5o
0
Putting in (19) r=a we find

D R

s v-—N..r;l,?!(a) M RV—N_E‘,?‘(a)

= 3
INY INY
4(k E - -
((+ . v)+2c12 y=qu(G.N+F!4)(kl+E! u)+2cI2
° (20)

(o)

Ve max (G,N+E )
0 1

-8 -
F(O)A <k -N,?
12 1

1’

(0) ,{0) (o ,(®
NL , ? P >
' f\,ln1 l,ﬂ2 2A'3Rk!_N",‘(a).

The algebraic system (20), (20') for the unknown Qquantities
‘:(N'L (i=d,,d, +1,..., hyiveN+ E,,N+E +1,...,D) and B“'N) (i=d,,d,+,l’--~,h,)
represents the required modiflcation of (16) for the hard-core potentials

and can be solved by the same iterative method.,

4, Discussion
=iscussion

We have presented in eqs, (16), (17), (20), (20') a numerical pro-
cedure for calculating the t-matrix elements between the ground state and
arbitrary excited or unexcited state (cl. the beginning of sec.2). With these
matrix elements we can calculate immediately the first -and second - order
term in the Goldstone expansion for energy and the first-order term of the
one- particle- excilation part of the wave function, The Jatter quantity is ne-
cessary for evaluating the mean value of one-particle operators (r,m,s. ra-
dius, density) up to the first order in t .

The evaluation of higher- order terms requires the t-matrix elements

belween excited states, the numerical calculation of these terms being

=)
<



very tedious. The evaluation of other diagrams requires the t-matrix ele-

ments between excited states, the propagator Q/e being much more com-
plicated in this case and, consequently, the numerical treatmer"xt of the
correspondmg equat1ons being very difficult, Because of this difficulty, we
ascume that the Goldstone expansion is practically applicable only if a
self- consistent calculation of the first and second order gives a good
agreement with experiment. Otherwise this expansion, even if it were con-
vergent, could not be used at the present state of numerical techniques
for actual calculations of nuclear properties,.

It is obvious that if we want to decide the question of the practi~
cal applicability of the Goldstone expansion, we must be sure that our
method for calculating the numerically accessible part of the expansion
is sufficiently accurate and that possible discrepancies with experimental
data are not due to uncorrect approximations, We hope that the method of
the present. paper which works only with approximation permitting to obtain
an arbitrary accuracy of the results, can provide such a sufﬁcxently Aaccurate
solution. (Theresults of preliminary calculations for He according to
(20), (20') with the H) - potential will be soon pubhshed).

In conclusion, we shall show how the t- matrix elements occuring in
the first~- and second - order diagrams can be expressed by means of
the solution of the algebraic systems (16 ) or (20).

For the first order we can directly express the energy correction

.tl itq),j(0)> ,

1 ., 10) _(O)l
A

T = — s <'i , i
] 2 1(0)"(0)

while for the second -order energy correction and for the first- order
correction to the above mentioned mean values we need:

(0)
(L, (o
T . !

(o)
<'k(°’,i|t]k , i >
2 (s) A
k
Here the subscript A reminds that we are dealing with antisymmetrized
matrix elements, and each letter i,j, k denotes a one-particle state
characterized by 5 oscillator, spin and isospin quantum numbers in

usual notation, e.g.



n (1)

(0) (1 1
lea, ,0,m, ,s, ,t, , j“”::n‘?’,? n‘® s t

g § %

the upper index 0 denoting occupied states. Introducing the LST- coup-

ling (2'), passing in the left- hand side state-vectors to the c.m, system and

using symmetry properties of the Clebsh- Gordan and Moshinsky coeffici-
ents, we find

(0) 0
T - 1 v < i , ,(O)Itl l( )' ,(0)
1 —

>
. — A
nt010 0 fo) {01 p(0) n®gs 1o
O A T RY £ x

(1,410 1 ® 1 1 1 (k1)
- , = L 55
T 1:(20)51-!’S ? (3, 7 °. I2 2 x

1 ® 1 m,1 1 1)
)(—Z—Bl —2 Sl l—2 ——2 Sg: )X
tk’ Jk

(21)

My, 1 ey 1 (), 1 1 2 .
x8 v (3—1. 'E_t‘ LE--;-,TT') (Pkmk,lexnsz“Fk‘ m,)x

(0) (o) (o)
x(fkmk,fl m,[?kﬂ’,V”m”)<k SAlt] K >

A )
where
S““=s“"+ s, st gty gt o +m, M o=m,o+om
x z x ' z e = ' ki k 17 Ty k I
(k) (1) (k1) (k) (kt) (k1)
To=t et 00 osttD g gt g o
and |
(0) (o) -
<a\,‘b|t|c , d >A_ > . <n?,NL,Publnuf',a,nb?b,qu>><

an+lian+L=c +c
a b

-t T St 0, 410
-(= <nF,NL,?“ m”,SSz ,TTIIt! ¢t d >,
S

Further we make use of the coupled representation |(al,NL)aA,s,]] >

and of egs. (9), (9'), applying the notation (12). Then
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fa ?+?+? S+T+
cab]t] ¢, a0 > o (1+(-1)"® Ty s 1"
- PF'=..)
"(0) )
P oa+s
. (ab) (ab)
x (lf Sm +s‘“" m“” +s(°‘)( ab Papr 5SS, S T omgy + Sz ) %
J_lf l ab
(e) (0) (ed) (0;' i () (c4d}y )
x (0" m WSS, HN,S,Jmch,sI Y x (22)
2 h min{Vy—E , m )
B SRR S U S WA UV NPT set®)
x 2 PY B v-E -N,I . NL, infon, 0.0 > (n A
s=1 y=d, ! eb =y
g +7

where r=-l—T (T +1) and V=nu+nb+entier(
2 z z

Note that the quantum aumbers 2 b in ( 22) must satisfy
v< D since the systems (16) or (20) do not give ¢ for higher va-
lues of v , these quantities being neglected by our D- approximation,
From (22) we see that this means putting zero all the ¢ matrix elements
<a,b]t] ¢, ¢ > with the excitation energy greater than i (2D~ -Gm)

This is a quite natural restriction if we note that these matn.x ele-
ments occur in diagrams only in sums which extend to infinity with res-
pect to all excited states. Consequently, they must tend to zero with in-
creasing excitation energy in order to ensure convergence of these infinite,
sums.

.

The expression for Tl can be further simplified putting (22) into

(21) and performing summations over m(!o) and S,
z h
Tow s+ T+ L °
T = T [1-(=D 11T (2]+1) T % 8, e x
s.'r.p? Au s=1 1=4d, 1 12 (23)
min (V- E, , m ) ) T
I) (!) (!) (0) g (0) (s)
x s <v—-E’-—N,E’ WA ‘ ? F ?2> b € ny X
T, =T
N=o
X(T T!(T=+1). AL, )
where X denotes summation over all " reduced cases" (cf. (9)) and
A
the depehﬁence of € on r and A, s explicitly written.

4

23



The second- order correction for energy and the first- order correco-
tion for the mean values of the ram,s, radius and density can be imme-

(o)
diately expressed by means of T/ ! » the possible summationsg
24 P 2

of the resulting formulae,

‘
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Table 1
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Table 2

Cases No 2,3,
(ZL=3’ 2 =1 )

Case Noil

(ZL=2’ 3 =2 )
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