3509
ОБЪЕДИНЕННЫЙ
ИНСТИТУТ
яДЕРНЫХ
НССЛЕДОВАНИЙ
Дубна

Nguyen Van Hieu

ON THE UPPER LIMIT OF THE RADIUS OF ELEMENTARY PARTICLES

1967

Nguyen Van Hieu

ON THE UPPER LIMIT OF THE RADIUS OF ELEMENTARY PARTICLES

Submitted to Jad.Phys.

Научно-техническая библиотека ОИЯИ

In the present paper we consider some consequences of the analyticity of the formfactor $F(t)$ in the complex $t-p l a n e$ with a cut from $t=4 \mu^{2}$ to ∞. Concerning the behavlour of the modulus of $F(t)$ on the out and in the physical region of the scattering channel we make some assumptions which can be checked experimentally. Under these assumptions we shall get upper limits of the meansquared radius $\left\langle r^{2}\right\rangle$ which is connected with the derivation of the formfactor by the relation

$$
\left\langle r^{2}\right\rangle=6 F^{\prime}(0)=\left.6 \frac{d F(t)}{d t}\right|_{t=0}
$$

We shall prove the two following theorems:
THEOREM 1. Let the integral

$$
\begin{equation*}
\int_{d \mu^{2}}^{\infty}|\ln | F(t)| |^{\uparrow} \frac{d t}{t \sqrt{t-4 \mu^{2}}} \tag{1}
\end{equation*}
$$

exist for some $p \geqslant 1$. Then

$$
\begin{equation*}
\int_{4 \mu^{2}}^{\infty} \ln |F(t)| \frac{d t}{t \sqrt{t-4 \mu^{2}}} \geqslant 0 \tag{2}
\end{equation*}
$$

If the left-hand side of this relation gets its minimum, ie.

$$
\begin{equation*}
\int_{4 \mu^{2}}^{\infty} \ln |F(t)| \frac{d t}{t \sqrt{t-4 \mu^{2}}}=0 \tag{3}
\end{equation*}
$$

then the derivative $F(0)$ is

$$
\begin{equation*}
F^{\prime}(0)=\frac{1}{4 \pi \mu^{2}} \int_{1}^{\infty} \ln \left|F\left(4 \mu^{2} x\right)\right| \frac{d x}{x^{2} \sqrt{x-1}} \tag{4}
\end{equation*}
$$

THEOREM 2. Let the formfeotor $F(t)$ be bounded on the out and have the modulus smaller than unity in the physical region of the scattering channel

$$
|F(t)| \leq\left\{\begin{array}{lll}
M & \text { for } & t \geqslant 4 \mu^{2} \tag{5}\\
1 & f_{0 r} & t \leqslant 0
\end{array}\right.
$$

Then the derivative $F^{\prime}(0)$ satisfies the following inequalities

$$
\left|F^{\prime}(0)\right| \leqslant \begin{cases}\frac{\sqrt{M} \ln M}{2 \mu^{2}} & \text { for } \tag{6}\\ \frac{\ln M \leqslant 2}{2 \mu^{2}} & \text { for } M)^{2} \\ \frac{\ln M}{2} \quad \text { for } & \end{cases}
$$

Moreover, if the integral (1) exists for some $p \geqslant 1$ and the oondition (3) $1 s$ satisfied, then

$$
\begin{equation*}
\left|F^{\prime}(o)\right| \leqslant \frac{\ln M}{8 \mu^{2}} \tag{7}
\end{equation*}
$$

Proof of Theorem 1
By mean of the substitutions of the variables

$$
\begin{equation*}
z=\frac{t}{d \mu^{2}}, \quad \xi=\frac{1-\sqrt{1-z}}{1+\sqrt{1-z}} \tag{8}
\end{equation*}
$$

we firstly realize the conformal mapping of the oomplex t-plane with a out from $t=4 \mu^{e}$ to Δ into an unit circle, and we denote $F(t)=f(\xi)$. We form the Blaschke produot (see ${ }^{1}$, chap. $\overline{\text { V }}$)

$$
\begin{equation*}
B(\xi)=\prod_{n=1}^{\infty} \frac{\xi_{n}^{*}}{\left|\xi_{n}\right|} \frac{\xi_{n}-\xi}{1-\xi_{n}^{*} \xi} \tag{9}
\end{equation*}
$$

where ξ_{n} are the zeros of the function $f(\xi)$, and we put

$$
\begin{equation*}
g(\xi)=\frac{f(\xi)}{B(\xi)} \tag{10}
\end{equation*}
$$

$g(\xi)$ is an analytic function without zeros in the unit cirole and therefore $\ln / g(\xi))$ is a harmonic function in this circle. Since on the boundary of the unit oircle the modulus of $B(\xi)$ is equal to 1

$$
\left|B\left(e^{i \varphi}\right)\right|=1,
$$

then the existence of the integral (1) means the existence of the integral
for some $p \geqslant 1$. In other words the function $\ln |g(\xi)|$ harmonic in the oircle $|\xi| \leqslant 1$ is bounded by the L^{t}-norm on the boundary of this circle for some $p \geqslant 1$. It is wellknown (see ${ }^{\text {l }}$, chapter III) that for suoh a function we oan apply the Poisson formula

$$
\begin{equation*}
\ln \left|g\left(e^{i \theta}\right)\right|=\frac{1}{2 \pi} \int^{2 \pi} \ln \left|g\left(e^{i \varphi}\right)\right| \frac{1-e^{2}}{1-z_{2} \cos (\theta-\varphi)+a^{2}} d \varphi= \tag{11}
\end{equation*}
$$

$$
=\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|f\left(e^{i \varphi}\right)\right| \frac{1-a^{2}}{1-2 \pi \cos (\varphi-\theta)+\tau^{2}} d \varphi
$$

In partioular

$$
\begin{equation*}
\ln |g(0)|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|\ddot{f}\left(e^{i \varphi}\right)\right| d \varphi \tag{12}
\end{equation*}
$$

On the other hand $f(0)=1$ and

$$
|B(0)|=\prod_{n=1}^{\infty}\left|\xi_{n}\right| \leq 1, \quad l_{n}|B(0)| \leq 0 .
$$

$B(0)$ is equal to 1 onis if the funotion $f(\xi)$ has no zeros in the unit circle. Therefore from the relation (12) it follows immediately that

$$
\frac{1}{2 \pi} \int^{2 \pi} \ln \left|f\left(e^{\cdot \varphi}\right)\right| d \varphi=-\ln |B(0)| \geqslant 0 .
$$

Transforming into the old variable t, we get the formula (2).
Suppose that the condition (3) is satisfied. This means that $f(\xi)$ has no zeros, and instead of the formula (11) we have

$$
\ln \left|f\left(r e^{i \theta}\right)\right|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|f\left(e^{i \varphi}\right)\right| \frac{1-r^{2}}{1-2 \pi \cos (\varphi-\theta)+r^{2}} d \varphi .
$$

From this relation we get the equation

$$
f^{\prime}(0)=\left.\frac{d f(x)}{d a}\right|_{e=0}=\frac{1}{\pi} \int_{0}^{2 \pi} \ln \left|f\left(e^{i \varphi}\right)\right| \cos \varphi d \varphi
$$

which is oompletely equivalent to the formula (4). Thus theorem 1 has been proved

Proof of Theorem 2

We notioe firstly that $F(t)$ increases in the complex t plane more slowly than any linear exponential ${ }^{2}$. Therefore owing to the generalized maximum prinoiple from the condition (5) it follows that

$$
|F(t)| \leq M \quad \text { for every } t
$$

We 1ntroduce a new variable

$$
w=1+\frac{t}{A},
$$

where $A \gg 4 \mu^{2}$, and we put $F(t)=\varphi(w)$. Denote by E_{a} the ellipse with the fool at the points ± 1 of the w-plane and with the major semi-axis $a=1+4 \mu^{2} / \mathrm{A}$. According to the conditions of the theorem $|\varphi(w)| \leqslant 1$ for $w \leqslant 1$ and $\quad(\varphi(w) \mid \leqslant M$ on the boundary of E_{a}. By means of the mapping

$$
\eta=w+\sqrt{w^{2}-1}
$$

we transform the ellipse E_{a} into a circle with the radius $\quad R=a+\sqrt{a^{2}-1}$
In this mapping the interval $-1 \leqslant W \leqslant l$ is transformed into the unit oirole, and the ellipse E_{a} with a real cut from -1 to +1 is transformed into a ring with the exterior and interior radius R and 1 , respeotively. The funotion $\psi(\eta)=\varphi(w)$ is analytio in this ring. Applying to $\psi(\eta)$ the Handamard theorem on three circles (see ${ }^{3}$, ohaptor V) we oan prove the following inequality

$$
\begin{equation*}
|\psi(\eta)| \leqslant e^{\frac{\ln (\eta)}{\ln R}} \ln M \tag{13}
\end{equation*}
$$

We ohoose the number A to be large enough suoh that

$$
\begin{gathered}
R=1+\frac{4 \mu^{2}}{A}+\sqrt{\left(2+\frac{4 \mu^{2}}{A}\right) \frac{4 \mu^{2}}{A}} \approx 1+\sqrt{\frac{8 \mu^{2}}{A}}, \\
\ln R \approx \sqrt{\frac{8 \mu^{2}}{A}}
\end{gathered}
$$

Then

$$
\ln |\eta| \approx \frac{\sqrt{2|t|}}{A}
$$

and we can rewrite the formula (13) in the form

$$
\begin{equation*}
|F(t)| \leqslant e^{\frac{\sqrt{1 t 1}}{4 \mu^{2}}} \ln M \tag{14}
\end{equation*}
$$

Now we apply to $F(t)$ the following leama proved by Bessis ${ }^{4}$.
Lemma. If the fumotion $F(z)$ is analytic in the cirole $|z| \leqslant \rho$ and equals to unity at $z=0$, then it is different from zeros overywhore in the oirole $|z| \leqslant \rho$. with the radius

$$
\rho_{0}=\frac{\rho}{\max _{\substack{|z|=\rho}}|F(z)|}
$$

Since the formfaotor $F(t)$ is analytio in the oirole $|t| \leqslant \rho$ for anj $\rho \leqslant 4 \mu^{2}$, then acoording to the lemma and the inequality (14) it is not equal to zero everywhere
in the cirole $|t| \leq \rho$, , where

$$
\begin{equation*}
\rho_{0}=\rho e^{-\sqrt{\frac{3}{4 \mu^{2}}} \ln M} \quad, \quad \rho \leqslant+\mu^{2} \tag{15}
\end{equation*}
$$

It is not difficult to prove that the function in the right-hand side of the formula (15) reaches its maximum at the point

$$
\begin{equation*}
\rho=4 \mu^{2} \cdot \min \left[\frac{4}{(\ln M)^{2}}, 1\right] \tag{16}
\end{equation*}
$$

Thus $F(t)$ has no zeros in the circle $|t| \leqslant t_{0}$ with the radius

$$
\begin{align*}
& t_{0}=\left\{\begin{array}{l}
\frac{4 \mu^{2}}{M} \quad i f \quad \ln M \leqslant 2 \\
\frac{16 \mu^{2}}{e^{2}(\ln M)^{2}}: f \quad \ln M \geqslant 2, \\
\\
h(t)=\frac{\ln F(t)}{t}
\end{array}, l\right. \tag{17}
\end{align*}
$$

and the function
is analytic in this oircle. owing to the maximum principle

$$
\left|F^{\prime}(0)\right|=|h(0)| \leqslant \frac{1}{t^{\prime}} \max _{H \mid=t^{\prime}}|\ln F(t)|
$$

for any $t^{\prime} \leqslant t_{0}$. Applying the Carathedory theorem (see ${ }^{3}$, ohapter V) we get

$$
\left|F^{\prime}(0)\right| \leq \frac{2}{t_{0}-t^{\prime}} \max _{|t|=t_{0}} \ln |F(t)|
$$

Since t^{\prime} can be ohosen to be arbitrarily small, then from this inequaity it follows immediately that

$$
\begin{equation*}
\left|F^{\prime}(0)\right| \leqslant \frac{2}{t_{0}} \max _{|t|=t_{0}} \ln |F(t)| \tag{18}
\end{equation*}
$$

From the relation (14), (17) and (18) we obtain

$$
\left\lvert\, F^{\prime}(0) \leqslant \frac{\ln M}{\mu \sqrt{t_{0}}}=\left\{\begin{array}{c}
\frac{\sqrt{M} \ln M}{2 \mu^{2}} \text { if } \ln M \leq 2 \\
\frac{e(\ln M)^{2}}{2 \mu^{2}} \text { if } \ln M \geqslant 2
\end{array}\right.\right.
$$

This proves the first part of theorem 2.
If the integral (I) exists for some $p \geqslant 1$ and the oondition (3) is satisfied, then we have the formula (4). From this formula we get

$$
F^{\prime}(0) \leqslant \frac{1}{4 \pi C^{2}} \ln M \cdot \int_{1}^{\frac{d}{x^{2} \sqrt{x-1}}}=\frac{\ln M}{8 \mu^{2}}
$$

Theorem 2 has been proved.

We notion that if we identify $F(t)$ with the formfaotor of π-meson then theorems 1 and 2 concern only the physical quantities which can be determined inediately in the experiment. They are the values of the modulus of $F(t)$ at $t \geqslant 4 \mu^{2}$ and $t \leqslant 0$. To determing $F(t)$ in the region $t \geqslant 4 \mu^{2}$ it is sufficient to measure the ores section of the annihilation process

$$
e^{+}+e^{-} \longrightarrow \pi^{+}+\pi^{-}
$$

and $F(t)$ at $t \in 0$ can be determined by studying the soattering

$$
\pi^{ \pm}+e \longrightarrow \pi^{ \pm}+e
$$

The check of the relations (2), (4), (6) and (7) When the corresponding conditions are satisfied would be the experimental oheck of the assumption about the analgtioity of the formfaotor - one of the general assumptions of the existing theory of elementary partholes.

In conclusion the author expresses his gratitude to N.N.Bogolubor, D. I. Blokhintser, A.A.Logunov and A.N.Tavkhelidze for their interest in this work.

Roforenoes

1.K. Hoffman, Banach Spaces of Analytic Functions, Prontioe-Hall Inc., 1962. 2.N.N.Me1man, JETP 46, 1502 (1964).

Nguyen van tHieu, Ann. Phys., 33, 429 (1965).
A.M.Jaffe, Phys.Rev.Lett., 17, 661 (1966) .
3. E.C.T1tchmarsh, The Theory of Functions, Oxford University Press, 1939. 4.T.D.Bessis, Nuovo Cit. 45, 974 (1966).

