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In the present paper we consider some oconsequences of the analyticity of the form—
factor F(t) 1n the complex t-plane with a cut from t = 4}41' to ¢@ ., Concerning the beﬁav-
iour of the modulus of F(t) on the cut and in the physical regilon of the scattering
channel we make some assumptions whioh can be checked experimentally, Under -these assumpt-
ions we shall get upper limits of the meansquared radius 41‘2) which 1s conneoted with the
derivation of the formfactor by the relation
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We shall prove the two following theorems:
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THEOREM 1, Let the integral
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If the left-hand side of this relation gets its minimum, 1.e.
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then the derivative F(o) is
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THEOREM 2, Let the formfaotor F(t) be bounded on the out axid have the modulus
smaller than unity in the physioal reglom of the scattering channel
E2
) . M #m. t V3 jf’f‘
[F@o) < 2
’ 41 _f',,. €t (o

Then the derlvative F/(o) satisfies the following lrequalitiles
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Moreover, 1f the integral (1) exists for some p %1 and the oondition (3) is satisfied,
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Pi-ogf of Theorem 1l

By mean of the substitutions of the variables
N =y

Z= (8

J‘er} §= 44-.'4-—21-

we firstly realize the conformal mapping of the oomplex t-plane with a out from t= 4/4"
to 2 into an unit circle, and we denote F(t) = f(g )« We form the Blaschke produot
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( see 1, chap.V)

), and we put
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?(;) 1s an analytic function without zeros in the unit cirole and therefore ’a\ /y@]j

where ;,\ are the zeros of the funotion £ ( £

is 2 harmonic function in this circle. Since on the boundary of the unit oircle the mo-

“dulus of B(é) 15 equal to 1 ;
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then the existence of the 1ntegra.1 (1) means the existence of the integral
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for some py1l. In other words the function ‘&L/ﬁ(&)/ harmonic in the oircle (;/ £
is bournded by the. Lr-norm on the boundary of this circle for some p >1 . It 15 well-
known ( see 1, chapter III) that for suoh a function we oan apply the Poisson formula.
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On the other han& £(0) = 1 and ,
[6)- 1 [4] < 1, &8
n=4
B(o) 4s equal to 1 ornly if the funotion £ ( f, ) has no zeros in the unit .circle. There-
fore from the relation (12) 1t follows immediately that
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Transforming into the old variable t, we get the formula (2),
Suppose that the condition (3) is satisfied., This meaﬁu that £ (;) has no zeros,
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and instead of the formula (11) we have
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From this relation we get the equation
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which is oompletely equivalent to the formula (4)., Thus theorem 1 has been proved.
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Proof of Theorém 2
We notioe firstly that F(t) increases in the oomplex t plane more slowly than any

linear exponential 2. Therefore owing to the generalized maximum prinoiple from the
condition (5) it follows that
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We introduce a new varlable +

w o= "+’—)

where A 4,«4, and we put F(t) = (f’(w) « Denote by E:\ the ellipse with th: fool
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at the points +1 of the w-plane and with the major semi-axis a =
According to the conditions of the theorem /‘f(V)' $! for w§1l and
on the boundéry of Eq » By means of the mapping
o owar Vwiyg

we transform the ellipse E\ into a circle with the radius R = ‘a+ V “4‘ 4.
In this mapping the interval -1 £ w {1 is transformed into the unit oirole, and the
ellipse E, with a real cut froﬁ ~1 to +1 1s transformed into a ring wﬁ.th the exterior
and interior radius R and 1, respeotively, The funotion "f’(z) = qf 'V) 1s amalytic in
this ring, Applying to "f’(d the Handamard theorem on three circles ( see 3, ohapter V)

we oan prove the follaving_ inequality
: blg) oM. (13)
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We ohoose the number A to bs large enough suoh that
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and we can rewrite the formula (13) in the form
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Now we apply to F(t) the following lemma proved by Bessis 4.

Lemma, If the funotion F(z) is analytic in the cirole [z| £ f and equals to
unity at z=0, then it is different from meros everywhere in the oirole /2] £ o

with the radius ?
o = aax IF®)]
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Since-the formfaotor F(t) is analytio in the olrole \t] {p forany § £ Jf,\ )

then acoording to the lemma and the inequality (14) it is not equal to zero everywhere

in the cirole \tl Sft y Where

9o = 9 & v, e St )

It 1s not difficult to prove that the function in the right-hand side of the formula (15)

reaches its maximum at the point . -
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Thus F(t) has no zeros in the circle |t| with the radius
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1s analytic in this oircle, Owing to the maximum principle
!t ma 1.6, F(t
Feo) = (60 | IeEf
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for any t £ tp. Applying the Carathedory theorem ( see
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Since t’ can be chosen to be arbitrarily sma.'l.l’then from this inequality it follows

an

and the function

3, chapter V) we get

immediately that
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From the relation (14)}(17), and (18) we obtain
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This proves the first part of theorem 2, »
If the integral (1) exists for some p»1 and the oondition (3) 1s satisfied, then

we have the formula (4), From this formula we get’ »
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Theorem 2 has been_proved.

. We notioe that if we identify F(t) with the formfaotor of X -~meson then theorems
1 and 2 ooncern only the physioal guantities whioh can be determined imediately in the
experiment , They are the values of the modulus of F(t) at t > l‘rp-'" and t >$ 0, To de-
termine F(t) in theuregion t > 4/u'z‘ it is suffiolent to measure the oross seotlion
of the annihilation prooess
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and F(t) at t & 0 can be determined by studying the soattering
+ ES
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The oheck of the relations (2)’(4)'}‘(6) and (7) when the oorresponding conditions are

satisfied would be the experimental ocheck of the assumption about the analytiolty of the

formfaotor — one of the general assumptions of the existing theory of elementary par—
‘tioles,
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