





In the present paper we oonsider the problem a relativistioally oovariant descript-
1on of a system of two interaoting partioles in the framework of quantum field theory.
A generally accepted approach in this field btases on the Bethe-~Salpeter equation . As
is well known the B.S, amplitudes depend on the two space—time points X7 and Xz and
thus relativistio covariance i1s achieved due to the introduction of two times, This leads
one to some diffioulties in clearing up the physioal meaning of the B,S. amplitudes
( for example, it 13 not clear how to interprate the relative time, and how to normalize
the B.S. amplitude, etc.). The problem we are concerned with 4n the present paper is
to obtain the relativistioalir oovariant equations for two interacting particles ( with
spin O or 1/2) the solutions of whioh would allow a gquantum-meohanioal probabdbility
ianterpretatien

It can be shown that the physical quantities such as scattering matrix

on the mass shell and energy spectrum of bound states coincide with those ones obtained
by means of the B,5. equation . As will be seen below, our method of the solution of
this problem is directly connected with the guasipotentlal approach in quantum field theory

developed 1n papers 2.

I, Wave Egquations for Two Scalar Particles

1. Free Particles

Taking two free spinless partioles as an example we demonstrate the possibility of a
relativistioally covariant one-4ime description of a system of two particles,

It 1s well known that in quantun field theory the two—particle system is described
by the Bethe-Salpeter amplitude

Ap (g, 5a) = <0/ 7-(?'; G g(x;))//-‘> , .

where 7?1 (x) ares the Heisenberg fields of two scalar particles of equal masses and /P >
{4
1s the state vector with a definite value of the four-momentum p.
In the oase of absence of interaotion the Bethe-Salpeter amplitude (1,1) satisfies

the equations
(UX/_ mz)'z; Gy, X2 ) =2 s

1.2)
(U{Z* m2) By (xy%2) = O
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where £7x - - ’)f-_. ’2:+ Vl

Using translation invariance

Y
Ap (i, %2)= € o VICOR

1.3
X‘,z”(x’*x‘)" ze= (- Xe)
and going over to the momentum representation
yyz3 QA
Zocwr= Jhe s
we get the following equations
L. g)E e
[(.Z *7)"’”]'/1,0//)‘0*' (1.%)
2
[(£-1)=mt] =2
Due to the equality of the masses of the two partioles, from (1.5) we obtain
!/ p2 2
(‘7,0 +f -mz);;/ G)=o, (1.6a)
(Pq) Zpp)=0 (1.6b)
Hence it follows that the amplitude Il, /,) oan be represented in the form
A 1.7
/Z///)‘;[”'f)ﬁff)i me= L piso. ¢
Vo1
the funotion Pp (f) being determined only for those values of relative momentum
f whioh are related by the oonditilon P-flo.
Now we determine the ons-time wave function for soalar partioles in the osntre-
—of-mass system (,5'-0) :
-I£E (1.8)

Z, Rt )=E - A %o

From eq. (1.4) 1t is easy to see that the funotion (1.8) may be expressed in terms of the
Fourier transform of the B.S., amplitude whioh % integrat over the relative energy in

the o.m.8.

-z
Ay (Z,0) = ﬂ,’./f, e A5 1.) (1.9)



or, using the representation (1.7)

- re J?E?
Ip[z,o)= ﬁﬂy € f /;’). (1.10)
From eqs. (1.5) and (1.6) 1t follows that the wave function in the c.m.s. obeys the
equation
151 72 z) P ) (1.11)
C/f—7 m2)P i =2,

and has two solutions
2 *q

Lepe 4 S(E7m) . W VNTE (.22)

The solution with pusitive total energy fF=-2# describes the state of two particles "1
and "2" and the solution with negative energy f=-2#4 ' can be related to the state of two

antiparticles "1m ang "2" by means of oharge conjugation, 1,e,
" 2 1.13
ff,ﬂ';f(v)=f (~7,-E>0) . (1.13)

The normalization and orthogonality conditions of the solution of eqe (1.11) with diffe—

rent values of positive total enmergy are given by

N A A L AR G ) (1.1

Eq. (1.11) is a quasipotential equation describing two free scalar particles in the c.m.s.
An important merit of the quasipotential approach is the fact that the two-particle wave

-
function f; //'9 depends only on the three-dimensional relative momentum g

and can be normalized, i.e. allows a probability gquantum-meohanical interpretation 2.

The relativistio generalization of eq. (1.11) 1s of the form

2
[P -/‘/2]';’; p)=2. (1.15)
under the additional condition
,0‘7 =0, (1.16)

in this case

M= ,z;/”z_'?,_ .amn



415 the operator of the effective mass of the system of two free scalar particles.
The conditions of normalization and orthogonality of states with different values of
the total mass 1s relativistically generalized in the followlng way:

f;z;: [/‘) Z/f) J‘ﬁ,‘f)/?g z;/)/,‘/ b 4t Iz M= //_; (1.18)
2. Interacting Scalar Part” ° s

In the presence of the interaction the B.S. amplitude {i.1) of two scalar partic-

1. . satlsfies the relativistically covariant equation which in the momentum representation

is of the form :

[Ee0)im][E-025 7] % W= (K99 %64 (z.2)
The kernel of the equation A//’ //,f? i1s found, using the perturbatlon theory, as a sum
of all the irreducible diagrams defining the two-particle soattering matrix. The wave
function does not satisfy the normalization condition of the type (1.18) and, consequently,
do not allow the usual probability interpretation.

In order to conserve the normalization condition of the type (1.18) we consider
the possibility of describing the interaction of two particles on the basis of the set

of equations (1.6) . We do mot change edq. (1.6b) and include the interactlon into eq.
(1.6a) in the following manner:

(jpl-ﬁ?z— "1)1}[?)‘/%[7)79}‘/[774¢// (2.2a)
(P9 Xpt7)=0 . (2.2v)

For these equatlons to be compatlible 1t 1s necessary that the potential should obey the
condition P7) % hy)=o . From where

Wy ig,00« 80090 Vo 1,970 (2.3)
Bearing in mind (2.2b) 1t 1s oonvenient to introduce the funotion % @)

Loigo= dr DB 5) S Ne = &

» 7 DHa) . w5 (2.8)
whioh as oan be seen satisfies the equatlion

(G101 20G @0+ [ ugoding2 8404y
(2.5)
pPq =o.



The wave functlons Fao [7) obey the relativistically invariant orthonormalizat-
lon condition of the followlng form:

*
ISy = i s AT (2:8)
In the c.m.sS. ();qu) eqs., (2,5) (2.6) have the foru:
702 7
GE=752I8 D= Y3708 747"

P
/fi///’) AL A e

For a suitable choice of the interaction potential E?/?jf?}eq. (2.7) coincides

(2.7

with ctne quasipotentlal equation in quantum field theory suggested in papers 2. In this

connection 1t 1s appropriate to recall some baslc statements of the quasipotentlal approach
The quasipotential equation was obtained on the basls of the B.,S., equation for the

Fourier transform of the one-time wave function of two particles in the c.m.s. and has

the form:

1 Z- -7£ w2 ~ - - ____-Z__ ~ - =, ~ -
GEETEmIL ) o U 70 E
where

~ + oo (2.10)

Sy - .
= g, Gt

e d
s
- =2,

In the same papersa method for constructing the quasipotential k; /?,7,)by means of
b urbation theo . gested, s je the scatte 2 i 2
means of such a potential coincides on the mac: shell with the scattering amplitude
obtained on the basis of the B,S, equation, Since it is always possible to ochoose the

relativistically invariant potential (2,3) which coinoides in the o.m.s, with the quasi-

potential:
- P ~ >
lé@ﬁ’ﬁm- V772, (2.11)
*

then eq. (2.2) may be considered as a relativistiloc generalization of the quasipotential
equation.

In conclusion of this seotion we note that while the B.S, equation allows one to
determine the Fourier transform of the four-point Green funotion (zo (y,y{) over the
whole region of change of the variables P, #e»d/ 7/, the system of equations (2.5)
makes it possible to determine the same quantity only on the mass shell,



II, Quasipotentlal Method for Partioles with Spin 1/2

1, Free particles

The B,S. amplitude of two spin partiocles having equal masses is determinad by the

expression:
‘." . ) 1.1
/2;)()’/,&}“ </”/7-( %("r) ‘5:{{/\’4))/,0) J .0
where {‘ /x) are the Heisemberg fields of partioles with spin 1/2, and /p) is the
4
state with a definite four momentum 2 . When the interaction is absent the amp—
11tude (1.1) satisfies the system of iwo equations .
WYz :
(i773,-m) Hptwu)=o : 1.2
, (a)
G 9&-7)’) Ap i ¥a) =0 .
Using trenslation lavarilapce
-’PX
o ttyrda @’ Aolz) i a.»

¥ & (X -X1) ,

R

Xe F e ta)s '

and going .ver to the momentum representation

—sg% (1.4)

7
D)= [fre " Kcp
we obtain the following equations for the fumction I//y) of two free particles
P
[2(Fg)-m] Tee (1.5
@ p ) -
[)’ '&-7)-@7 App)=©.

Owing to the equality of the masses of the particles under oonsideratior the function
L,,’f) satisfies the oonditioan

(P7) Aptz)=2>

(1.6)

from where it follows that I/ (7’) may be repiresented in the form

particles "1" and "2" of equal masses way differ from one another by the signs of the
oharges. If, for instanoe, partiole 2" 43 an antiparticle fer matrices //l} one should

r
use the oharge oonjugate representation )“’. - YT where 7 - denotes transposition.



Lplp)= $n9)- 2o 0g) 5 /7,‘-’,;_?‘; VAETD .m

It should be noted that the funotion ,;(’} 1s determined only for those values of the
total and relative momenta which are conneoted by the oondition ff'o-
Now we determine the one-~time wave funotion of two spin partioles in the o.m,s.
)3
e d -~ >

L it i)=€ - X@-%iop - 1.8
From eq. (1.4) 1t 1s not diffioult to see that the funoction (1.8) 15 expressed in terms of
the Fourier oompoment of the B.S, amplitude whioh is integrated over the relative energy in

the o.m,.s,

e
2 o= (1.9
Ao (€10) ﬂ? € '/4/., Ao czr9,)
or, uslng the representation (1.7)
Py
Wx A (1.10)
A (zh0) =/:/;5 - A 7.

From eqs. (1.5) 1t follows that in the c.m.s, the functiom satisfies the system of equations
DE T3 Ve
[1-E-775- m//r,/;)w.-
AL =4 g
[7; 'jfff " -m) A, (pP= e

e
-
We perform the Foldy-Wouthuysen transformation 5 on the wave funotion I. /7) for the

(1.11)

case of two free spiln partloles im the ¢.m.s.

Z/f’/' Z(;’) X)) - (1.12)
where > -
(-7 s
- v-7 78 )k v47) et

2Wimrw) (1.13)

f
L) L= 7.



Eqs. (1.11) in the Foldy-%outhuysen representation takes on the following form:

(/’)f ”:/2//’)-0)

(1.14)
@) -
[2; .Z!_W-/ .{, (77=° -
and have two solutlons:
Lo 22¥ ; 7;/'). 7%t 1 . (1.15)

Tt solution with positive energy oorrespomnds to partioles "1™ and "2" while the solution
with negative energy may be connected by means of the operation of oharge oonjugation with
the state of antipartioles "1* ami "2":

Pad ~ .6
AW L7 Eco)- £ 7r50) ; (1.16)

where C= 7;:2; 13 the charge conjugation matrix., The general solution for the set of
equations (1.14) 1s of the form

.i[ @)= J\(——/4/") AG) ; a.an

Y 1 %2 9%
where £ is an arbitrary l6—component spinor ( undor)} (——-—-———/ is the

projeotion operator . Note that
)
A()f F(**),_ pE? (1.18)

where

¢f*t)‘ /i)’o){/i)’,

Egs. (1.14) describe two free spin partioles in the c.m.Ss. by means of the wave funotlon
'~

j{, (;’) depending on the three-dimensional relative momentum. The normalization and ortho-

gonality oonditions of the states with different total energy have the form:

~ A ~
ﬂ;.i{ /f',’t")i/, G E) = ’);,’5 (&E>2) . (1.18 )

The relativistic generalization of egs. (1.14) are the equations:
@ ;-
[T-P-M]_"/fff)'o; (1.20)
o) i
[7 '//‘-//].{/, (7)=o.
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under the additional oondition

g)=ec,

(1.21)

where /{.Jm—‘ 1s the effeotive mass operator of the system of two free partioles.
Egs. (1.20) with the additional condition (1.21) and the arbitrary mass operator A/
are known as the equations of the Yukawa bilocal theory 4} whioh earlier were also inves~
tigated by M.Markov 3.
The function _g’/f),ooincidiig in the o.m,s. with the function z//v ,

1s connected with the amplitude ]///7) in the arbitrary system by means of the generalized
Foldy~ Wouthuysen transformation:

~ ~

Ao lp) = Z:/f)‘lfo a) (1.22)

where

N (W= 7’.’),)@,*1/-){’{?)’_ W= Va7 . (1.23)
W ur k)

7; 1)

Notice that the transformation (1.22) is not unitary but satisfles the conditionm:

;/7)-,2/,): 7. (1.24)

The relativistlo generalization of the normalization and orthogonality conditioms (1.19)
for the states with different total masses 1s of the form:

/1;/,) L) Sty win (1.25)
where
jﬁ/f}.j’/’ﬁ)'?’/'}; ’ (1,26)

It is not diffioult to oheok also, passing to the o.,m.s, and using eqs, (1.12) apd (1.13)
that the normalisation and orthogonality oonditions may be expressed in terms of the fumot-
ions 2;, ) -

> = (1,27 )
_/ ) 4 1y) Srg) 47 - Sl

Thus, we have shown that eqs, (1.14) desoribing two spin particles in the c.m.s, in the
o
absence of the interaction by means of the function !, //), conneoted with the one-

-time Bethe-Salpeter amplitude by the expressions (1.10) amd (1.12), allow the relativis-

11



tically oovariant generalization ( see e.g. egqs. (1.20) (1.21) (1.25) ) .
In this oase the relativistio amplitude !,/,) 1s oonneoted with the quasipotential
~
funotion _{’ [;) by the Lorentz transformation 4 @

), w
e 7~/’r‘-ﬂ] 7'/’4‘/1] 7y (1.28)
VR 4 0579) '
it M (HtA)
so that °

Lpedu,o)s Li9-10.7} a®

-
where f 1s the space relative momentum, determined in the c.m.s. of two partioles.

The question arises: Is it possible to desoribe the system of two interacting spin
particles with the ald of the relativistiocally covariant equations of the type (1.20)
with the additional condition (1.21) and a oertain mass operator A ., whioh in the
c.msS. Would coinoide with the equation of the quasipotential method?

The quasipotential equations for two interaoting particles with spin 1/2 were
investigated in detail in the papers by R.N.Faustov 6 and G.Desimirov and D,Stoyanov 7.

In the next seotlon we present a somewhat modified derivation of the quasipotential
equations for two spin partioles by means of the generalized Foldy-Wouthuysen transformat-

ions.

2, Quasipotentisl Eguations for Spin Partioles

In this section we shall start from the equations whioh define in quantum field
theory the 4~time Green function and the two—partiole B.S. amplitude and introduoe the
equations for the two-time Green function and the one~time wave function of two particles,

The four-time Green function is determined by the following expression:

Glrys xy) = 4/7‘[4;0,)5{;) ’;7/’9 _*,74;9)/0 ) (2.1

where 4,{1 (x) are the Helsenberg fields of spin particles, As is kmown, the four—time
Green function obeys the B.S. equation:
(2.2)
Coginyde S G-x0 Sy Gy *

"/5; G-Xf)ggaf—y,)ﬁ/[&gw&#,) 6({,/,;)'9)/:,‘0,%{” J

12



where 5(,) 18 the Green function of free particles
"
2P (x-x2)
’ (2.3)

-X’) = L ('Y - _A' e
S, 6-x0= /7%, (’”‘“”)"”wf,mz A

The two-particle B,S, amplitude ,Z;(xy) determined by eq. (1.1) obeys the appropriate
homogeneous equation

Lotir= |8, 60053 t4-5,) Koot s 00 3) Ap ata) s iy, (2.4
Notioe that the kernel of these equatioms is found by perturbation theory as a sum of
irreducible diagrams, determining the two-partiole scattering matrix, Further it is con-

’
venient to introduoe the o.m.s. variables X)z and X, z’
(2.5)

X=Fowg) = (xh g,

2= (x-y¢) ¢ z'e (x-y) -
Using the translation invariance we determine the Fourier transforms of the quantitles

entering eq. (2.2) in the following way:
)'Pa'-xyf//z-)'f a’

Clprprs Sexine) 2, [6,4.99€ pigdy’ -
IPOCXY) #1g2-37%" )

Kagsxyrm Keexsme0- oy [Barare dplyty’

PC-XDeopx-rp e

S,[r-x’) .5{’1/)-6;;.’. f//olflf’ 6/’,77 é s

where
bl 9= - Ser-2 ‘ (2.7)
'AL24 p T ‘
/1-,4 *f)’ﬁ&l‘l//)"é 'f)-ﬂfrf
Inserting egs. (2.6) to eg. (2.2) we get
(2.8)

Cpip10= Ftpg0t f/'; 4:9,) Ko Gy, 10) Gp s 9D ¥ -
Now we determine the two-time Green function
(2.9)

66‘]}:;,'{,/;";;’)' é[”/ xffl)/,',’_f‘

X’I"j./"f/

13



Let £ >¢ ’ . Then, using the completeness of the system of stationary states
and the definition of the one~time B,S. amplitude (1.8) we get

G(L‘x;,fx g) 2-1)1//2‘1)1‘:)/22,/*"’” P /43¢0 (2.10)

or using eq. (1.3)

o =78 (- f)a/’/fi’— ’i—‘) . (2.11)
Gél‘,j/f,’-:’ ;7) = 2/77// 50 )ﬂ//"—i G E
"

= /) &
In eqs. (2.10) and (2.11) we have used the notation /T,,/ - 1/ )

Thus, 1f we find an equation whioh is satisfied by the two-time Green function (2.9) then
the corresponding homogeneous equation i1s satisfied by the one-time wave function

l”," (,(,;',.{,t;') . Let us determine the Fourier transform of the two-time Green function

2P (F-¢7)-5 P[X’X} [x é/) » ;j( ‘7)
6“"‘»:7»**/")' f'§ @ae 4p./;,/¢/ . "{ (2.12)

N
where 63, /;,' ?7 is oonneoted with the Fourier transform of the four-time Green function
as follows
fp /717/)
al ped
Gp (77" Jd,40" & (7105 7715 (2.1

Note that the definition of the two—time Green function (2.9) is, generally speaking,
relativistically non-covariant if the frame of reference is not fixed,
Below we construct equations which will be satisfied by the Fourier transform of

the two—time Green funotion in the c.m.s. of two partioks:

AW AP 777 (2.14)

We write the B.S. equation (2.8) in a symbolio form
2,15
G=F +FKG, (2.15)

and solve it by the iteration method with respeot to 6 :
GC=F+FRF + FKFKF #:-: (2.16)

Inserting (2.16) into eq. (2.14) we get the following expansion for the two-time Green
funotion

14
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G=F r FKF #... (2.17)

Here the sign , 7/ denotes the operatlon of integration over the relative energies 1-,7-/
performed by the formula (2,14) in the s.m.s. f;av) .

For example, the free term in the expression (2.17) is of the form
+* o0

~ oAfe (2.18)
F= [4.47 F-: Xy =-5/¢ 7)/ . ‘
1 07 Tz 7#)[P 2)- -’/)"m://ré-“-?)‘rﬁ)?imlf/

In what follows it 1s convenient to go over in eg. (2.17)to the Foldy-Wouthuysen represent—

ation:
T d o~ . - - - (2 19)
-5 . .
G Gr= [ GY G (77
7
where the unitary operator 75 // 1s determined by the formula (1.15). The free term
(2.18) in the Foldy-Wouthuysen representation is of the form

/o (2.20)
F == 37277
//)[ 7) /4/;;5]7 7)./4/,,_‘/

vhere . W} £E=po .

Calculating the integral in (2.20) we get

F [/’*’—v) 7 [); {f’w)*”](“rw) [Kvﬁ)([*#’),ﬁﬂ/j(}— ﬁ))} (2.21)
£ - 2W £ 2w ’

In the case of spinless particles the guasipotential is determined by the following

expression 2
[év]”:[ﬁ/—:ogf V. (2.22)

4
where the multiplier _,b; 1s introduced for thesake of oonvenience, the imaginary
part of the determined potential being a negative determined quantity. Further we shall

bear in mind that the inverse operator is determined by the following expressioen

>, [ o, St 7
Je[Ecio] G770 = ST (2.2

15



It can be shown, however, that the operator (2,21) has no inverse and the determination
of the quasipotential by means of (2.22) 1s meaningless, The above mentloned trouble is
caused by the following., Unlike the case of the scalar partioles the Green funotions of
the spin particles G ’ /-_ and others are the matrix operators aoting in spaoe

76 -component spinors #.

Let us break down all the splnor space ¢ into two subspaces by means of the
. £
projection operators _/1 @) :

Dy, (2.24)

%) /£ 770, - &

A = (—T—j J N7+ N7 1.
It is not difficult to see that
(4) /4 r/I) r{l) /- r//) /- r/‘) ; (2_25)
A‘(T')(/—tf')+("§")(tj
) @) 12 )

Iz, — Vo -7 ry 2,26
N (50T o (575 29

Thus, from €qs. (2. 25) and (2.26) 1t follows that either only "upper” or only "lower"
®p ¢/ 2
components of the spinormiffer from zero (?’() 7'[) +7) .

Any operator /4 acting in the space of the spinors may be divided lnto four

comporents and written in a symbolio matrix form:

A *+ s
. / (2.27)
ATt o4

++ -- )
where the operators A and A aot only or the subspaces of the spinors A 4
- F— -
and A 60 , respectively, while the operators A and A transfer the spinors

from one subspace to the other,
Tl

The operator F (2.21) can be represented in the form (2,27)

T
/ 5 0/ (2.28)

~~—

#+ L, 7 )
F,l= 2 f(y-f)m’ (2.29)

where

16



suf- &
and, as 1s easily seen, has no inverse operater., If we restrict ourselves to Lhe7’§ace A¢9

of the spinors the two-time Green function of free particles has uan inverse operator equal

-1 ,
~ Y, 0,7 (
/ ) =, i 2.30
[E#] - Latd) [0 F-aw ) )
F i ~
This is related to the fact that im ihs case of wo noninteracting ; spin particles

+2,
the solutions of egs, (1.14) belong to the subspace / Lf’ . Below we deduce the quasi-—
potential equatlons for that part oi the gne-time wa¢e functlon of two interacting

particles with spin which in the Foldy-Wouthuysen rerresentatlon belongs to the subspace

&)
.4. +¢9 s

~ AR (2.31)
= - -~
j& (9= A 9/47; jéﬂp (9,8,
where %= /7)is connected with the Fourier tramsform of the one~time B.5, function
f‘ﬂ ,/
2}'0 /1) by the Foldy-Wouthuysen unitary ppansformation (1.13):
(2.32)

Xieo (700 To (7D ¥50y (£92)

[
We use eq., (2.22) for the determination of the quaslpotentlal on the subspace JQ [ 2

-1
[~++ ¥ /F 4+ _11{ (2.33)

J

The zuasipotentlal can be found starting from the lteratlon expansion (2.171

[F H/ [FKF/#[A# PR (2.34)

Using eqs. (2.2) and (2,33) we get an equation for the Fourier transform & the two-
time Green function of spin particles in the Foldy—¥Wouthuysen representation

[ /rz} JH/]/\--H 5 JJ,:IV/ /)5‘ /-7,,7) LS (2.35)

The wave function of two partioles (2.31) will satisfy the appropriate homogeneous equation

(2.36)

[7 g ] L0 = JAT G L ).
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and (2,36) are the basic equations of the quasipotential method for spin

Determining the effective mass operator
o~ o~ (2.37)
= ] = o) s °
= WL )+ JYR7) 4l
e eqs. (2.36) in the following form

[%"E-y]Z 570,

which generalizes eq. (1.14) for free particles in the presence of the interaotion. The

(2.28)

normalization and orthogonalilty conditions of the states with different values of the to—
tal energies £ and £ are of the form

. a8 (2.39)
V/f’a ED L ‘)!,, )y I

i

Let us make the two important remarks concerning the mass operator (2.37).

First of all, the quasipotential 'k; , determined by the expression (2.33) and,
consequently, the mass operator are, generally speaking the complex functions of the
energy £ .

The antihermitian part of the potential are characterized by possible inelas tic
processes in the interaction of two particles and defines the width of the bound state
levels

For the unitarity condition, which implies that the sum of the probabillities of all
the possible processes does not exceed unity, to be fulfilled 1t 1s necessary that the
antihermitian part of the mass operator should be negative definite quantity.

Indeed, remembering that the time—~dependent wave function of the bound state with
energy £ is of the form

~ . —EE (2.40)
Ligw-e - 478
we get the following expression for the change of the norm of the state depending on
time:

oo 7 ~ f\r?‘_. e
,3 JE 05" h 1047 = foﬂ P D7) L GAFAT <0 ;0 (2ua1)
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where
)= (m-m7). o

The negative definiteness of the antihermitean part of the mass operator (2,42) can Ye
established by studying the analytiocal propertiles of the two~time Green furctlon

in a way similar to that used in the case of scalar particles 2. The second remark

concerning the mass operator is the following., Unlike the case of free particles the solut-
ions of eqs. {2.38) are not, gemerally speaking, the eigenfunctions of the operators
z’o (1) and contain both upper p@") and lower P(“) components

_}‘ / ? ‘H) (2.43)
-—) /‘

where

t4) i fo P
ff . [/_f__ )Z . (2.44)

This 1s a consequence of the fact that the arbltrary mass operator (2,37) does not commute,
generally speaking, with the matrices ?,‘,//") and mix the oomponents PKH) and ¢/_'
when aeting en the wave fumction (2.43).

¥We perferm a pseudounitary transformation on the wave function
e U )
. . 2,45
-{Ip .é) ‘ (

which conserves the norm (2,39) i,e.

r .46
”#h/f,z)” . rp//z). (2.46)

Eqs. (2,38) take the form

[7';//,.15_ M{]_J, =0 (2.47)

where

Me M



/
If we require that in the new representnation the op=rator M be diagonal, i.e,

M) 4z2)
: J

/ ’
Y, M- M % (2.48)
then the wave function j{l/;ﬂ)being the solution of egqs., (2,.47) is the eigenfunction of
the matrices )}‘ﬂ4)_

?aﬁzé:rﬂﬂ)-é - :t-??; .

(2.49)

Let us call such a representation the "standard" one., Notc that the transformation
M which diagonalizes the ma:s operator (2.48) mazy not. gemerally speaking, exist, However,
we obtain approximate equations describing the system of two interacting spin partic—
les in the nonrelativistic 1limit,when /i?&e;w » the transformation Z(, which diagonalizes
the mass operg}og can be constructed with any degree of accuracy by means of expansion in
powers of %?/ . The wave f lorn 1n the "standard" representation 55 /ij):

),/
corresponding to the solutlons when ,G/Ll; 2 7, 1s normalized in the following manmner

a#
V/.‘2r /i,’f? _f{/,‘j,gj d}’-— J;)'g ) (2.50)

The relativistically covariant generalization of the quasipotential equations in the

"standard™ representation (2.47) has the form

[v - m]E -0 piee

The normalization condition (2,50) takes on the relativistically invariant form:

(2.51)

f.?f//f)-_f/, /7) ;[ﬂ-f) :/ff ;ﬂ,'// (2,52)

3. Instantaneous Local Interaction of Two Particles

Let us consider a simple example when the interaction of two particles with spin
1/2 in the c.m.s. may be considered as local and nonretarded.

In this case the egquation for the B.S, amplitude isaf the form:

G0, -w) 7020 X, (i) = 7 3G 100) V75D Tpag %),
’ (3.1)
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ory ing to the momentum representation

[7 )[ 0)-7 797 ,.,][7 )( 7)4-1 7—{//1__, (qj?' - fV,-, /wf,).(, 3.2)

where
.5y
4 -4 (3.3)
Vi) - g Y€ a2
We go over in eq. (3.2) to the Foldy-Wouthuysen representation (1.12):
(3.4)
Ao )= To (V4 0p)
1273 e )
[:eie ’)-’V][r [ - k/]'f /7)"’[1’7!77)-{ g4y’
w
(3.5)

K 7)= Vit %777

Use now the fact tbat the right-hand side of eq. (3.4) is independent of the relative

s .
energy A and obtain the eguation for the functiom {, /{_')
+* ~
~~ b (3.6)
L7 = J410 20779,

oonneoted with the onme-time wave function of two particles (1.10). Taking into acoount
eqs. (2.21) and (2,29) we get

{/’-,)7 /'I'ro-)‘//ﬁ/ ;’)j[/?-’/)’/f 3.7
f,zyla

Thus, if the interaotion of two particles is instantaneous ( or nonretarding) the wave

£ Z7) &Y

unction . belongs to the subspace _A. 79 of the l6~component spinors and obeys
the equation

- . » . (3.8)
[0PE- 2] L7 = [KT070 £ s a7
where ) |
1n?n? 5o, /"‘ﬂ”)n’/)
[ 2 ) /(/ 72 [ . (3.9)

The mass operator corresponding to eg. (3.8) 1s nondiagonal even 1f the original loocal
interaotion in the B,S. equation (3. 1) was described by the scalar potential V/ )
not oontalning the Dirao 7- matrix.

To demonstrate it we expand the mass operator of eq. (3.8) in inverse powers of ¢
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P4
with the accuracy not lower than the second power of i; . Using the formula

g -27~’ —14)
n) 26) 2> 4 r
T 7= 1= 20727 7 1 2.9,

7 2 - (3.10)
oI Gmr PP (;;3;))
and passing to the X-spacs we get the following approximate quasipotential equation
—a
00 3
[»" - LV f%l’(z)w’# ) - (3.112)

L V/”/’H/ TIDFG L (707 1797 V&)}}]ﬁ/z)

where . >

g=-1%
It 1s easily seen that the last term in the right~hand side of eq. (3,11) does not oommute

with the matrices 2"”6) and mix the upper and lower oomponents in the wave fumot—
P P

ion
~ 7 f“")

iﬁ f“"i// .

To pass to the "standard" representation we perform the following transformation

£oeu d ;  atnPu-n®,
[ 4

(3.12)

where

y N Al /2
e ep (L (70T V)

the action of which with a given acouwacy reduces to the elimipation of the last term 1m
the r.h.s. of eq. (3.11). If the non-relativistic consideration is invalid 1t 1s neocessary

to use an exact expression for the kernmel of eq. (3.8):

/f*;y 7)) = (e st 7972 P Viits”) e w)E P07 PR (3.13)
W (vra) I (wiem)
=24 3
20
7V I =5
,Z‘//

where

We V-3,  wi yaign
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The relativistioally oovariant generalimation of eq. (3.8) will be of the form
I
[7%P-aw]4,0) = Ko 2,00 5009) 4, tp0dg” s

”f‘ = _fﬁ )
rpz
under the additional condition pg=o, the kernel of the equation has a relativistioally

(3.14)

invariant form

2.0, 5 st
kA AL 9L r% i r®
Kolyg) = P =T107L ), L ew .
Pet 2 (et k) (7-79 I igaer) (.15
I @
- @, @)
* %_.4.}/(7_7,), r7Lr%%’ ’
4 %
where
W= yntqr ; W' YmZgn . (3.16)

The potential V/f—fy in eq. (3.15) 18 a relativistic generalizmation of the Fourler
trangbrm of the space potential (3.3)., If the space potential V[z‘y 1s spherically
symmetrioc, 1,e.

Viti e VIGr792]

the relativistioally invariamt petemtial 1s of the form

Gan

(3.18)

Vg~ 19« VI (g-494].
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