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In the present paper we consider the probl em a rela tivisticall y covariant descript­

ion of a system of two interacting particles i n the framework of quantum field t he ory. 

A generally accepted approach in this field bases on the Be the- Salpeter equation • As 

is well known the B. s . amplitudes depend on the two space-tirue point s X1 and X.t and 

thus relativist i c covariance i s achieved due to the i ntr oduction of two time s . This l eads 

one to some difficulties 1n clear ing up the pbysioal meaning of t he B. s . amplitudes 

( for example, it i s not clear bow t o int erprete the relative time, a nd bow to normalize 

the B.S. amplit ude , eto.). The problem we are concerned with in the pr esent paper i s 

to obtain the relativistioall~ covariant equat ions fo r two intera cting particles ( wi th 

spin 0 or 1/2) the s ol utions of wbiob would a llow a quantum-meobanioal probabili t y 

interpretation . ' 

It can be shown t ha t t he phys ica l quantities such as scat t ering matrix 

on the mass shell and energy spectrum of bound sta te s ooinoide with those one s obta ined 

by means of the B.s. equation • As wil l be seen below, our method of t he solution of 

this problem is directly connected with the quasipotential a pproach in quantum f i eld theory 

developed i n papers 2 

I . Wave Equations for Two Sca lar Particle s 

1. Free Particles 

Taking two f ree spinless particles as an example we demonstrate the possibility of a 

r elativistically covariant one~e description of a system of two particles. 

It is well known that in quantum field theory the two-particle system is des cribed 

by the Bethe-3alpeter amplitude 

(1.1) 

where f. (x) 
f,l. 

are the Heisenberg fields of two scalar particles of equal masses and/)'> 

is the state vector with a definite value of the four-momentum p. 

In the oase of absence of interaction the Betbe-Salpeter amplitude (1.1) satisfies 

the equations 

(1.2) 

J 



where D. .t .2 -x • - ?x - - '<lt + V" 

Using translation invar1anoe 

y -if' X 
l'lp(X~,XJJ.)= e . A,f~) ; 

X=j{x,+'K~-.); z. , (x,-J(L) 

and going over to the momentum repreaentation 

r - ''%. lLpf'l:..)"" J"'l~ · )/,frJ' 
we get t he f ollowing equations 

[ CJ + f y: "'"I .:1, r,J • () J . 

{ {f-t/- ,tj- Ap f/J .. 0 . 

Due t o the e qualit7 of the maa ~ e s of the two particles, from (1.5) we obtain 

( i pl.+ f ,__ ,~ l!l (f )- o ' 

{!·'f) /fp (f)-() 

Hence it f ollows that the aapl1tude Ap (f) oan be represented in the form 

1, (fJ. j' {lt'f)f, (f) j 
Pfi 

hft .(j:t l'~>t? i 

the tunotion ~ (f) being determined onl7 for those values of relative momentum 

f wh1oh are related b7 the condition P·f • 0 . 

(l.J) 

(1~ 

(1.~) 

(l.6a) 

(1.6b) 

(1..7) 

Now we determine the one-time wave function for 

-o:t.-ss S7&tem(p-tJ) : 

scalar particles in the oentre-

-iEt ..., ~ 
1" ft,'X;F6,"l...)-e · ;r, rx,-lt'.t;o) . 

(1.8) 

From eq. (1.4) it is ea s7 to see that the function (1.8) ma7 be expressed in terms of the 

Fourier transform of the B.s. amplitude wh1oh~ integrate~ over the relative energr in 

the o.m. s. . ...... 
Jf · :l! 

l,(~p)c fi;.~,, e . /f..ri~r~J (1.9) 

4 

-' 

or, using the repr esentati oi 

Zp{~P) = f,tf . 

From eqs. (1.5) and (1.6) i1 

equation 

I -(E.t ~..2 ) \-1 -f-)Jf2. 

and has _two s olutions 

f; (f) .. ~ . J (E 

The solution with positive 1 

and "2" and the solution wi1 

antiparticle s •i• and •2n bJ 

II' .., 

f; {f> E<o) = ~ 

The normalization and ortho{ 

rent values of positive tot• 

j1;, "r.,; E') t; (f~ E) tl 

Eq. (1.11) is a quasipotentl 

An important merit of the qt 

function ~ r,:? depends 

and oan be normal ized , i.e. 

The re l ativistic gener• 

[P.t- 111 ·f, r,; 
und er t he addit ional conditl 

P· f & o ; 

in this oase 

,4("" ,2 ;, 2_ f " 



(l.J) 

(1~ 

.• 5) we obtain 

(1.6a) 

(1.6b) 

in the form 

(1 . 7) 

of r elat ive mome nt um 

•r particl es in the oentre-

(1. 8) 

tie expressed in terms of t he 

r the relative energy in 

(1.9) 

or, using the representation (1.7) ..... 
... ( ~ Jf~ ... 

Zp(<>:.,") = J,;f .e · f:, rf) · (1.10) 

From eqs. (1.5) and (1.6) it follow s that the wave function in the a. m.s. obeys the 

equation 

(1.11) 

and has .two solutions 

(1.12) 

The solution with positive tot,.l energy E• .2W describes the state of two particles "1" 

and "2 " and the solution with negative energy £=-.2W oan be related to the s tate of two 

antiparticle s •1• and •2• by means of charge conjugation, i.e • 

" .., c .., 
~(f, E<'o)=f; (-f,-E>~>). (l.D) 

The normalization and orthogonality conditions of the solution of eq. (1.11) with diffe­

rent values of positive total energy are given by 

(1.14) 

Eq. (1.11) is a quaaipotential equation describing two free scalar particles in the a .m.s. 

An important merit of the quasipotential approach is the fa ct that the two-particle wave 
~ 

function ;; ri? depends only on the three-dimensional relative moment um '1 
and can be normalized , i.e. allows a probability quantum-mechanical i nterpretation 2 

The relativistic generalization of eq. (1.11) is of the f orm 

(1.15) 

under the additional condition 

(1 . 16) 

i n this case 

(1 . 17) 

5 



is the operat or of the effective mass of the sys tem of two free scalar particles. 

The conditions of normaliza tion and orthogonality of states with different values of 

the tota l mass i s r elat i vistically genera lized in the following way: 

Jr;,: fiJ r; (f) f[A.f)tl'f s J;,;}( j #~ f'jh.; )(= I? . ( 1.18) 

2. Interacting Scalar Particles 

I n t he presence of the interaction the B, S. amplitude (1.1) of two scalar partic-

l tJ satisfies the relativis tically covariant equati on whi ch in the momentum r epresentation 

i s of the form1 : 

[Cj+f)':,tj[cf-rJt._mj ~ ff) • jf..~(fd:J/f,[f'J1t'f 1 (2 ,1) 

The kerne l of the equal;ion ..f; (f,f'} i s found , using the perturbation theory, as a sum 

of all t he irreducible diagrams defining the two-particle scattering matrix. The wave 

function does not satisfy the normali za tion condition of the type (1.18) and, consequent ly, 

do not allow the usual probability interpret ation. 

In order to conserve the normalization condition of the type (1.18) we consider 

the possibility of describing the interaction of two particles on the basi s of the set 

of equations (1 , 6) • We do not change eq, (1,6b) and include the interact ion into eq, 

(1 . 6a) in the following manner: 

c;- Pt+ 'I~ "' 1
) AI (f) - I w, (f, r) )'' ff) ""/ ; 

(j)·f)·~~ /f}= O . 

(2,2a) 

(2,2b) 

For these equat ions to be compatible it is necessary that the potential should obey the 

condition {j)·f) J¥1>/f,f:},. () • From where 

w, (f, t?) .. J'[, . f) · Vp lfd1
). 

Bearing in mind (2,2b) it is convenient to introduce the function 

lp (f) • J/n.,f) fJ, If) ; - _!Z.' 17" rr 
which as oan be seen satisfies the equatiOn 

({ p 2. +'/"- "')f, tf) .. I v, {f>f'} f(h ·(:) 9; (f) ,If I j 

j) ·'l •() . 

6 

(2,3) 

~(f) . 

(2.4 ) 

(2.5) 

The wave functions f; ( f 
ion condition of the follow1 

~~~ff) ~ fr)df!t· 

In the c.m. s . {p...,=o) 

{ft~ l!Jwz)r; r7 

!p; ~ f /'J f; ( 
For a suitable choice ' 

with ~ne quasipotential eqw 

connection it is a ppropr iat · 

The quasipotential eqw 

Fourier transform of the on 

the f orm: 

(.1[!. 1~ rxz)fri'J 
1 E 

where 
+"" 

f r?J= flr, 
In the same papers a method 

perturbation theory was aug 

means of suoh a pot ential c 

obtained on the basis of th 

relativistically inva riant 

potential: 

..., ~. l ~ 
II (p 4 '/ =­
~ 1) 7 ,f2-

Y/JI-+ i 

then eq. (2 ,2) may be cons1 

equation. 

In conclusion of this 

deteraine the Fourier tran! 

whole region of change of 1 

makes it possible to detera 



'e scalar particles. 

,s with different values of 

18 way: 

1? . (1 .18) 

1) of two s calar partie-

the momentum representation 

(2 . 1) 

xbation theory, as a sum 

tering matrix. The wave 

ype (1 .18) and, consequently, 

.ype (1.18) we consider 

: on the basis of the set 

:he interaction into eq. 

(2.2a) 

(2.2b) 

potential should obey the 

(2.J) 

;ion ~(f) 

(2.4 ) 

(2.5) 

The wave functions obey the relat ivistically invariant orthonormalizat-

ion condition of the foll owing form: 

In the c.m . s . {p~=o) eqs. (2.5) (2 . 6) have the fonn : 

{jE.%_ f!Jwz.Jr;t?J= /J,jr1~?Jt;r?'J"'i'/; 
Jp;: (j"'J ~ !;-'') d( = JE:c 

(2 . 6) 

(2.7) 

(2 .8) 

For a suitable choice of the interaction potential ~ lf~?J eq. (2 . 7) coincides 

with •ne quasipotential equation in quantum field theory suggested in papers 2• In this 

connection it is appropriate to reoall some basic statements of the quasipotential approach 

The quasipotential equation was obtained on the basis of the B. s. equation for the 

Fourier transform of the one-time wave function of two particles in the o. m.s. and has 

the form: 

where 

(2.10) 

In the same papers a method for constructing the quasipotential 
"'-
~ ( .j"', ?J by means of 

perturbation theory was suggested. In this case the scattering amplitude calculated by 

means of such a potential coincides on the maec shell with the scattering amplitude 

obtained on the basis of the B.s . equation. Sin~~ it is always possible to ohoose the 

relativistically invariant potential (2 .J) which coincides in the o.m. s. with the quasi­

potential: 

.., ...... l .( ll tf f // = -- . 
£ ) 1111 2+ ,. 

(2.11) 

then eq. (2 . 2) may be considered as a relativistic generalization of the quasipotential 

equation. 

In conclusion of this section we note that while the B.s . equation allows one to 

deteraine the Fourier transform of the four-point Green function Gj) (f, ft} over the 

whole reg:! on of change of the variables ,P.J f ~,.,{ <r 1
, the system of equations (2.5) 

makes it possible to determine the same quantity only on the mass shell. 

7 



II. Quasipotential Method for Particles with Spin 1/2 

1. Free Part i cles 

The B.s . amplitude of two spin particles having equal masses is determined by the 

expression: 

l',o&t, A;tJ- <''I r(~ rx,> f: 6..;) 1 jJ > j (1.1) 

where t (x) are the Heisenberg fields of parti cles .,,, with spin 1/2 , a11d / j>) is the 

state with a definite four momentum j) • When the interaction is absent the amp-

litude (1.1) satisfies the system of two equations x : 

(i>' r?J~- »>) 4 {x,, /f.J. ) - () 

(,/'! "Jlft -IH) 'A;dxn lfJ.}-tl 

Using translation invariance 
-/PX 

-1p {x,,x,.)- e . 1p (z) ; 

X·j(x,o~}; .It'. • {Xr }{,t) 

and going ever to the momentum representation 
_,.,:#! 

lprz.;- flr e · ~rrJ, 
we obtain the following equations for t he funct i on ~ (f) of two fre e par t icles 

[/f? (j+f) - m}·J', (f)"'() ; 

fr~(j- '1)- m} . .t, r,>· o. 

(1 . 2) 

(l.J) 

(1.4) 

(1.5 ) 

Owing t o t he equali ty of the masses of the particles under consideration the f unction 

lf tf) sa tisfies the condit ion 

(J> ·f)· ~(f)•(), 
( 1.6) 

from where it follows t hat .1, (f) may be repl' esented in the f orm 

x) 
Particles "1" and "2" of equal masses may differ fr om one anothe r by the signs of t he 

charges. If, f or instance, particl e "2" i s an a ntiparticle fr,r matrice s f /.1) one should 

use the charge con jugate representati on yc. - Y; where 
I 

T - denotes transposition. 

8 

lp (f}"' J(n·f} · ~ 
It should be noted that the 

total and relative momenta • 

Now we determine the or 

;to rt-Z;t,ZJ- ( 
From eq. (1 . 4) it i s not dif 

the Fourier component of t he 

the o.m.s. 

L r~, oJ .. ftl e 
) 

or, using the repre sentatio~ 

~ f ~ '1 
/LtJ(ZjP)"' .lfe 

From eqs. (1. 5) it follows t 

! .. / ? E _.. /'fJ .... • J ~ 
~ ,f- )' . f- "'; /l, 

r f.<JE ~(J) .... .. 1 "' 
L r; 'it r. 7'-/Jf; .{. { 

We perform the Foldy-WouthUJ 

case of two free spin partie 

,f, ( j/- 7; tj') . i 

where r;, .. w- y · f I llf+ .. ( f) .... ) /. /j 

7; tf-,- ,!/(/ ( ltr+ H/) 

f 
~ r ?J . 1, r?J .. , 



•s is de t ermined b7 t he 

(1.1) 

>in 1/2 , and / ,P ) i s the 

·racticn is absent the amp-

(1.2) 

(l , J) 

(1.4) 

two fre e part icles 

. deration. the f unct ion 

( 1.6) 

! form 

;her b7 the signs of t he 

natr1ce s y n) one should 

- denotes transposi tion. 

/71' • ~ . ,P 'l > I? . 
;;;;. J 

(1. 7) 

It should be noted that the function ~(f) is determined onl7 for those values of the 

total and relative momenta which are connected b7 the condition ;Oj'•t? . 

Now we determine the one-time wave function of two spin particles in the c.m,s, 

(1.8) 

From eq. (1.4) it i s not difficul t to see that the function (1.8) is expressed in terms of 

the Fourier component of the B.s. amplitude whioh~ integrat ed over the r el a tive ener gy in 

the o.m.s. 

( 1.9) 

or, using the representa tion (1.7) 

( 1.10) 

From eqs. (1.,) it follows that in the c.m.s. the function satisfies the s7stem of equations 

!I r~J E ~ (fJ ... • 7 "' .., 
.. ·.t.-- r . '1- "'; ;r, tf J-= o .. 

( 1.11) 

[r/ 'f+ r~ti-..j ,f rl;~ o . 

"-
We perform the Fold7-WouthU¥sen transformation 5 on the wave f unction ;:{, f /'J f or t he 
case of two free spin particles 1n the c. m. s • 

(1.12) 

where ~(•)~) ~W ..... 

T .., {it+IY- Y · f (llf+IV+ Y • f) 
,((J- ./ 

JIV(I1f+IV) ( l. lJ) 

f 
,:: (j') . 1, fj"')- 1 . 

9 



Eqs. (1.11) 1n the Foldy- Wouthu.rsen representation takes on the following form: 

{r,r(J -IY} l rj';-o; 

[r,g;f- w] i; (j"'J- o. 

and have two solutions: 

if) (.c) 
E·±.t/11; Y, •1', -ri 

(1.14) 

(1.15) 

T1 1 solution with positive energy corresponds to particles "1" and •2• while the solution 

with negative energy may be connected by means of the operation of charge conjugation with 
- -

the state of antiparticles "1" and "2": 

- -c 
Cff~cf.t! .f,("E<")- #, (-f,-E>o); 

(1.16) 

where C•l,; · ~ is the charge conjugation matrix. The general solution for the set of 

equations (1.14) is of the form 

"- ~ .t (-+) (1.17) i,ro- J"(f-w.tJ ·A r j 

f where 

(+} .( + ")# N< )', ti) 
is an arbitrar;r 16-component sp1nor ( undor) j A = { J '-) is the 

projection operator • Note that 

{-1-) A ·f,., f{H) + ,~-) (1.18) 

where 
&) ~) 

f'(:U).., {/~~)(/~~)f· 

Eqs. (1.14) describe two free spin particles in the c.m.s. b;r means of the wave function 

~(;:J depending on the three-dimensional relative momentum. The normalization and ortho­

gonalit;r conditions of the states with different total energ;r have the form: 

~l.J'.""i,-;E') lf-. ft(E)"" {~ (e:E >") 

The relativistic generaliza tion of eqs . (1.14) are the equations: 

[rf:JP-N}i; frJ- o , 

[r/'$)p- #] i, {f) -o · 

10 

(1.19 ) 

(1.20) 

under the additional oondi· 

{! ·f)-() . 

where !( •.t f.'"+f' is the 

Eqs. (1.20) with the addit: 

are known as the equations 

tigated by M.Markov J. 

The function i; /f), ' 
is connected with the ampl! 

Foldy- Wouthu.rsen transfon 

J; t rJ - 7i lr) 
where 

T, (f),., (~IV- r~'f)fk, 
o/JI-'(~f-IV 

Notice that the transforma· 

~(-f) . ~(f)= 

The relativistic generaliz• 

for the states with differ• 

/f,;rJ J;r,;.rrKt 
where 

..... ,.,._ ~ 
~(f)"'~ If) 

It is not difficult to oheo 

that the normalization and 

ions ~ ff} : 

f~·rrJ i;r,) Jf 

Thus, we have shciw:n that " 

absence of the interaction 

-tillle Bethe-8alpeter amplii 



.e following form: 

(1,14) 

(1.15) 

• and "2" while the solution 

tn of charge conjugation with 

(1,16) 

l solution for the set of 

(1.17) 

(1.18) 

means of the wave function 

The normalization and ortho­

have the form: 

(1.19 ) 

quations: 

(1,20) 

under the additional condition 

(1.21) 

where 11•.21'},'-+f~ is the effective mass oper ator of the system of two free particles, 

Eqs , (1 , 20) with the additional condition (1,21) and the arbitrary mass operator )1 

are known as the equations of the Yukawa bilocal theory 4, which earlier were also inves­

tigated by M,Markov 3 , 

The function ~(f), ooinoidi~ 1n the c,m, s , with the functio n i; {fj} , 
is connected with the amplitude ~fr_} in the arbitrary system by means of the generalized 

Foldy- Wouthu;rsen transformation: 

i; ( f)- 7i It} ·-? (f) I 
(1,22) 

where 

(1,2J) 

Notice that the transformation (1,22) is not unitary but satisfies the condition: 

(1,24) 

The relativis t ic generaliZation of the normaliZation and orthogonality conditions (1,19) 

for the states with different total masses is of the form: 

(1,25) 

where 

(1,26) 

It is not difficult to oheok also, passing to the o,m,s, and using eqs, (1.12) and (l,lJ) 

that the normal1Zation and orthogonality conditions may be expressed 1n terms of the fUnct­

ions ~ r,) : 

(1,27 ) 

Thus, we have shawn that eqs, (1,14) describing two spin particles 1n the o,m,s. 1n the 
"- ... ) 

absenoe of the interaction by means of the function ~- (f/, connected with the one-

-time Bethe-8al.peter amplitude by the express1ons (1,10) and (1,12), allow the relat1rta-

11 



tioallT covariant generalization ( see e,g, eqs, (1,20) (1,21) (1,25) ) , 

In this case the relativistic amplitude ~If} is connected with the quaeipotential 

b7 the Lorentz trans~ormation ~ : ~unction 5": r;J 

;;- ) [r(l~fN}[rifP+#] ;r(. _,) 
:l, ft "' ':r" ~·'I 
I JN(#f""') 

so that 
-f 

"'f'"'{N 1 P}J 

~ 

-f .r ~J L'f"'r_tJ,'f ; 

(1,28) 

(l.l!l) 

where f is the space relative momentum, determined in the c,m,s, o~ two particles, 

The question arises: Is it possible to describe the s7stem o~ two interacting spin 

particles with the aid o~ the relativistioallT covariant equations of the tTPe (1,20) 

with the additional condition (1,21) and a certain mass operator A1 

o,m,s. would coincide with the equation o~ the quasipotential method? 

which in the 

The quasipotential equations ~or two interacting particles with spin 1/2 were 

investigated in detail in the papers b7 R,N,Faustov 6 and G,Desimirov and D,Sto~ov 7, 

In the next section we present a somewhat modi~ied derivation o~ the quasipctential 

equations for two spin particles b7 means of the generalized FoldT~outhUTsen tran~~oraat­

ions. 

2, Quasipotential Equations for Spin Particles 

In this section we shall start from the equations which define in quantum ~ield 

theorT the 4-time Green ~unction and the two-particle B,S, amplitude and introduce the 

equations for the two-time Green ~unction and the one-time wave ~unction of two particles, 

The ~our-time Green function is determined bT the ~allOWing expression: 

G(q; xJ-1 • ~I T~rr,)~ f!J iM ff ~q} /P >, (2.1) 

where ~1 (x) are the Heisenberg ~ields o~ spin particles, As is known, the ~our-time 
Green ~unction obe7s the B.S. equation: 

(2,2) 

C fx;-; X'!'')"' S, ~-x'} · ~ (f- j') + 

+ /{c.-x,J{,r,-r,)/({Nf!t.;.¥,.VJ) GC-tt~-'"'~)..lx,.lx~~?'.t ,· 

12 
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l 

t 

where S (x) 18 the Green ~w: ..• 
S · (t- 'X') • (#/ T {f., (x) i,, {r: 1,) .,, 1 

The two-particle B,S, amplit 

homogeneou.s equation 

ifp(K-1} • J S, (HI) .f.t f;>-~) 
Notice that the kernel o~ tb 

irreducible diagrams, detern 

venient to introduce the c.~ 

X·Jfx.-t) ; 
2:. • {x-~) ; 

X '., 

z '· c 
Using the translation invari 

entering eq, (2,2) in the fa 

Grr1;x¥?• G{X-xJ 2,;e') 'Ctt1•. 
I 

/({xf; x'f'}• A" {X-x; :r.,;e')•ti;}1 j 

s, (H') ~ (f-¥') • Cf,; I ' f./1 

where 

J(f 

Inserting eqs. (2,6) to 

(;,(fd'J" Fpr,,,tJ+ /F,t 
Now we determine the tw 

G /.L ..... t'"'' "") 
~x.r; '"''' .. Gr. 



~1.25) ) • 

ed with the quas·ipotential 

(1.28) 

(1.~ 

m. s. of two particles . 

ot two interacting spin 

ons of the tTPe (1.20) 

r M which in the 

:ethod? 

wit h spin 1/2 were 

.imirov and D.Sto;ranov 1. 

.ion ot the quasipotentia l 

Jld;r-Wouthu.ysen tran11!orsat-

9f1ne in quantum field 

.itude and introduce the 

' !unction of two particles. 

>.g e:z:pre ssion: 

Ls known, the !our-time 

(2.2 ) 

I 

r 

I 

' 

where S (x) is the Green !unction ot tree partl.cles .., 
)_P( lf-11') 

J (r-x')•I#/T{f. (xJiM)I~)-i. ( e tip 
1,J ,, f,J {.a)"' Jp-"fi,•Jp- "' .. ;~ 

( 2.J) 

The two-particle B.S. amplitude ~&i) determined by eq. (1.1) obeys the a ppropria te 

homogeneou.s equation 

llpfx-1J• J ~ &-x~J.f.t !y-~) K (Y; ¥t d Ji's) J;, ~v~) "x'""'• ..t,y,,.ly.f. . 
( 2.4) 

Notice that the kernel ot the se equations is found by perturbation theory as a sum of 

irreducible diagrams, determining the two-particle scattering matrix. Further it i s con­

venient to introduce the o.m.s. variables x,~ and x ; a:. ' : 

X·}fHt) ; 

lt. • {X-If) ; 

X /• j{x'+,y1 . 

~ '· r'l('-vtJ . 
Using the translation invarianoe we determine the Fourier transforms ot the quantities 

entering eq. (2.2) in the following wa;r: 
/p(x-r').-,{:e-,;"" ' 

G{r,;x~?• G&-xJ:~t,SI!'Jrfj,jG, tf-f'}e ./;>.If .If' .; 
J"/>(X-X') n{Z-Jf~ 1 

/((xf;x'j')• K{X-x]a:,~~!'}•c;jj1 jl(,rf,if')e. 111'./f.lf' ; 

/I(X-x')n{:c.-,(~ ' 
S,r,-x'J -&_rr-¥-J·ez,;, · f-1;-lr.lr' --5 r,,,-J e _. 

where 

Inserting eqs. (2.6) to eq. (2.2) we get 

Now we determine the two-time Green function 

lJ 

( 2.6) 

(2.7) 

(2 .8) 

( 2.9 ) 



Let f ) t 1 
• Then, using the completeness of the s;rstem of stationar;r states 

and the definition of the one-time B. s . amplitude (1.8) we get 

G tt,ZJ; t/?; i:J· .1 ;{"' rt.J;-~,p) i, r+-~ .. ; t,r""V ; 
11,D 

( t >t:} 

or using eq. (l.J) ~ ~ ~ 
• /. l l ' " (K+fl :~;/ 

:z'} = -)1''. /f-t./.)1"' ;;;--
Gte,i,iit/.x""/u'""J ~ ,} lf,1 rx~17,oJ A;.1 tx;-1') o/ e 

~~ 

In eqs. (2.10) and (2.11) we have used the notation 
J' Y+ aJ "I • ,. "I Y, . J; uJ 

(2.10) 

(2 .11) 

Thus, if we find an equation which is satisfied by the two-time Green function (2,9) then 

the cor responding homogeneous equation is satisfied by the one-time wave function 

?[
111 

(f,;'; t ,;J • Let us determine the Fourier t ransform of the two-time Green :function 

. ~ .... _,) · ~ . .... . ..... / 
"-' J/,(r-t')- J'P(X-X -'1 (x- j) "Jj (it!./') 

Gr~,t,f?; t,'x-;1/'J· ~~J~r?.1Je <~;;.t?«f/.i .z. c2.12) 

where 5;, (pj f''} is oonneoted with the Fourier transform of the four-time Green function 

~ r,"J as follows 

G; r~ ;;'') .. ;.~,, tlf.' ~ r;-: ,,; 1: ,:_; . (2 . 1J) 

Note that the definition of the two-time Green function (2.9) is, generally speaking, 

relativistically non-covariant if the frame of reference is not fixed . 

Below we oonstruot equations which will be satisfied by the Fourier transform of 

the two-time Green function in the c.m.s. of two particle: 

"' "" /'(.""' -'~') r.., (. ~ _,') 
~ "'" ~ ~,.0 f , f 

(2.14) 

Ve write the B. s. equation (2.8) in a s;rmbolio form 

Gcf<~-FKG, 
(2.15) 

and solve it by the iteration method with respect to ~ 

G .. f o~-FKF + FKFKF +··· (2.16) 

Inserting (2.16) into eq. (2.14) we get the following expansion for the two-time Green 

fUDCt1on 
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'"'- ,...... .---....... 
G·ff-,CK.f-+. 

Here the sign 1 """ ' denote s 

performed by the formula (2.1 

For example, the free t• 

f· f,.,,.' !;-to r,,,:J.- ~ 

In what follows it is conve~ 

ation: 
,...._. "" 
6- Gr l r, 

where the unitary operator 

(2.18) in the FoldY-Wouthu;rs 

,..._ r _, '"'~:) r 
f .. - "fr-r lfrr~{f+r.)-
F L •, ;,t. 

where IV• Pllt~+fz; E• 

Calculating the integral 1n 

f. Irt-t'J !!-{-(;; ,~YE- J 

E E- " 
In the case of spinless part 

expression 2 

- 1 -f 

[?] =[F)-c4,: 
{ 

where the multiplier -~ 

part of the determined pat er 

bear in mind that the 1nver 1 

-f 

j1;4' [ 6rr~f''J] · ( 



· stationar y states 

get 

y + 'Y ff)._ t.} 
.. /l lfj' , , . ,, 

(2 .10) 

(2 .11) 

- time Green function (2 . 9) then 

one-time wave function 

t he two-time Green f unction 

( 2.12) 

1 of t he four-time Green function 

(2 ,1J) 

. 9) i s , genera lly speaking, 

.s not f ixed . 

by the Fourier transform of 

(2.14) 

(2.15 ) 

(2.16) 

nsion for the two-time Green 

(2 ,17) 

Here the sign 1 "'-'' denotes the operation of integration crver the relatiTe energies 'f,,f, ' 

performed by the formula (2.14) 1n the s.m.s. r;.,). 
For example, the free term 1n the expression (2,17) is of the form 

-~--

f. fr-"-' fj:.tr-•J ·- JrNJ 1:-r.• J ~,, ,Jfi'ft J ~.,. 'l --L1;, ';,[ ~f, -')' f-Mnt~ 1; -!:.f, "'J' 'rf-!Jtl t tJ 

(2 ,18) 

In what follows it is conTenient to go aver 1n eq. ( 2,17)to the Foldy-Wouth~sen represent­

ation: 
(2,19 ) 

where the unitary operator J; rf) is determined by the formula (1.15). The free term 

(2,18) in t he FoldY-Wouthuysen r epresenta tion i s of the form 

where 

Calculating the integral 1n (2.20) we get 

[r, 4iE i-W} +III j{t- r, "1 I 
E +.2111 J 

In the case of sp1nless particle s the quas ipotential i s determined by the f ollowing 

expre ssion 2 

- 1 - f 

[ §' j = [F) -o4: v ' 

(2. 20) 

(2,21) 

(2,22) 

.!. where the mult i plier -~i i s introduced for thesake of oonvenience , the imaginary 

part of the determined pot ent i al being a negative determined quantity. Further we shall 

bear i n mind that the inverse opera tor i s determined by the following express ion 

(2 , 2J) 
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It can be shown, however, that the operator (2,21) bas no inverse and the determination 

of the quasipotential by means of ( 2,22) is meaningless. The above mentioned trouble is 

caused by the f ollowing, Unlike the case of the scalar particles the Green functions of 

the spin particles G , F 
f6·oomponent spinors fJ . 

and others are the matrix operators aoting in spaoe 

Let us break down all the 

projeot:i.on operators A (.:t): 

spinor space 'f' into two subspaoes by means of the 

A (.1 ~ ( I ~ ~(f) r. J ; .11 ro~J+Ar-J_ .1. 
(2,24) 

It is not difficult to see that 

A r+J., { ~:z_r/){ l+:t'? +- {f-zr.r)e-;./'7 ,· (2,25) 

L) / (I) {i) 
A,.,. c.~ J{ (:::Ii>J + 

2.. ,2_ 

(') r.; 
{1-r.J(!.::.EJ . 

2. ,.t 
(2,26) 

Thus, from eqs. (2,25) and (2,26) it follows that either only "upper• or only "lower• 
1\ C+)~ ((} {.lj ) 

components of the spinorsrdiffer from zero {~ • r, • :tf · 

~ operat or A acting in the space of the spinors may be diTided into four 

components and written in a symbolic matriX form: 

A= !
A++ 

A-+ 

A+-~ 

A--) 
(2 ,27) 

++ -- {+) 
where the opera tors A and A aot only on the subspaces of the spinors A f' 
and A (-)f , respectively, while the operators A+- and A-+ transfer the spinors 

from one subspace to the other, 
,...... 

The operator ;; (2,21) can be represented in the form (2,27) 

,__ 

{ I< 

where 

I~++ :;; ~ 
0 

f f'++ = 4 ,· ar,""!.f'J l#f4•> E -.1./Vo~J., f: 

16 

(2,28) 

(2. 29) 

and, as is easily seen, has no 

of the spinors the two-time Gre 

to 
-f 

[F;++ J e ""'/ srr~i':J fr, 
This is relat ed to the fact tha 

the sol utions of eqs. (1.14) be 

potential equations for that pa 

particles with spin which in th 

A (+) 

f' ';I ...., (+) ( 
I/) ff')- A .j I 

where -t-t., f r) is connected witt 

;r1., r,) by 

x;.Q r."-:,.J .. 
We use eq, (2,22) for the deteJ 

-1 - 1 

[ g-++ 7 • ! '(++} - -!-
F J - F ,.!,, 

The :tuasipotential can be foun< 

-f 

,q,-; v,; .. [ f;++J ' ! fiF .l 
Using eqs , (2,2) and (2 , J: 

time Green function of spin pa: 

[ 
/f.J} , l""'u r 

I, · E -.!.WJ Gr r;:('J -= J · 

The wave function of two parti 

[ 
{f,t) / 7 ,';"' /.,-, 

~ · E-1 HIJ ..z, t f"' 



rerse and t he dete~nation 

above mentioned trouble is 

~les the Green functions of 

operators a oting in space 

subspaces by means of the 

(2 , 24) 

(2.25) 

(2.26) 

r only "upper" or only "lower• 

s may be diTided into four 

(2 .27) 

A {+J, 
ospaces of the spinors / t r 

A- + transfer the spinors 

orm (2.27) 

(2.28) 

(2.29) 

Jul- (+) 

and, as is easily seen, has no inverse operator. If we restrict ourselves to thers-paoe Af' 

of the spinors the two-time Green function of free particles has a~ inverse operator equal 

to 

C2,JO) 

This is related to the fact that in the case of ~wo nonint eraoting ; spin particles 

the solutions of eqs. (1.14) belong to the subspace Al+f' • Below we deduce the quasi­

potential equations for that part of t he one-time wavP. function of two interacting 

particles with spin which in the Foldy~7outhuysen representation belongs to the subspace 

At+}: 
(2.31) 

where ~~. (f) is connected with the Fourier transform of the one-time B.s. function 

;r; .• (f) by the Foldy-Wouthuysen unitary transformation (l.lJ): 

X;., r.~-:f~)"' To rj') .i;.o rf, 'f·J . 
(2 . n) 

We use eq. (2,22) for the determination of the quasipotential on the subspace 

( 2. JJ) 

The ~uasipotential can be found starting from the iteration expansion (2.17) 

{ ,...._++ -f --1++ "'-++ -f -= 1( .. [F. } · {F /t!..F . [F ' 7 f • •· • 
.lnc· F I' ~ F _} 

(2.J4) 

Using eqs, (2 ,2) and (2 , JJ) we get an equation for the Fourier transform~ the two­

time Green function of spin particles in the Foldy-Wouthuysen representation 

(2 . J5) 

The wave function of two particles (2.Jl) will satisfy the appropriate homogeneous equation 

(2.J6) 
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Eqs. (2.J5) and (2 , J6) are the basic equations of the quasipotential method for spin 

particles. Determining the effective mass operator 

H-i:rtJ= JIV#.,.,_ft) f J~r,;j';Ji:ti':J,tf'' (2.J7) 

we can \Trite eqs. (2.J6) in the following form 

[o/~~E- N} £ !(')& o, 
( 2, JB) 

which generalizes eq . (1.14) for free particles in the presence of the interaction. The 

normalization and orthogonality conditions of the states with different values of the to-

tal energies E and C 1 are of the form 

j "'-of (f.~) ""- __, 

.1" r;; E ') ;; ' !!.. ti!EJ "" E .FE,-E 
(2.J9) 

Let us make the two important remarks concerning the mass operator (2,J7). 

First of all , the quasipotential ~ , determined by the expression (2,JJ) a nd, 

consequently, the mass operator are, generally speaking,the complex functions of the 

e~rg E 
The ant1hermitian part of the potential are characterized by possible inelastic 

processes in the interaction of two particles and defines the width of t~e bound state 

levels, 

For the unitarity condition, which implies that the sum of the probabilities of all 

the possible processes does not exceed unity, to be fulfilled it is necessary that the 

antihermitian part of the mass operator should be negative definite quantity. 

Indeed, remembering that the time-dependent wave functi on of the bound state with 

energ £ is of the form 

'"'- .... -i£t ,..._ 
!1. (f ,t)"' e · ,1. (j;E) 

(2.40) 

~e get the following expression for t~e change of the norm of the state depending on 

time: 

f "'--/- IU) ~ ; ·')---!- "'-
:! !/, fr7t-J f.' '.f.. !/}t).lf'"' ,t ~# r;:o lJr;':;'J 5, (f~~t>~l,t:/1 < o 

?t 
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(2,41) 

where 

~ -t,) .L ~(f-~f / c .4' 

The negative definiteness o 

established by studying the 

in a way similar to 

concerning the mass operat o: 

ions of eqs, (2,)8) are not 

p (l,t) and contain 
0 

""-' (tf{H)) .r. - ft--) 
/ 

where 

f {.1':1) ~ 
(-} 

(/~~D){~ 

This is a consequence of th• 

generally speaking, with th• 

w~n. actillc •• t.b.e wave fw 

We perferm a pseudoun11 

;;. ll·fc ; 

which conserves the norm (2, 

11 r r/'tJ tt • ro M) 

Eqs, (2,J8) take the form 

{ 1Q (l~z} E - M J i, = • 

where 
I ~ 

H • 11 ·.41·11 



otential method for spin 

(2. J7) 

(2. J8) 

nee of the intera ction. The 

h di f f erent values of the to-

(2.J9) 

>e r a tor (2 ,)7). 

;he expr es sion (2,JJ) and, 

complex functions of the 

led by possible inelas tio 

1e width of t he bound state 

o of t he probabilities of all 

ed i t is neces sary that the 

definite quantity. 

ion of the bound st a te with 

(2.40) 

of the state depending on 

(2.41) 

where 
(2.42) 

The negatiTe definiteness of the antihermitean part of the mass operator (2,42) can be 

established by studying the analytical properties of the two-time Green f unu tion 

in a way s imilar to that used in the case of scala r particles 2• The second remark 

concerning the mass operat or i s the following, Unlike the ca se of free particle s the solut­

ions of eqs. (2,J8) are not, generally speaking , the eigenfunctions of the opera tors 

1', (t,1) and contain both upper fc-H) and lower p<--) components 

(2 .4J) 

where 

f {:f:#) ~ (2 .44) 

This is a consequence of the fact that the arbitrary mass operator (2.J7) does not commute, 

generally speaking, with the matrices #;,fM) and mix the components fY..,) and~~;) 
wheR aetiA' •• the waTe f URc ti on (2 ,4J) . 

We J•rferm a pseudounitary transformation on the wave function 

which conserves the norm (2 , J9) i .e. 

11 r-l# MJ 11 • 10 fttzJ 

Eqs . (2 ,J8) take the form 

where 
I 4 H • ll -;11·11 
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(2.45) 

(2,46) 

(2,47) 



I 
If we require that in the new !epresenta~ion the operator )f be diagonal, i.e. 

(1,1} I I ff,z) 
I, · M : M · 1D ) C2.48) 

then the wave funct ion ~ (f'being the solution of eqs, (2,47) is the eieenfunct ion of 

the matrices T.('tL}_. 

-y ft} J : "" f 1) ,r • ~ A' 
p t) .Y" (It) y~ .!t' ~ . 

(2 . 49) 

Let us call such a representa tion the "standard" one. Note that the transf ormati on 

U which diagonalizes the ma s s operator (2,48) may not, generally speaking, exist. However, 

we obtain approximate equations describing the system of two interacting spin partic­

le s in the nonrelativistic 11m1t,when !j'/~ 711 1 the t ransformation 'Z/, which diagonalizes 

the mass operata~ can be constructed with any degree of accuracy by means of expansion in 
I -"I 

powers of f,!- • The wave f w!'ction in the "standard" representation _¢;; r'f"V, 
(!) rv 

corresponding to the ~elutions when r. .r, e ~, i s normali zed in the following manner 

/ i. (,;e)~ r,--; e) elf= ~,'E (2.50) 

The relativistically covariant generalization of the quasipotentia l equations in the 

"standard " repre sentation (2 .47) has the form 

[y!t~'P- H} ~ rv - () ; (2 , 51) 
If"'~ 

The normalization condition (2 . 50) take s on the relativi stically invariant form: 

J ~(f)·~ (f) -f{n·f) .If· d,JI,'# 
(2 . 52) 

J. I nstantaneous Local Interaction of Two Pa rticle s 

Let us consider a simple example when the interaction of two particles with spin 

1/2 in the c.m.s. may be considered as J.ocal and nonretarded. 

In thi s case t he equation for the B. S. amplitude is~ the form: 

{
. f,) ){ . ('>),, ) y •J 1/ ~ -") .... ,y . 'Jx;-)1( ,r . "'Jf_:-M "'p~o (!(,,x~)· ' (x,.-~t,,) r {'x,-lf2 /l;.,.,(JV,x,), 

(J .l) 
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or, pa·esing to the momentum 

[. 
rt}1~ .) ....,,J~ 1r -')/J! 

r. ·L£+f• ·r ·f-,.,JL-r" <J 

where 

Y(j") • dJ /Yrx.~ 
We go over in eq, (J,2) to 1 

/t;'-o fr)· r;, f 1 
[r/'tj+f,)- IV }[l; rl}(j-1.)-Jt, 
where 

.Xr,; 1'? • T, rt--1J Y 
Use now the fact that the r: 

energy f, and obtain 
~"" 

;; rf') ... _["'; 
connected with the one-time 

eqs, (2,21) and (2.,29) we gt 

lr~· " · (!.!.... • , ,,,v 
'}', E-.2/V+/o " 

Thus, if the interaction of 

function i: r,-v belongs 

the equation 

[;., ~.t) E- ~ If/} .i--: ( f:; 
where 

(t) /'1) 
++ ( 1+r, · r,) Kf. J<_., ')./ . 

The mass operator correspond 

interaction 1n the B,S. aqua 

not containing the Dirac 1 
To demonstrate it we ex 
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7) is the eieenfunotion of 
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e that the transformation 

rally speaking, exi st , However, 

two interacting spin partic­

ation zt, which diagonalizes 

cy by means of expansion in 

sentation 

in the following manner 

( 2. 50) 

ntial equations in the 

(2.51) 

ly invariant form: 

(2,52) 

two particles with spin 

' form : 

(x,, x,) ' 

( J,l) 

or, passing to the momentum representation 

where 
(J.J) 

We go over in eq, (J,2) to the Foldy~Youthuysen r epresentation (1,12): 

( J, 4) 

:t; ... " rr)· T; r ;J.f" rrJ . 

[r."rjf-,,)- JV][r,rtJ(f-1.}-IVj !ipr,;~- .1_ Jxrr1h 5 .. rrv"'r' 
where A, 

(J. 5) 

Use now the fact that the r ight -hand s ide of eq, (J . 4) i s independent of the rela tive 

energy 1" and obtain the equation for the function ;;-; rt) 
+"" -

;;If') ., - !"'" .f. f f, f•} I 

(J.6) 

oonnected with the one-time wave function of two particles (1.10), Taking into account 

eqs, (2,21) and (2,29) we get 

,..._ 1 I 1". t-J r. (>)j " ~ 
t.r(J= /J,z} • ( f-; · / . Kri!rJ .1. r/')..~,, . 

-;, E-,211/ f-/o 

( J .7) 

Thus, 1f the interaction of two particles i s instantaneous ( or nonretard1ng) the wave 

function i: rf) belongs to the subspace Ar"t ~f the 16-component spinors and obeys 

the equation 

(J,B) 

where 

(J.9) 

The mass operator corresponding to eq. (J.B) is nondiagonal even if the original local 

interaction in the B,S. equation (J,l) was described by the scalar potential · ~r~:J 

not containing the Dirao j(- matrix. 

To demonstrate it we expand the mass operator of eq. ( J ,B) in inverse powers of ~ 
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with the a ccuracy not l ower than the se cond power of 
.. 

?>f • Using the formula 

T, rtJ- 1- :t. (/'!! ;r,;_; 7- ;;L_ i'(;}i~- i!'-Jij' / 
.lAf ..r,.,.. -111f'- -1- tJ (;;;3)) (J,lO) 

and passing to the x-space vre get the fol lowing approximate quasipotential equation 

rr. ~·} _ J-,_ i _ v f , J ,~- .1 {l: vr"'J 2 i. fJ:J -
-'lz j ~ 

L' 7Jt ...;,.,• J (J. ll) 

~ }"-- {.L l
1f"' Vr"'J 7/fJr~ .. J 7~--1 Y(.-)r~:_ .. / .f'-?(iJf'{-)!6Ja_, Vr.:o:J' 7) .f. f2) -b"'• .f111• 7hf•L' , 7> 'J./. 

where _, ~ 

'1--,·v.-
It i s easily seen that the l ast t erm in the right-hand side of eq. ( J,ll) does not oommute 

with the matrices ~ ~~~ and mix the upper a nd lower components i~ the wave funct-

ion 
tr""'!) l=- ( f(--}/ 

To pass to the "standard" repre sentation we pe r fo rm the following transformati on 

.--... ""'t 

J',. II · ~ ; " ~ J; Vt1! 2( c r. (,,J 
J 

where 

71 = eJCf> r;-::3 {;(,J? {JMf-: Vf~JJ) 

(J.l2) 

the a ction of which with a given accuracy reduce s to the elimination of the last term in 

the r , h. s. of eq , (J • .ll) , If the non-re l ativis tic consideration is i nvalid it is necessary 

to use an exact expression for the kernel of eq , (J . B): 

++ ,. )t .... dJ~ -'~r.y-'~ ') z ...., ....,, 4 41 ..,, 
v (.~ '-~') t lllr ~< -I f · r fV( .... ....,'J (1Nrlll. -l'r,;r; . r <? 

fL f I f I "' f -r + 
J. lf' ( vr Ill} ,1. /#1 ' ( JY ~ ..y 

where 

-" r1J _, (~ -J (i) 4 ('!) 
'T - r _., ,r/~ .... ,) ., - r -J / 
-- { · r 1 f - f ../ - - · f 
..tiV ,4yl 

w- I»'+ r l. ..i JY~ y~ .. +t' .. . 
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(J . lJ) 

Tbe relativist1oally oovar1ani 

[r~'t.)P - .tw] f,r,J. jX; 1 

,,. ~ 2 
(ji ' 

under the additional conditio 

i nva r 18llt :form 

Kp (tM tJ . r~~~~IV)':.. r(l~ . r l! 
JIV(II~IY) 

fl) 
+- Tf- r~-r . Vr'l -11 · 

where 

tv. (,~ f" ; JV ~ 

Tbe potential V ( f -f') 1n ' 

t ranlibrm of the space pot ent: 

&1Dlllletrio, i, e , 

V tl'-(1• Y[ (f-':. 

the relativisticallT invar~ 

v rr- rJ. Vf- r1-

In conclusion the autho: 

f or stimulating discussions, 

~en van Hieu, V, I ,Ogieveta 



• Using the formula 

) ' (J.lO) 

<uas1potential equation 

(J. ll) 

lf eq. ( J.ll ) does not oommute 

oponents in the wave funot-

lwing transformation 

(J . l2) 

lination of the last t erm in 

Lon is invalid it is neoessarr 

(J.lJ) 

The relativistioallr oovariant generalization of eq. (J.B) will be of the form 

[ r~'l)p_ .nv] 11 r,) ~ j IC; ffJ~'} ft" ·fJ ~ rf:J .If' .). 

n,. ~ 2 r,;· 

(J.l4) 

under the additional oondit1on jJ'f = () 
1 

the kernel of the equation has a relativ1stioallr 

invariant form 

where 

IV'= (w ~ .,,· . 
( J.l6) 

The potential V (f-f'} 1n eq. (J.l5) is a relat1vist1o generaliza tion of t he Fourier 

tranldlrm of the space potential (J.J). If t he space potential V(k)/ i!l spherioall7 

s1Jilllletrio, i.e. 
(J.l7) 

the relativ1stioall7 1nvar1aat peteat~ is of the form 
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