

RELATIVISTICALLY COVARIANT
EQUATIONS FOR TWO PARTICLES IN QUANTUM FIELD THEORY

1967.

E2-34.98

V.A.Matveev, R.M.Muradyan, A.N.Tavkhelidze

RELATIVISTICALLY COVARIANT EQUATIONS FOR TWO PARTICLES IN QUANTUM FIELD THEORY

In the present paper we oonsider the probien a relativistioally oovariant description of a syster of two interaoting partioles in the framework of quantum field theory. A generally accepted approach in this fleld bases on the Bethe-Salpeter equation . As is well known the B.S. amplitudes dopend on the two space-time points X_{1} and X_{2} and thus relativistio covariance is achifyed due to the introduction of two times. This leads one to some diffioulties in elearing up the physioal meaning of the B.S. amplitudes (for example, it is not clear how to interprete the relative time, and how to normallze the B.S. amplitude, etc.). The problem we are concerned with in the present paper is to obtain the relatiristioaliv oovariant equations for two interacting particles (with spin 0 or $1 / 2$) the solutions of whioh would allow a quantun-meohanioal probability interpretation.

It can be shown that the physical quantities such as scattering matrix on the mass shell and orergy spectrum of bound states coincide with those ones obtained by means of the B.S. equation. As will be seen bolow, our method of the solution of this problem is directly connected with the quasipotential approach in quantum field theory developed in papers ${ }^{2}$.

I. Waye Equations for Two Scalar Particles

1. Free Particles

Taking two free spinless partioles as an example we demonstrate the possibility of a relativistioally covariant one-time description of a system of two particles.

It is well known that in quantum field theory the two-particle system is described by the Bethe-Salpeter amplitude

$$
\begin{equation*}
\lambda_{p}\left(x_{1}, x_{2}\right)=\langle 0| T\left(P_{1}\left(x_{1}\right) \varphi_{2}\left(x_{2}\right)\right)|P\rangle \tag{1.1}
\end{equation*}
$$

Where $P_{1,2}(x)$ are the Heisenberg fields of two scalar particles of equal masses and $\left./ P\right\rangle$ is the state vector with a definite value of the fourmomentum p.

In the oase of absence of interaotion the Bethe-Salpeter amplitude (1.1) satisiles the equations

$$
\begin{align*}
& \left(\square_{x_{1}}-m^{2}\right) Y_{p}\left(x_{1}, x_{2}\right)=0 \\
& \left(\square_{x_{2}}-m^{2}\right) x_{p}\left(x_{1}, x_{2}\right)=0 \tag{1,2}
\end{align*}
$$

where

$$
D_{x}=-\partial_{x}^{2}=-\partial_{t}^{2}+\vec{\nabla}^{2}
$$

Using translation invariance

$$
\begin{gathered}
X_{p}\left(x_{1}, x_{2}\right)=e^{-j p x} \cdot x_{p}(x) ; \\
X=\frac{1}{2}\left(x_{1}+x_{2}\right) ; \quad x=\left(x_{1}-x_{2}\right)
\end{gathered}
$$

and going over to the momentum representation

$$
x_{p}(x)=\int d_{p} e^{-i \not x} x_{p}(l),
$$

we get the following equations

$$
\begin{aligned}
& {\left[\left(\frac{p}{2}+q\right)^{2}-m^{2}\right] \cdot x_{p}(q)=0} \\
& {\left[\left(\frac{p}{2}-q\right)^{2}-m^{2}\right] \cdot x_{p}(q)=0}
\end{aligned}
$$

Due to the equality of the masses of the two partioles, from (1.5) we obtain

$$
\begin{gather*}
\left(\frac{1}{4} p^{2}+q^{2}-m^{2}\right) x_{p}(1)=0 \tag{1.6a}\\
(p \cdot q) x_{p}(q)=0 \tag{1.6b}
\end{gather*}
$$

Hence it follows that the amplitude $X_{p}(\rho)$ on be represented in the form

$$
\begin{equation*}
x_{p}(\varphi)=\delta(n \cdot q) \varphi_{p}(\varphi) ; \quad n_{p}=\frac{p_{\mu}}{\sqrt{p^{2}}}, \quad p^{2}>0 \tag{1.7}
\end{equation*}
$$

the function $P_{\rho}(\rho)$ being determined only for those values of relative momentum q which are related by the oondition $p . q=0$.

Now wo determine the onetime ware function for coaler partioles in the oentre--o f-mass system $(\vec{p}=0)$:

$$
\begin{equation*}
\lambda_{0}\left(t, \overrightarrow{x_{1}} ; t, \vec{x}_{2}\right)=e^{-i E t} x_{0}\left(\overrightarrow{x_{1}}-\vec{x}_{2} ; 0\right) \tag{1.8}
\end{equation*}
$$

From eq. (1.4) it is easy to see that the function (1.8) may be expressed in terms of the Fourier transform of the B.S. amplitude which is integrated over the relative energy in the 0.m.s.

$$
\begin{equation*}
X_{0}(\vec{x}, 0)=\int d \vec{q} \cdot d q, e^{i \vec{p} \cdot \vec{x}} \overrightarrow{\lambda_{0}}(\vec{p}, \underline{p}) \tag{1.9}
\end{equation*}
$$

or, using the representation (1.7)

$$
\begin{equation*}
\lambda_{0}(\vec{x}, 0)=\int d \vec{q} e^{i \vec{q} \vec{x}} \phi_{0}(\vec{q}) \tag{1.10}
\end{equation*}
$$

From eqs. (1.5) and (1.6) it follows that the wave function in the $0, \mathrm{~m}_{\mathrm{c}} \mathrm{s}$. obeys the equation

$$
\begin{equation*}
\left(\frac{1}{4} E^{2}-\vec{q}^{2}-m^{2}\right) \rho_{0}(\overrightarrow{4})=0 \tag{1.11}
\end{equation*}
$$

and has two solutions

$$
\begin{equation*}
\varphi_{0}(\vec{q})=Q_{E}: \hat{S}(E-2 W) ; \quad W=\sqrt{m^{2}+\vec{q}^{2}} \tag{1.12}
\end{equation*}
$$

The solution with pusitive total energy $E=2 W$ describes the state of two particles " 1 " and "2" and the solution with negative energy $E=-2 \mu$ ' can be related to the state of two antiparticles $\overline{11} "$ and $" \overline{2} "$ by means of oharge conjugation, 1.e.

$$
\begin{equation*}
\phi_{0}^{(}(\vec{i}, E<0)=\phi_{0}^{c}(-\vec{i},-E>0) \tag{1.1.3}
\end{equation*}
$$

The normalization and orthogonality conditions of the solution of eq. (1.11) with different values of positive total energy are given by

$$
\begin{equation*}
\int \varphi_{0}^{*}\left(\vec{q}, \xi^{\prime}\right) \varphi_{0}(\vec{\varphi}, E) d \vec{q}=\delta_{E^{\prime}, E} \quad ; \quad(E, E>0) \tag{1.14}
\end{equation*}
$$

Eq. (1.2l) is a quasipotential equation describing two free scalar particles in the c.m.s. An important merit of the quasipotential approach is the fact that the two-particle wave function $P_{0}(\vec{q})$ depends only on the three-dimensional relative momentum \vec{q} and can be normalized, i.e. allows a probability quantum-meohanical interpretation ${ }^{2}$.

The relativistio generalization of eq. (1.11) is of the form

$$
\begin{equation*}
\left[\rho^{2}-M^{2}\right] \cdot \rho_{\rho}(p)=0 \tag{1.15}
\end{equation*}
$$

under the additional condition

$$
\begin{equation*}
p \cdot q=0 \tag{1.16}
\end{equation*}
$$

in this case

$$
\begin{equation*}
M=2 \sqrt{m^{2}-q^{2}} \tag{1.17}
\end{equation*}
$$

is the operator of the effective mass of the system 0.0 two free scalar particles.
The conditions of normalization and orthogonality of states with different values of the total mass is relativistically generalized in the following way:

$$
\begin{equation*}
\int \varphi_{p^{\prime}}^{\prime}(p) \varphi_{p}(q) \delta(n \cdot q) d q=\delta_{M^{\prime}, N} \quad ; \quad H^{\prime}=\sqrt{p^{\prime 2}} ; \quad H=\sqrt{p^{2}} \tag{1.18}
\end{equation*}
$$

2. Interacting Scalar Particles

In the presence of the interaction the $B_{*} S$. amplitude (isl) of two scalar partic. I.. satisfies the relativistically covariant equation which in the momentum representation is of the form ${ }^{1}$:

$$
\begin{equation*}
\left[\left(\frac{p}{2}+q\right)^{2}-m^{2}\right]\left[\left(\frac{p}{2}-q\right)^{2}-m^{2}\right] X_{p}(q)=\int K_{p}^{\prime}\left(q, q^{\prime}\right) X_{p}(q) d q^{\prime} \tag{2.1}
\end{equation*}
$$

The kernel of the equation $K_{\rho}\left(\varphi, q^{\prime}\right)$ is found, using the perturbation theory, as a sum of all the irreducible diagrams defining the two-particle soattering matrix. The wave function does not satisfy the normalization condition of the type (1.18) and, consequently, do not allow the usual probability interpretation.

In order to conserve the normalization condition of the type (1.18) we consider the possibility of describing the interaction of two particles on the basis of the set of equations (1.6) . We do not change eq. (1.6 b) and include the interaction into eq. (1.6a) in the following manner:

$$
\begin{gather*}
\left(\frac{1}{4} p^{2}+q^{2}-m^{2}\right) x_{p}(q)=\int W p\left(q, q^{\prime}\right) x_{p}(q) d q^{\prime} ; \tag{2.2a}\\
(p \cdot q) \cdot x_{p}(q)=0 \tag{2.2b}
\end{gather*}
$$

For these equations to be compatible it is necessary that the potential should obey the condition $(\rho . q) W_{\rho}(\rho, q)=0 \quad$. From where

$$
\begin{equation*}
W_{p}\left(q, q^{\prime}\right)=\delta(n \cdot q) \cdot V_{p}\left(q, q^{\prime}\right) \tag{2,3}
\end{equation*}
$$

Bearing in mind (2.2b) it is convenient to introduce the function $\mathscr{\varphi}_{\rho}(4)$:

$$
\begin{equation*}
\chi_{p}(q)=\delta(n . q) \varphi_{p}(q) ; \quad n_{\mu}=\frac{p_{k}}{\sqrt{p^{2}}}, \tag{2.4}
\end{equation*}
$$

which as can be seen satisfies the equation

$$
\begin{gather*}
\left(\frac{1}{4} p^{2}+q^{2}-m^{2}\right) \varphi_{p}(q)=\int V_{p}\left(q, q^{\prime}\right) \delta\left(n \cdot q^{\prime}\right) \varphi_{p}\left(q^{\prime}\right) d q^{\prime} ; \tag{2.5}\\
p \cdot q=0 .
\end{gather*}
$$

The wave functions obey the relativistically invariant orthonormalization condition of the following form:

$$
\begin{equation*}
\int \varphi_{p^{\prime}}^{*}(q) \varphi_{p}(q) \delta(n \cdot q) d q=\delta_{H_{1}^{\prime}} ; \quad H^{\prime}=\sqrt{\rho^{\prime 2}} ; \quad M=\sqrt{+^{2}} \tag{2.6}
\end{equation*}
$$

In the c.m.s. $(\vec{\rho}=0)$ eqs. (2.5) (2.6) have the fort.:

$$
\begin{gather*}
\left(\frac{1}{q} E^{2}-\vec{q}^{2}-n^{2}\right) \varphi_{E}(\vec{q})=\int V_{E}(\vec{q}, \vec{q}) \varphi_{E}(\vec{q}) d \vec{q}^{\prime} ; \tag{2.7}\\
\int_{E},(\vec{q}) \varphi_{E}(\vec{q}) d \vec{q}=\delta_{E^{\prime}}, \tag{2.8}
\end{gather*}
$$

For a suitable choice of the interaction potential $V_{F}\left(\vec{q}, \vec{q}^{\prime}\right)$ eq. (2.7) coincides with tne quasipotential equation in quantum field theory suggested in papers ${ }^{2}$. In this connection it is appropriate to reoali some basic statements of the quasipotential approach

The quasipotential equation was obtained on the basis of the B.S. equation for the Fourier transform of the one-time wave function of two particles in the c.m.s. and has the form:

$$
\left(\frac{1}{4} E^{2}-\vec{q}^{2} m^{2}\right) \widetilde{\varphi}_{E}(\vec{q})=\frac{1}{\sqrt{m^{2}+\vec{q}^{2}}} \cdot \int \widetilde{V}_{E}(\vec{q}, \vec{q}) \widetilde{\varphi}_{E}(\vec{q}) d \vec{q}:
$$

Where

$$
\begin{equation*}
\stackrel{\phi}{E}(\vec{q})=\int_{-\infty}^{+\infty} d q_{0} X_{E}(\vec{q}, 90) \tag{2.10}
\end{equation*}
$$

In the same papersa method for constructing the quasipotential $\widetilde{V_{F}(\vec{q}, \overrightarrow{4}) \text { by means of }}$ perturbation theory was suggested. In this case the scattering amplitude calculated by means of suoh a potential coincides on the mas: shell with the scattering amplitude obtained on the basis of the B.S. equation. Sincs it is always possible to ohoose the relativistically invariant potential (2.3) which coinoides in the o.m.s. with the quasipotential:

$$
\begin{equation*}
V_{E}\left(\vec{q}, \overrightarrow{q^{\prime}}\right)=\frac{1}{\sqrt{m^{2}+\vec{q}^{2}}} \cdot \widetilde{V}_{E}\left(\vec{q}, \vec{q}^{\prime}\right) \tag{2.11}
\end{equation*}
$$

then eq. (2.2) may be considered as a relativistio generalization of the quasipotential equation.

In conclusion of this seotion we note that while the B. S. equation allows one to determine the Fourier transform of the four-point Green funotion $G_{\rho}\left(q, q^{\prime}\right)$ over the whole region of change of the variables p, q and q^{\prime}, the system of equations (2.5) makes it possible to determine the same quantity only on the mass shell.

1 Free Particles

The B. S. amplitude of two spin particles having equal masses is determined by the expression:

$$
\begin{equation*}
\left.\chi_{p}\left(x_{1}, x_{2}\right)=\langle 0\rangle T\left(\psi_{1}^{\prime}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)\right) / \rho\right\rangle ; \tag{1.1}
\end{equation*}
$$

where $\frac{4}{\pi, 2}(x)$ are the Heisenberg fields of partioles with spin $1 / 2$, and $/ \rho>$ is the state with a deifnite four momentum P. When the interaction is absent the amp11.tude (1.1) satisfies the system of two equations x :

$$
\begin{align*}
& \left(i \gamma^{(1)} \partial_{x_{1}}-m\right) \lambda_{p}\left(x_{1}, x_{2}\right)=0 \tag{1.2}\\
& \left(i \gamma^{(2)} \cdot \partial_{x_{2}}-m\right) \lambda_{\rho}\left(x_{1}, x_{2}\right)=0
\end{align*}
$$

Using translation Lavariance

$$
\begin{align*}
& X_{p}\left(x_{1}, x_{2}\right)=e^{-i P X} \cdot x_{p}(x) ; \tag{1,3}\\
& X=\frac{1}{2}\left(x_{1}+x_{2}\right) ; \quad \sim=\left(x_{1}-x_{2}\right)
\end{align*}
$$

and going war to the momentili representation

$$
\begin{equation*}
\lambda_{p}(x)=\int d q e^{-\dot{y} x} X_{p}(q) \tag{1.4}
\end{equation*}
$$

we obtain the following equations for the function $X_{\rho}(q)$ of two free particles

$$
\begin{align*}
& {\left[\gamma^{(1)} \cdot\left(\frac{p}{2}+q\right)-m\right] \cdot x_{p}(q)=0} \tag{1.5}\\
& {\left[\gamma(p)\left(\frac{p}{2}-q\right)-m\right] \cdot \lambda_{p}(p)=0}
\end{align*}
$$

Owing to the equality of the masses of the particles under consideration the function
$\chi_{p}(q) \quad$ satisfies the oondition

$$
\begin{equation*}
(p \cdot q) \cdot x_{p}(q)=0 . \tag{1.6}
\end{equation*}
$$

from where it follows that $X_{P}\left(y_{4}\right)$ may be refiesented in the form
x)

Particles "1" and "2" of equal asses may differ from one another by the signs of the charges. If, for instance, partiole ${ }^{\prime 2}$ " is an antiparticle fir matrices $\gamma^{(2)}$ one should use the oharge conjugate representation $\gamma^{c}=\gamma_{T}^{\prime}$ where $\gamma^{\prime \prime}$ - denotes transposition.

$$
\begin{equation*}
x_{p}(q)=\delta(n \cdot q) \cdot \widetilde{x_{p}}(q) ; \quad n_{\mu}=\frac{p_{\mu}}{\sqrt{p^{2}}} ; \quad p^{2}>0 . \tag{1.7}
\end{equation*}
$$

It should be noted that the function $\widetilde{\chi_{\rho}}(\rho)$ is determined only for those values of the total and relative momenta which are connected by the condition $p q=0$.

Now we determine the onetime wave function of two spin particles in the o.m.s.

$$
\begin{equation*}
\lambda_{0}\left(t, \overrightarrow{x_{1}} ; t, \vec{x}_{2}\right)=e^{-i E t} \cdot x_{0}\left(\overrightarrow{x_{1}}-\vec{x}_{2} ; 0\right) \tag{1.8}
\end{equation*}
$$

From eq. (1.4) it is not difficult to see that the function (1.8) is expressed in terms of the Fourier component of the $B_{0} S$. amplitude which is integrated over the relative energy in the o.ti.s.

$$
\begin{equation*}
\lambda_{0}(\vec{x}, 0)=\int d \vec{q} e^{\vec{q} \vec{x}} \cdot \int d q_{0} \chi_{0}\left(\vec{q}, q_{0}\right) \tag{1.9}
\end{equation*}
$$

or, using the representation (1.7)

$$
\begin{equation*}
x_{0}(\vec{x} ; 0)=\int d_{q} e^{i \vec{q} \vec{x}} \cdot \tilde{X_{0}}(\vec{q}) \tag{1.10}
\end{equation*}
$$

From eqs. (1.5) it follows that in the calls. the function satisfies the system of equations

$$
\begin{align*}
& {\left[\gamma_{0}^{(1)} \cdot \underline{\xi}-\vec{\gamma}(1) \vec{q}-m\right] \tilde{x_{0}}(\vec{q})=0:} \tag{1.11}\\
& {\left[r_{0}^{(\alpha)} \cdot \underline{E}+\vec{\gamma}(\mu) \vec{q}-m\right] \tilde{x_{0}}(\vec{p})=0}
\end{align*}
$$

We perform the Foldy-Wouthuysen transformation ${ }^{5}$ on the wave function $\tilde{\tilde{x}_{0}}(\vec{q})$ for the case of two free spin particles in the comes.

$$
\begin{equation*}
\tilde{\lambda_{0}}(\vec{q})=T_{0}(\vec{q}) \cdot \tilde{Y}_{0}(\vec{q}) \tag{1.12}
\end{equation*}
$$

where

$$
\begin{gather*}
T_{0}(\vec{p})=\frac{\left(n+w-\vec{r}(\vec{q})\left(m+w+\vec{r}^{w} \cdot \vec{q}\right)\right.}{2 W(m+w)} ; \quad W=\sqrt{m^{2}+\vec{p}^{2}} ; \tag{1.13}\\
T_{0}^{+}(\vec{q}) \cdot T_{0}(\vec{p})=1 .
\end{gather*}
$$

Eq. (1.11) in the Foldy-Wouthuysen representation takes on the following form:

$$
\begin{align*}
& {\left[\gamma_{0}^{(t)} \cdot \frac{E}{2}-w\right] \cdot \tilde{4_{0}}(\vec{q})=0} \tag{1.14}\\
& {\left[r_{1}{ }_{2}^{\omega} \frac{\underline{E}}{2}-w\right] \cdot \tilde{\psi_{0}}(\vec{p})=0}
\end{align*}
$$

and have two solutions:

$$
\begin{equation*}
E= \pm 2 W ; \quad r_{0}^{(r)}=r_{0}^{\omega}= \pm 1 \tag{1.15}
\end{equation*}
$$

Tr \ddagger solution with positive energy corresponds to pertioles n^{n} " and n^{n} while the solution with negative energy may be connected by means of the operation of charge conjugation with the state of antiparticles $\overline{n 1}{ }^{\prime \prime}$ and $\overline{n^{2} "}$:

$$
\begin{equation*}
c^{(\pi)} \cdot c^{(x)} \tilde{\psi_{0}}\left(\vec{q}, E(0)=\tilde{4_{0}}(-\vec{q},-E>0) ;\right. \tag{1.16}
\end{equation*}
$$

where $C=\gamma_{0} \cdot \gamma_{2}$ is the charge conjugation matrix. The general solution for the set of equations (1.14) is of the form

$$
\begin{equation*}
\tilde{\Psi_{0}}(\vec{\varphi})=\delta\left(\frac{E^{2}}{4}-w^{2}\right) \cdot \Lambda^{(+)} \varphi \tag{1.17}
\end{equation*}
$$

Where $\rho \quad$ is an arbitrary 16 -component spinor (undor); $\Lambda^{(t)}=\left(\frac{1+\gamma_{0}^{(4)} \cdot \gamma_{0}^{a}}{2}\right)$ is the projection operator . Note that

$$
\begin{equation*}
\Lambda^{(t)} \cdot \varphi=p^{(+t)}+\varphi^{(--)} \tag{1.18}
\end{equation*}
$$

where

$$
\left.\varphi^{(\pm \pm)}=\left(\frac{1 \pm \gamma_{0}^{(T)}}{2}\right)^{\left(\frac{1 \pm \gamma_{0}}{2}\right.}\right)^{a} \varphi
$$

Eqs. (1.14) describe two free spin particles in the c.m.s. by means of the wave function $\tilde{\mathbb{I}_{0}}(\vec{q})$ depending on the three-dimensional relative momentum. The normalization and orthogonality conditions of the states with different total energy have the form:

$$
\begin{equation*}
\int d \vec{q} \tilde{\mathbb{H}_{0}}\left(\vec{q}, E^{\prime}\right) \widetilde{\Psi_{0}}(\vec{q}, E)=\delta_{E, \prime} \quad(\varepsilon, E>0) \tag{1.19}
\end{equation*}
$$

The relativistic generalization of eqs. (1.14) are the equations:

$$
\begin{align*}
& {\left[r^{(1)} p-M\right] \tilde{\tilde{4}_{p}}(q)=0} \tag{1.20}\\
& {\left[r^{(1)} p-M\right] \tilde{4_{p}}(q)=0}
\end{align*}
$$

under the additional condition

$$
\begin{equation*}
(p \cdot q)=0 ; \tag{1.21}
\end{equation*}
$$

where $\mu=2 \sqrt{\mu^{2}+\vec{q}^{2}}$ is the effective mass operator of the system of two free partioles. Eqs. (1.20) $\boldsymbol{m}^{1 \text { th }}$ the additional condition (1.21) and the arbitrary mass operator M are known as the equations of the Yukama bifocal theory ${ }^{4}$, which earlier were also 1 ivest1gated by M. Markov ${ }^{3}$.
 is connected with the amplitude $\tilde{X}_{\rho}(q)$ in the arbitrary system by means of the generalized Folly- Wouthuysen transformation:

$$
\begin{equation*}
\tilde{x_{p}}(q)=T_{p}(q) \cdot \tilde{f_{p}}(q), \tag{1.22}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{p}(q)=\frac{\left(m+w-\gamma^{(m)} q\right)\left(u+w-\gamma^{(2)} q\right)}{2 W(w+w)} ; \quad W=\sqrt{m^{2}-q^{2}} . \tag{1.23}
\end{equation*}
$$

Notice that the transformation (1.22) is not unitary but satisfies the condition:

$$
\begin{equation*}
T_{p}(-q) \cdot T_{p}(q)=1 . \tag{1.24}
\end{equation*}
$$

The relativistic generalization of the normalization and orthogonality conditions (1.19) for the states with different total masses is of the form:

$$
\begin{equation*}
\int \overline{\tilde{I}_{p}^{\prime}}(q) \tilde{I_{p}}(q) \delta(n q) d q=\delta_{\mu_{j}^{\prime} \mu} \text {; } \tag{1.25}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{\tilde{y}}(1)=\tilde{\Psi_{p}^{+}}(1) \cdot \gamma_{0}^{(1)} \gamma_{0}^{(2)} \tag{1.26}
\end{equation*}
$$

It is not difficult to oheok also, passing to the o.m.s. and using eq. (1.12) and (1.13) that the normalization and orthogonality conditions may be expressed in terms of the funotions $\widetilde{X_{p}}(q)$:

$$
\begin{equation*}
\int \overline{\bar{x}}_{p}(q) \tilde{x}_{p}(q) \delta(n \cdot q) d q-\delta_{p_{1}^{\prime} / \psi} . \tag{1.27}
\end{equation*}
$$

Thus, we have shown that eqs. (1.14) describing two spin particles in the comes. in the absence of the interaction by means of the function $\tilde{z_{0}}(\vec{q})$, oonneoted \boldsymbol{n} th the ono--time Bethe-Salpeter amplitude by the expressions (1.10) and (1.12), all om the relativise-
tically oovariant generalization (see e.g. eqs. (1.20) (1.21) (1.25)) .
In this ase the relativistio amplitude $\widetilde{y_{p}(9)}$ is oonneoted with the quasipotential funotion $\tilde{4}(\vec{q})$ by the Lorente transformation L :

$$
\begin{equation*}
\tilde{\Psi_{p}}(q)=\frac{\left[\gamma^{(1)} \cdot p+H\right]\left[r^{(M)} \cdot \rho+M\right]}{2 M\left(H+P_{0}\right)} \cdot \Psi_{0}\left(L^{-1} \cdot q\right) \tag{1.28}
\end{equation*}
$$

so that

$$
\begin{equation*}
L^{-1} p=\{H, o\} ; \quad L^{-1} q=\{0, \vec{q}\} ; \tag{1.29}
\end{equation*}
$$

where \vec{q} is the space relative momentum, determined in the c.m.s. of two partioles.
The question arises: Is it possible to desoribe the system of two interacting apin particles Fith the ald of the relativistially covariant equations of the type (1.20) with the additional condition (1.21) and a oertain mass operator M, whioh in the c.m.s. Would coinoide with the equation of the quasipotentiel method?

The quasipotential equations for two interaoting particles with spin $1 / 2$ were investigated in dotail in the papers by R.N.Faustov ${ }^{6}$ and G.Desimirov and D.Stoganov ${ }^{7}$.

In the next seotion we present a somewhat modified derivation of the quasipotential equations for two spin partioles by means of the generalized Foldy-Wouthuysen transformat10ns.

2. Quasipotentiel Equations for Spin Partioles

In this section we shall start from the equations whioh define in quantum field theory the 4-time Green function and the two-partiole B.S. amplitude and introduoe the equations for the two-time Green function and the onemime wave function of two perticles.

The four-time Green function is determined by the following expression:

$$
\begin{equation*}
G\left(x y_{j} x^{\prime} y^{\prime}\right)=\left\langle 01 T\left(4_{1}\left(x_{1}\right) \psi_{2}(y) \bar{H}_{1}\left(x^{\prime}\right) \overline{y_{2}}\left(y^{\prime}\right)\right) 10\right\rangle \tag{2.1}
\end{equation*}
$$

Where $4_{4,2}(x)$ are the Heisenberg fields of spin particles, As is known, the four-time Green function obeys the B.S. equation:

$$
\begin{gather*}
G\left(x y^{\prime} x^{\prime} y^{\prime}\right)=S_{1}\left(x-x^{\prime}\right) \cdot S_{2}\left(y-y^{\prime}\right)+ \tag{2.2}\\
+\int S_{1}\left(x-x_{1}\right) S_{2}\left(y-y_{1}\right) K\left(x_{1} y_{1} ; x_{2} y_{2}\right) G\left(x_{2} y_{2} ; x^{\prime} y^{\prime}\right) d x, d x_{2} d y_{1} d y_{2} ;
\end{gather*}
$$

where $\mathcal{S}_{1,1}(x)$ is the Green function of free particles

$$
\begin{equation*}
S_{1,2}\left(x-x^{\prime}\right)=\left\langle 0 \mid T\left(4,4_{1,2}(x) 4_{i, 2}\left(x^{\prime}\right)\right) / 0\right\rangle=\frac{2^{\prime}}{(\infty)^{4}} \int_{\gamma^{(i n)} p-m+i 0} \frac{e^{i p\left(x-x^{\prime}\right)}}{(p} \tag{2.3}
\end{equation*}
$$

The two-perticle B.S. amplitude $\chi_{\rho}(x y)$ determined by eq. (1.1) obeys the appropriate homogeneous equation
$x_{p}(x, y)=\int S_{1}\left(x-x_{1}\right) S_{2}\left(y-y_{1}\right) K\left(x, y_{1} ; x_{2} y_{2}\right) x_{p}\left(x_{2} y_{2}\right) d x_{1} d x_{2} d y, d y_{2}$.
Notion that the kernel of these equations is found by perturbation theory as a sum of irreducible diagrams, determining the two-partiole scattering matrix. Further it is convenient to introduce the $0 . m$.s. variables X, x and X^{\prime}, x^{\prime};

$$
\begin{array}{ll}
X=\frac{1}{2}(x+y) ; & x^{\prime}=\frac{1}{2}\left(x^{\prime}+y^{\prime}\right) \tag{2.5}\\
x=(x-y) ; & x^{\prime}=\left(x^{\prime}-y^{\prime}\right)
\end{array}
$$

Using the translation invariance we determine the Fourier transforms of the quantities entering eq. (2.2) in the following way:

$$
i p\left(x-x^{\prime}\right)+i q x-i x^{\prime}
$$

$G\left(x y ; x^{\prime} y^{\prime}\right)=G\left(x-x^{\prime} x, x^{\prime}\right)=\frac{1}{(2)^{8}} \int G_{p}\left(q, q^{\prime}\right) e^{p} d p d q d q^{\prime} ;$

$$
\begin{equation*}
i p\left(x-x^{\prime}\right)+i q^{x} x-\dot{q}^{\prime} x^{\prime} \tag{2.6}
\end{equation*}
$$

$K\left(x y ; x^{\prime} y^{\prime}\right)=K\left(x-x^{\prime} ; x, x^{\prime}\right)=\frac{1}{(2 \pi)} \dot{g}^{\prime} \cdot \int K_{p}\left(\varphi, q^{\prime}\right) e^{i p(x-x)+i q^{2-j} d p d q d q^{\prime} ;}$

$$
S_{1}\left(x-x^{\prime}\right) S_{2}\left(y-y^{\prime}\right)=\frac{1}{(2 x)^{p}} \cdot \int d p d q d q^{\prime} F_{p}\left(q, q^{\prime}\right) e^{i p\left(x-x^{\prime}\right)+i q x-i q^{\prime}}
$$

where

$$
\begin{equation*}
F_{p}(q, q)=-\frac{\delta(1-9)}{\left[r^{(1)}\left(\frac{\rho}{2}+9\right)-m+i g\right]\left[\delta^{(0} \cdot\left(\frac{p}{2}-q\right)-w+i 0\right]} \tag{2.7}
\end{equation*}
$$

Inserting eqs. (2.6) to eq. (2.2) we get

$$
\begin{equation*}
G_{p}\left(q, q^{\prime}\right)=F_{p}\left(q, q^{\prime}\right)+\int F_{p}\left(q, q_{1}\right) K_{p}\left(q_{1}, q_{2}\right) G_{p}\left(q_{2}, q^{\prime}\right) d q_{1} d q_{2} \tag{2.8}
\end{equation*}
$$

Now we determine the two-time Green function

$$
\begin{equation*}
G\left(t, \vec{x}, \vec{y} ; t^{\prime}, \overrightarrow{x^{\prime},}, y^{\prime}\right)=\left.G\left(x y ; x^{\prime} y^{\prime}\right)\right|_{x_{0}=y_{0}=t} \tag{2.9}
\end{equation*}
$$

Iet $t>t^{\prime}$. Then, using the completeness of the system of stationary states and the definition of the one-time B.S. amplitude (1.8) we get

$$
\begin{equation*}
G\left(t, \vec{x}, \vec{y} ; t^{\prime}, \vec{x}^{\prime}, \vec{y}^{\prime}\right)=\sum_{n p} x_{n p}(t, \vec{x} ; t, \vec{y}) \overrightarrow{\vec{x}}_{n p}\left(t, \vec{x}^{\prime} ; t^{\prime}, \vec{y}, \prime\right) ; \quad\left(t>t^{\prime}\right) \tag{2.10}
\end{equation*}
$$

$$
\begin{align*}
& \text { or using eq. (1.3) } \\
& \left.G_{\left(t, \overrightarrow{x_{y}}, \vec{y} ; t^{\prime}, \vec{x}^{\prime}, \vec{y}^{\prime}\right.}\right)=\sum_{x_{p}} x_{n p}\left(\vec{x} \cdot y^{\prime} ; 0\right) \bar{x}_{n p}\left(\vec{x}^{\prime}-\vec{y}^{\prime} ; 0\right) e^{-p_{0}\left(t-t^{\prime}\right)+j \vec{p}\left(\frac{\vec{x}+\vec{y}}{2}-\frac{\vec{x}^{\prime}+\vec{y}^{\prime}}{2}\right)} . \tag{2.11}
\end{align*}
$$

In eqs. (2.10) and (2.11) we have used the notation $\overline{\bar{X}}_{x p}=X_{n p}^{+} r_{0}^{(1)} r_{0}^{4}$.
Thus, if we find an equation whioh is satisfied by the two-time Graen function (2.9) then the corresponding homogeneous equation is satisfied by the one-time wave function
$\lambda_{m p}(t, \vec{x} ; t, \vec{y})$. Let us determine the Fourier transform of the two-time Green function
where $\quad \tilde{G}_{p}(\vec{q}, \vec{g})$ is oonneoted with the Fourier transform of the four-time Green function $\sigma_{p}\left(q, q^{\prime}\right)$ as follows

$$
\begin{equation*}
\widetilde{G_{p}}\left(\vec{q}, \vec{q}^{\prime}\right)=\int d q_{0} d q_{0}^{\prime} G_{p}\left(\overrightarrow{q_{i}} q_{0} ; \vec{q}^{\prime} ; q_{0}^{\prime}\right) . \tag{2.13}
\end{equation*}
$$

Note that the definition of the tro-time Green function (2.9) is, generally speaking, relativistically non-covariant if the frame of reference is not fixed.

Below we construct equations which will be satisfied by the Fourier transform of the twotime Green function in the c.m.s. of two partiols:

$$
\begin{equation*}
\widetilde{G}\left(\vec{q}, \vec{q}^{\prime}\right)=\widetilde{G_{\vec{p}}=0}\left(\vec{q}, \vec{q}^{\prime}\right) \tag{2.14}
\end{equation*}
$$

We write the B.S. equation (2.8) in a symbollo form

$$
\begin{equation*}
G=F+F K G \tag{2.15}
\end{equation*}
$$

and solve it by the iteration method with respeot to G :

$$
\begin{equation*}
G=F+F K F+F K F K F+\cdots \tag{2.16}
\end{equation*}
$$

Inserting (2.16) into eq. (2.14) we get the following expansion for the twotime Green funotion

$$
\begin{equation*}
\widetilde{G}=\widetilde{F}+\widetilde{F F F}+\ldots \tag{2.17}
\end{equation*}
$$

Here the sign, ~" denotes the operation of integration over the relative energies $90, \%_{0}^{\prime}$ performed by the formula (2.14) in the s.m.s. ($\vec{p}=0$).

For example, the free term in the expression (2.17) is of the form

In what follows it is convenient to go over in eq. (2.17) to the Foldy-Wouthuysen representaction:

$$
\begin{equation*}
\widetilde{G} \underset{G_{F}}{ }=T_{0}(\vec{q}) \widetilde{G}(\vec{q}, \vec{q}) T_{0}(\vec{q}) \tag{2.19}
\end{equation*}
$$

where the unitary operator $T_{0}(\vec{q})$ is determined by the formula (1.15). The free term (2.18) in the Foldy-wouthussen representation is of the form

$$
\begin{equation*}
\widetilde{F_{F}}=-\delta\left(\vec{q}\left(\vec{q}^{\prime}\right) \int \frac{d q_{0}}{\left[r_{0}^{\prime \prime}\left(\frac{\xi_{2}}{2}+q_{0}\right)-w+i 0\right]\left[r_{0}^{(1)}\left(\frac{\xi}{2}-q_{0}\right)-w+i 0\right]}\right. \tag{2.20}
\end{equation*}
$$

where

$$
W=\sqrt{m^{2}+\vec{q}^{2}} ; \quad E=\rho_{0} .
$$

Calculating the integral in (2.20) we get
$\widetilde{F}=\delta\left(\vec{q}-\vec{q}^{\prime}\right) \frac{\pi i}{E}\left\{\frac{\left[r_{0}^{(1)}(E-w)+w\right]\left(1+r_{0}^{(\omega)}\right.}{E-2 w}+\frac{\left[\gamma_{0}^{(a)}(E+w)+w\right]\left(1-r_{0}^{(r)}\right)}{E+2 w}\right\}$
In the case of spinless particles the quasipotential is determined by the following expression ${ }^{2}$

$$
\begin{equation*}
[\widetilde{G}]^{-1}=[\tilde{F}]_{-}^{-1} \frac{1}{2 i} V \tag{2.22}
\end{equation*}
$$

where the multiplier $-\frac{1}{2 \pi i}$ is introduced for the sake of convenience, the imaginary part of the determined potential being a negative deteriained quantity. Further we shall bear in mind that the inverse operator is determined by the following expression

$$
\begin{equation*}
\int d \vec{q}^{\prime \prime}\left[\tilde{G}\left(\vec{q}, \vec{q}^{\prime \prime}\right)\right]^{-1} \tilde{G}\left(\vec{q} ; \vec{q}^{\prime}\right)=\delta\left(\vec{q}-\vec{q}^{\prime \prime}\right) \tag{2.23}
\end{equation*}
$$

It can be shown, however, that the operator (2.21) has no inverse and the determination of the quasipotential by means of (2.22) is meaningless. The above mentioned trouble is caused by the following. Unlike the case of the scalar partioles the Green functions of the spin particles G, F and others are the matrix operators anting in space 16-component spinors φ.

Let us break down all the spinor space ψ into two subspaces by means of the projection operators $\Lambda^{(t)}$:

$$
\begin{equation*}
\Lambda^{(\pm)}=\left(\frac{1 \pm \gamma_{0}^{(1)} \cdot r_{0}^{(2)}}{2}\right) ; \Lambda^{(t)}+\Lambda^{(-)}=1 \tag{2.24}
\end{equation*}
$$

It is not difficult to see that

$$
\begin{align*}
& \Lambda^{(+)}=\left(\frac{1+r_{0}^{(1)}}{2}\right)\left(\frac{1+r_{0}^{(2)}}{2}\right)+\left(\frac{1-r_{0}^{(1)}}{2}\right)\left(\frac{1-r_{0}^{(2)}}{2}\right) ; \tag{2.25}\\
& \Lambda^{(-)}=\left(\frac{1+r_{0}^{(i)}}{2}\right)\left(\frac{1-r_{0}^{(2)}}{2}\right)+\left(\frac{1-r_{0}^{()}}{2}\right)^{(1)}\left(\frac{1+r_{0}^{(2)}}{2}\right)^{(a)} \tag{2,26}
\end{align*}
$$

Thus, from eqs. (2.25) and (2.26) it follows that either only "upper" or only "lower" components of the spinor $\hat{\hat{\sigma}^{(+)} \phi} \phi$ fer from zero $\left(\gamma_{0}^{(1)}=\gamma_{0}^{(l)}= \pm 1\right)$.

Any operator A acting in the space of the spinors may be divided into four components and written in a symbolic matrix form:

$$
A=\left[\begin{array}{ll}
A^{++} & A^{+-} \tag{2.27}\\
A^{-+} & A^{--}
\end{array}\right]
$$

where the operators A^{++}and A^{--}a ot only on the subspaces of the spinors $A^{(+)}$ and $\Lambda^{(-)} \varphi$, respectively, while the operators A^{+-}and A^{-+}transfer the spinors from one subspace to the other.

The operator \widetilde{F} (2.21) can be represented in the form (2.27)

$$
\widetilde{F}_{F}=\left[\begin{array}{cc}
\tilde{F}_{F}^{++} & 0 \tag{2.28}\\
0 & 0
\end{array}\right]
$$

where

$$
\begin{equation*}
\widetilde{F}_{F}^{+x}=2 \pi i \delta(\vec{q}-\overrightarrow{9}) \frac{1}{r_{0}^{(32)} E-2 W+i} \tag{2.29}
\end{equation*}
$$

 of the splnors the two-time Green function of free particles has in firers operator equal to

$$
\begin{equation*}
\left[\tilde{F}_{F}^{++}\right]^{-1}=\frac{1}{2 \pi i} \delta(\vec{q}-\vec{b})\left[r_{0}^{(1,2)} E-2 W\right] \tag{2.30}
\end{equation*}
$$

This is related to the fact that in the case of an nonnteraoting ; spin particles the solutions of eq. (1.14) belong to tine subspace $\Lambda^{c+\prime} p$. Below we deduce the quasipotential equations for that part of the one-tine works function of two interacting particles with spin which in the Foldy-Wouthuysen representation belongs to the subspace $A^{(+)} \varphi:$

$$
\begin{equation*}
\widetilde{I_{0}}(\vec{q})=A^{(1)} \cdot \sqrt{q} \quad \vec{p}_{0}=0\left(\vec{q}, q_{0}\right) \tag{2.31}
\end{equation*}
$$

where $\Psi_{\vec{p}=0 \text { (ff is somnecter with the Fourier transform of the onetime B.S. function }}$ $X_{\vec{p}}=0(1)$ by the Foldy-ifouthuysen unitary transformation (1.13):

$$
\begin{equation*}
\chi_{\vec{p}=0}\left(\vec{y}, y_{0}\right)=T_{0}(\vec{p}) \Psi \vec{p}=0(\vec{q}, 40) \tag{2.32}
\end{equation*}
$$

We use eq. (2.22) for the determination of the quasipotential on the subspace $\mathcal{A}+\frac{\rho}{P}$:

$$
\begin{equation*}
\left[{\tilde{G_{F}}}^{++} \bar{i}^{-1}\left[\tilde{F}_{F}^{++}\right]^{-1}-\frac{1}{2 i} V_{F}\right. \tag{2.33}
\end{equation*}
$$

The suasipotential can be found starting from the iteration expansion (2.17)
$\frac{1}{2 \pi i} V_{F}=\left[\tilde{F}_{F}^{++}\right]^{-1}[\widetilde{F K F}]_{F}^{++}\left[\tilde{F}_{F}^{++}\right]^{-1}+\cdots$
Using eqs. (2.2) and (2.33) we get an equation for the Fourier transform of the twotime Green function of spin particles in the Foldy-Houthussen representation

$$
\begin{equation*}
\left[\gamma_{0}^{(n i)} \cdot E-2 w\right] \tilde{G}_{F}\left(\vec{q}, \vec{q}^{\prime}\right)=\sqrt{d} \vec{q}^{\prime} V_{F}\left(\vec{q}, \vec{q}^{\prime \prime}\right) \tilde{G}_{F}^{++}(\vec{q} \prime \prime, \vec{q})+2 \alpha_{i} \delta(\vec{q}-\vec{q}): \tag{2.35}
\end{equation*}
$$

The wave function of two partioles (2.31) will satisfy the appropriate homogeneous equation

Eqs. (2.35) and (2.36) are the basic equations of the quasipotential method for spin particles. Determining the effective mass operator

$$
\begin{equation*}
M \cdot \tilde{\psi}_{0}(\vec{q})=\alpha W \tilde{\psi_{0}}(\vec{q})+\sqrt{V_{F}}(\vec{q}, \vec{q}) \tilde{u_{0}}(\vec{q}) d \vec{q} \tag{2.37}
\end{equation*}
$$

we can write eqs. (2.36) in the following form

$$
\begin{equation*}
\left[\gamma_{0}^{\left(\pi_{1}\right)} \cdot E-M\right] \tilde{4}(\vec{q})=0 \tag{2.33}
\end{equation*}
$$

Which generalizes sq. (1.14) for free jarticles in the presence of the interaotion. The normalization and orthogomality conditions of the states with different values of the total energies E and E^{\prime} are of the form

$$
\begin{equation*}
\sqrt{40}(\vec{q}, E) \gamma_{0}^{(\pi, 2)} \tilde{y_{0}}(\vec{q}, E) d \vec{q}=\delta_{E, E} \tag{2.39}
\end{equation*}
$$

Let us mane the two important remarks concerning the mass operator (2.37).
First of all, the quasipotential V_{F}, determined by the expression (2.33) and, consequently, the mass operator are, generally speaking, the complex functions of the energy E.

The antihermitian part of the potential are oharacterized by possible inelastic processes in the interaction of two particles and defines the widh of the bound state levels,

For the unitarity condition, which implies that the sum of the probabilities of all the possible processes does not exoead unity, to be fulfilled it is necessary that the antihermitian part of the mass operator should be negative definite quantity.

Indeed, remembering that the time-dependent wave function of the bound state with energy E is of the form

$$
\begin{equation*}
\tilde{H}(\vec{q}, t)=e^{-\dot{E} t} \tilde{H}(\overrightarrow{1}, \underline{E}) \tag{2.40}
\end{equation*}
$$

We get the following expression for the change of the norm of the state depending on t1me:

$$
\begin{equation*}
\frac{\partial}{\partial t} \int \tilde{\Psi_{0}(\vec{q}, t)} \gamma_{0}^{n, 2} \tilde{\psi_{0}}(\vec{q}, t) d \vec{q}=2 \int \tilde{4}_{0}(\vec{q}, t) \tilde{D}(\vec{q}, \vec{q}) \tilde{4_{0}}(\vec{q}, t) d \vec{q} d \vec{q},<0 \tag{2.41}
\end{equation*}
$$

where

$$
\begin{equation*}
D(\vec{q}, \vec{q})=\frac{1}{2 i}\left(M-M^{+}\right) . \tag{2.42}
\end{equation*}
$$

The negative definiteness of the antinermitean part of the mass operator (2.42) can be established by studying the analytical properties of the two -time Green function
in a way similar to that used in the case of scalar particles ${ }^{2}$. The second remark concerning the mas operator is the following. Unlike the case of free particles the soluteions of eq. (2.38) are not, generally speaking, the eigenfunction of the operators $\gamma_{0}(1,2)$ and contain both upper $\rho^{(t+)}$ and lower $\rho^{(-)}$components

$$
\begin{equation*}
\tilde{\xi_{0}}=\binom{\phi^{(-1)}}{\phi^{(-1)}} \tag{2.43}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi^{(\pm \pm)}=\left(\frac{1 \pm \gamma_{0}^{(0)}}{2}\right)\left(\frac{1 \pm \gamma_{0}^{(2)}}{2} \tilde{\mathscr{P}}_{0} .\right. \tag{2.44}
\end{equation*}
$$

This is a consequence of the fact that the arbitrary mass operator (2.37) does not commute, generally speaking, with the matrices $\partial_{0}(1,2)$ and $m 1 x$ the components $p^{(+t)}$ and $\rho^{(--)}$ When acting on the ware function (2.43).

We perform a pseudounltary transformation on the wave function

$$
\begin{equation*}
\tilde{y_{0}}=u \cdot \Phi_{0} \tag{2.45}
\end{equation*}
$$

Which conserves the norm (2.39) 1.e.

$$
\begin{equation*}
u^{+} \gamma_{0}^{(1,2)} u=r_{0}^{(1,2)} \tag{2.46}
\end{equation*}
$$

Eqs. (2.38) take the form

$$
\begin{equation*}
\left[\gamma_{0}^{(1,2)} E-M^{\prime}\right] \Phi_{0}=0 \tag{2.47}
\end{equation*}
$$

Where

$$
M^{\prime}=u^{+} \cdot \mu \cdot u .
$$

If we require that in the new representation the or arator M^{\prime} be diagonal, i.e.

$$
\begin{equation*}
\gamma_{0}^{(1,2)} \cdot M^{\prime}=M^{\prime} \cdot \gamma_{0}^{(1,2)}, \tag{2.48}
\end{equation*}
$$

then the wave ?unction $\oint_{0}(\vec{q})$ being the solution of eqs. (2.47) is the eigenfunction of the matrices $\gamma_{0}\left(\frac{1,2}{}\right)$:

$$
\begin{equation*}
\gamma_{0}^{(T)} \Phi_{0}=\gamma_{0}^{(l)} \Phi_{0}=\neq \Phi_{0} . \tag{2.49}
\end{equation*}
$$

Let us call such a representation the "standard" one. Note that the transformation \mathcal{U} which diagonalizes the mais operator (2.48) may not, eenerally speaking, extst. However, we obtain approximate equations describing the system of two interacting spin partioles in the nonrelativistic 1 imit, wheil $\mid \vec{q} /<m$, the transformation \mathcal{Z}, which diagonalizes the mass operator, can be constructed with any degree of accuracy by means of expansion in powers of $\frac{\mid \vec{q}}{m}$. The wave punction in the "standard" representation $\phi_{0}(\vec{q})$, corresponing to the solutions when $r_{0}^{(\prime)} r_{0}^{(2)}=1$, is normalized in the following manner

$$
\begin{equation*}
\int \Phi_{0}^{+}(\vec{q}, E) \Phi_{0}(\vec{q}, E) d \vec{q}=\delta_{E, E} . \tag{2.50}
\end{equation*}
$$

The relativistically covariant generalization of the quasipotential equations in the "standard" represeutation (2.47) has the form

$$
\begin{equation*}
\left[\gamma \cdot\left(\frac{1,2)}{} p-M\right] \Phi_{p}(q)=0 ; \quad \rho \cdot q=0\right. \tag{2.51}
\end{equation*}
$$

The normalization condition (2.50) takes on the relativistically invariant form:

$$
\begin{equation*}
\int \overline{\bar{\Phi}}_{p^{\prime}}(q) \cdot \Phi_{p}(q) \delta(n \cdot q) d q=\delta_{M_{1}^{\prime}, \mu} \tag{2.52}
\end{equation*}
$$

3. Instantaneous Local Interaction of Two Particies

Let us consider a simple example when the interaction of two particles with spin $1 / 2$ in the c.m.s. may be considered as local and nonretarded.

In this case the equation for the B.S. amplitude is of the form:
(ir. $\left.{ }^{(1)} \partial_{x_{1}}-m\right)\left(i \gamma^{(i)} \partial_{x_{2}}-m\right) x_{\vec{p}=0}\left(x_{1}, x_{2}\right)=i \delta\left(x_{10}-x_{20}\right) V\left(\overrightarrow{x_{1}}-\overrightarrow{x_{2}}\right) x_{\vec{p}=0}\left(x_{1}, x_{2}\right)$,
or, passing to the momentum representation
where

$$
\begin{equation*}
V(\overrightarrow{1})=\frac{1}{(2 \pi)^{3}} \int \sqrt{(x)} e^{-i \vec{y} \vec{x}} d \vec{x} \tag{3.3}
\end{equation*}
$$

We go over in eq. (3.2) to the Foldy-llouthuysen representation (1.12):

$$
\begin{equation*}
\lambda_{\vec{p}=0}(q)=T_{0}(\vec{q}) \psi_{0}(q): \tag{3.4}
\end{equation*}
$$

$$
K(\vec{q}, \vec{q})=T_{0}(\vec{p}) \sqrt{q}(\vec{q} \vec{q}) T_{0}(\vec{q} 1)
$$

Use now the fact that the right-hand side of eq. (3.4) is independent of the relative energy 90 and obtain the equation for the function $\tilde{4}_{0}(\overrightarrow{1})$

$$
\begin{equation*}
\tilde{\tilde{F}_{0}}(\vec{r})=\int_{-\infty}^{+\infty} d q \cdot \tilde{\Psi_{0}}\left(\vec{q} \cdot q_{0}\right) \tag{3.6}
\end{equation*}
$$

oonneoted with the onetime wave function of two particles (1.10). Taking into account eqs. (2.21) and (2.29) we get
$\tilde{\Psi_{0}}(\vec{q})=\frac{1}{r_{0}{ }^{(\prime 2} E-2 w+i o} \cdot\left(\frac{1+r_{0}^{\prime \prime} r_{0}^{\prime \prime}}{2}\right)^{2} \cdot \int K(\vec{q}, \vec{q} \prime) \widetilde{4_{0}}(\vec{q}) d \overrightarrow{q^{\prime}}$.
Thus, if the interaction of two particles is instantaneous (or nonretarding) the wave function $\overrightarrow{y_{0}}(\vec{y})$ belongs to the subspace $\Lambda^{(+)} \varphi$ of the 16 -component spinous and obeys the equation

$$
\begin{equation*}
\left[\gamma_{0}^{(42)} E-2 w\right] \overrightarrow{4}(\vec{q})=\int N^{++}\left(\vec{q}, \overrightarrow{q^{\prime}}\right) \tilde{z_{0}^{\prime}}(\vec{q}) d \vec{q}^{\prime} \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
K^{++}=\left(\frac{1+r_{0}^{(1)} r_{0}}{2}\right)^{(3)} K\left(\overrightarrow{4}, \vec{q}^{\prime}\right)\left(\frac{1+r_{0}^{(1)} r_{0}^{(2)}}{2}\right)^{(} \tag{3.9}
\end{equation*}
$$

The mass operator corresponding to eq. (3.8) is nondiagonal even if the original local interaction in the B.S. equation (3.1) was described by the scalar potential $V(\vec{x})$ not containing the Dirac γ - matrix.

To demonstrate it we expand the mass operator of eq. (3.8) in inverse powers of m

With the accuracy not lower than the second power of $\frac{1}{2}$. Using the formula

$$
\begin{equation*}
T_{0}(\vec{q})=1-\frac{1}{2 m}(\vec{r}-\vec{r}) \vec{r}(2) \vec{q}-\frac{\vec{q}^{2}}{4 m^{2}}-\frac{\vec{r}(m \vec{q} \cdot \vec{r}(m) \vec{q}}{4 m^{2}}+O\left(\frac{1}{m}\right), \tag{3.10}
\end{equation*}
$$

and passing to the x-space we get the following approximate quasipotential equation
$\left[r_{0}^{m x} \cdot \underline{E}-2 m-\frac{\vec{q}^{2}}{m}-V(x)+\frac{1}{4 w^{2}} \alpha \overrightarrow{q^{2}}, V(x)\right\} 7 \tilde{2}(x)=$

$$
\vec{q}=-; \overrightarrow{\nabla_{x}}
$$

It is easily seen that the last term in the rightmand side of eq. (3.11) does not oommute with the inatrioes $\gamma_{0}^{(1,2)}$ and mix the upper and lower components in the wave function

$$
\tilde{z_{0}}=\binom{p^{(x)}}{p^{(--)}}
$$

To pass to the "standard" representation we perform the following transformation

$$
\begin{equation*}
\tilde{\mu_{0}}=\| \cdot \tilde{4_{0}} ; \quad u^{+} r_{0}^{(1,2)} \psi=r_{0}^{(1,2)} \tag{3.12}
\end{equation*}
$$

where

$$
u=\exp \left(\frac{1}{8 x^{3}}\left\{\vec{r}^{(11} \vec{q},\left\{\vec{r}^{(3)} \vec{q}, V(v)\right\}\right\}\right) .
$$

the action of which with a given acomacy reduces to the elimination of the last term in the r.h.s. of eq. (3.21). If the non -relativistic consideration is invalid it is necessary to use an exact expression for the kernel of eq. (3.8):

$$
\begin{aligned}
& K^{++}(\vec{q}, \vec{q})=\frac{(w+w)^{2}-\vec{r}^{(\prime \prime} \vec{q} \cdot \vec{r}^{(2)} \vec{q}}{2 W(w+m)} V(\vec{q}-\vec{q}) \frac{\left(w+w^{\prime}\right)^{2}-\vec{r} 0, \vec{q}}{2 w^{\prime}} \vec{r}^{(2)} \vec{q}^{\prime}+ \\
& \frac{\vec{r}-\vec{r}}{2 w}\left(\vec{q} \cdot V(\vec{q}-\vec{q}) \frac{\vec{r}-(\underline{r}}{2 w^{\prime}} \cdot \vec{q},\right.
\end{aligned}
$$

where

$$
W=\sqrt{x^{2}+\vec{q}^{2}} ; \quad W^{\prime}=\sqrt{x^{2}+\overrightarrow{q^{\prime 2}}}
$$

The relativistically oovariant generalization of eq. (3.8) will be of the form
$\left[r^{(1,2)} p-2 w\right] s_{p}(q)=\int K_{p}\left(q, q^{\prime}\right) \delta\left(x \cdot q^{\prime}\right) צ_{p}\left(q^{\prime}\right) d q^{\prime} ;$

$$
\begin{equation*}
n_{\mu}=\frac{p^{\mu}}{\sqrt{p^{2}}} \tag{3.14}
\end{equation*}
$$

under the additional condition $\rho q=0$, the kernel of the equation has a relativistically invariant form

$$
\begin{align*}
& K_{p}\left(q, q^{\prime}\right)=\frac{(w+w)^{2}-r^{(1)} q \cdot r^{(i)} q}{2 w(w+w)} \cdot V\left(q-q^{\prime}\right) \frac{\left(w+w^{\prime}-r^{\left(0 q^{\prime}\right.} \cdot r^{(3)} q^{\prime}\right.}{2 w^{\prime}\left(w+w^{\prime}\right)}+ \tag{3.15}\\
& \quad+\frac{r^{(q)}-r^{(0) q}}{2 w} \cdot V\left(q-q^{\prime}\right) \cdot \frac{r^{\left(q^{\prime}\right.} q^{\prime}-r^{(\theta)} q^{\prime}}{2 w^{\prime}},
\end{align*}
$$

where

$$
\begin{equation*}
W=\sqrt{m^{2}-q^{2}} ; \quad W^{\prime}=\sqrt{m^{2}-q^{n}} . \tag{3.16}
\end{equation*}
$$

The potential $V\left(q-q^{\prime}\right)$ in eq. (3.15) is a relativistic generalisation of the Fourier transform of the space potential (3.3). If the space potential $V(\vec{x})$ is spherically symmetric, $1 . e$.

$$
\begin{equation*}
V(\vec{q}-\vec{q})=V\left[(\vec{q}-\vec{q})^{2}\right]: \tag{3.17}
\end{equation*}
$$

the relativistically invariant potential is of the form

$$
\begin{equation*}
V(q-q)=V\left[-(q-q)^{2}\right] \tag{3.18}
\end{equation*}
$$

In oonolusion the authors express their deep gratitude to Aoademioian N.N.Bogolubor for stimulating discussions, and to Prof.D.I.Blokhintser, A.A.Logunor, M.A.Markor, Nguyen van Feu, V.I.Ogievetsk, I.V.Polubarinot, I.T.Todorov, for valuable remarks.

References:

1.E.E.Salpeter and H. Bethe, Phys. Rev., 84, 1232 (1952).
E.E.Salpter, Phys.Rev., 87, 328 (1952).
2.A.A.Jogunov, and A.N.Tavichelidze, Nuovo Cim., 29, 300 (1963).
B.A.Arbuzov, A.A.Logunov, A.N.Tavkhelidze, R.N.Faustov, Phys. Lett., 2, 150 (1962).
A.A.Logunov, A.M.Tarkhelidze, I.T.Todorov, O.A.Khrustalev, Nuovo Cim., 30, 134 (1963).

A.T.Filippov, Phys.Lett., 9, 78 (1964).

Nguyen van Hieu, R.N.Faustov, Nucl. Phys., 53, 337 (1964).
3.M.A.Merkov, Journal of Phys. USSR, 3, 452 (1940).

4. H. Yukawa, Phys. Rev., 77, 29 (1950).
5.L.L.Foldy and S.A.Wouthuysen, Phys.Rev., 78, 291 (1950).
6. P.H. 之устов, диссертади 0191 Дуона, 1964.


```
Received by Publishing Department on September 5,1967.
```

