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The problem arlsmg through the attempts to construct ﬁmte unrenor—

malizable theory, - as we].l as through ascertaining the connectlon among

the nonlocal 'theorles ard the unrenormahzable theor1es have attracted

the attention of many authors [1-13, 20’ Some. years ago one suoposed that
the unrenormahzable theories were nonlocal, But recently one discovered
that there exists some _region where the field theories with - rapidly mcreas-
ing spectral functlons were loca.l/:L2 13/ Also- at the same time const.ruc—
tion of the ﬁmte unrenonnahzable ﬁeld theones was attempted 1.[ 16,7 g/

At present there are yet: many uncertamtles in these questions.

Due to the big compllcatlon of these problems it is 1nterest1ng to

.consider a slmple model in order to explam some general properhes of )

the unrenormahzable theories.

~ We investigate here a model of ‘the quantum fleld theory with the

Lagranglan/ 4_16/
Lilx) sy (x) + Ly (=), (1.1)
where L, (x) is-the Legrangian of the jfree t'ields and ‘
L gne (;) c—g: Plx) 2 y'ulﬁ(x; ’é;,rqs (x): = Am ;'J‘(;);'slp (1. - (L2)
"-i—iere_‘ r x. and r, are the 1sotopic spm matrlces, yu are the Dirac
matrices, l/l(X) is ‘the spmor field - operator, and ¢ (x)” ‘is.the_ sda.’larr

field operator. . .

The Lagranglan (1.1) has the following r'emarkable property: when
Am .= 0, it is reduced to the diagonal form ‘



Lpono (x)’..i.o(fp‘,(x’)‘, $ (0 @)

by medns of the unitary transformation . - o |

) ¥ (x) = y(x)expl igr, ¢(x)}v_.:‘, T ) i (1.4)
‘ . )
The .part of the Lagrangian containing Am"  takes on the form of
PR ~ : :
the essentially’ non-linear interaction in the field ¢&( x). after the trans-

" formation (1.4). Thus,
. (x)=jAm= 5_2?"(x).r'3 exp{v-'-i2g.r’l’¢‘(x) Ty (x) s . o (1.5)

The sngn of the normal product is not ascribed to the operators ¢ (x).
- So we get the theory with non—polynomlal interactnon in the field ¢ (x).
As a result, there apears a rapndly mcreasmg spectral functnon. A

‘ As the Green functnons and the scattemng amphtudes in: that theory

" have essentlal smgulanty, so the pnncnpa.l problem concentrates on the

constructlon of the Foumer transforms of these functions and on the de—v

ﬁmtion of the 1ntegrals of then:' products in higher onders of the pet‘turba-~

tion. the ory

It would be shown that the ultr'awolet dwergencess are absent in

the model and the unitarity, locality and causality cond;hons are' fulful-

led.

2, Scalar Particles Scattering "Amplitude
-(Second Order of the Perturbation . Theory)

To avoid. the appearance of - mfmxte factor's in calculation of the

physxcal quantltxes, we shall suppose that the sngn of the ‘normal product

is ascnbed to all operators m (1 5).: The scalar particles scattenng amp—
4 .
litude is obtamed by the functional mtegratnon method/ 1 15/

oo
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E(p” L q*lpaq) = TH(s) + L(1) + 1(u) + I(0) = {(p3) = IN(q®) =TI ®) =g ®),(2,1) "

.

where -

M(p?)=i8gt (Am)? f_d“x Sp1s® (x)S ®(~x)lexpilpx ;(25)2 A%(x) }; (2.2)

S (x=x/) =1 < TP (x) ¢ (x M3 AT (= x V= i< T (SIS N>

and : ) ’ : -
_ s=(p+ q)z ._t-::(p—p')2 L u=(p=gq )2,
In "case of the massless particles, we have -
Dp?2)==B8(4xAm)? F(p2),
where
expl— K|
F(p2) =1 [ 432 [dx  e'Px
: R (x2) 2

(2.3)

(2.4)

(2.5)

gg(if‘?)’ and the contour R is shown in Fig. 1. Notice that if we define

(2.5) with the help of its power series expansion in « we get the usual

perturbation theory with simple pole  singularities in each term of the

series. That is why we will operate with (2.5) as a whole,

Let us introduce an intermediate regularization in (2.5). We will define

F(p? ) as a limit of the following expression
F(p™ =_fir FVGH + BFD (p3
(P 8*;1 {a s (p°y + 8 5 (p2)1

a+ B =1 and Rela-8)=0,.

The second .equation in*(2.7) is the unitarity cordition, ‘Taking into account

(2.7) we have

F (p® =-2_IBET(IJ { Fg)(p’) +Féz)(p2‘)+ia[F§"(p2)-—Féz) (211,



1
h

where a Is some arbitrary real constant. Fg (p 2) is as follows
4k i
1 . . ex [- l
(3) 1 P a2 18 :
Fglp p3) =t fA3X fdx et ’ % (2.9)

(x2 1862

Here ‘s is smaller than the radii of the semicircies in the contour R.

Let us calculate these integrals - in an unphysical domain . p2 <o0.
The ?‘esult can be easily analytically continued on the whole domain p .
In thé unphysical domain we choose the coordinate system p = | 0.7.1.
In that coordinate system we turn the contour R throughrthe angie -—'52—-.
so that it completely coincides with the imaginary axis. In the _6btainedr

Euclidean space we can easily calculate the integrals over angles. Then

we get
) expl ——tb o}
b A 18
Fgd (p Vi) + (2.10)
Y :
(4\-+- is)

where p =V -p \/ $? ard § (p\/_ A} is the Bessel functxon. Making use
of the Mellin-Barnes . integral” representation for S (p \f )/ 17/

\/— —a+1o0 (—'\-1’-—-) :
g (p \/_-) -y 2XZ J 4z . (0<a<l) (2.11)
—a-ie sinrz P(1+2)T(2+ 2)

(here I'(z) is the gamma—function) ard taking into account the absolute

convergence of the integrals, we can rewrite (2.10) in the following form:

<;)b ) n"-amh’° (e k 0 1+ "P“—f'ra'*
F 5 (P\ ) el _é——¢{+|d,.sz P . » J‘»dlt =1 =
sinrz T (1+2)0(2+2) ¥ 5212)
—a—teo (P _ N
=-a£-':z xp(z) [8 (z) . (t=T)' :



. . ch . ) . : .
The function fs? (z)  corraspords to the integral over variable - t and
is defined in the region —2 <Rez <1 .

.

K
- » ok
19 () = f ane T BT . (23
0 (t + iVS),a

The integrand has a cut along the negative real axis, an essential
singularity on the negative imaginary‘axi_s and terds to zero Whenlt\[-voo.
Therefore,‘ we can perform rotation of the-integration contour. so that the
minus sign appears in the exponential of the integrand (turned through .
the angle + » ') and Hien we put 8 to zero, The resulling integral is

‘ easily calculated:

Lod ; . -
fim fu)(z)——elnz fdtqgm2 e 't =—e”rz P ! F(l—z)nf(a)(z).(2_14)
&0 5 o ’ .. .

The function f ‘;’ (z) can be analytically continued throughout the

whole right half z -plane, with the- exception: of the positive. real axis,
where it possesses poles, In that region alsc ‘we can apply the above
method of taking the limit §+0 . and obtain always the same functioh
£ (). :

So we obtain the following prescription to find a limit of F(? (p?)
at 8+ = . Defining f‘;’ (z) as- an yanalytic function on the whole _r:ight
half z -plane, with the exception of the pbsitivé real axis, we deform the
contour in (2.12) so that it passes around real poéitive axis (see Fig, 2).

After that we can put -8 to zero.

. -— Q=] oo . R .
2) L2 : (@ ; ’ 2 -
Fsno (p )8=_.gxm—£+;i:)(p(z)fa (z) %fx‘;n {vdz xp(z)fa (z) (2.15)
o [ dazx (2iP0Gr:
P : B

L

Substituting (2,14) in that expression and making analytic continuation of

ng.)o (pa) throughout the whole region” p. we get



) 2 . r (-2 T(1=2) 2, qz ,.,0 2 ., .
Fb‘uo (p‘) L I{'d:: T(230) [x(p +1()] vy Goé(x(? +iol1,0, (3’.16)

. . »
where G:s (k(p2+16)]1,0,-1) is the Meijer's G —functionll?l. Also the

1 2 .
ezpressxon for FS( )0 (p) is

2 30
W op? e TG (k(p?aiede T 10.-n. (217)

'F (
4 8a0 P 4x

Substltutlng (2.17), (2. 16), (2.8) 1nto (2 4) ard "using ' the representatxon of

the Meuers -functxon as power series, we get

: SN , -
(p?)a-2(4nxAm) 2 (p? +ie) X [« (p? + 16)]
5 ° a!{n+1)1{(n+2)!

{flex( p’ﬂc)e"’(z 18)
—pla s+ D=yl +2) = g(a+3) ] =2x(s7Am)

where ¢ (n) is the Euler function and ¢ is arbitrary dimensionless
constant connected with a (see (2.9)).

“This result is more simply obtamed with the help of analy'hc continua-
tion procedure for the quantity (2.5) over the value «’, where ’‘m=x> 0.

The function F ,(p ) ‘exists and is perfectly. well behaved

2 - : : 2.19
T G2k’ (pF4ie) eI [1,0,-D, (2.19)
K’ 3 :

FxJﬁ)a-
’I‘o analy'hcally continue to the region x ‘<0 one notice that .

(K’(p +ie)e— 17 ]1 0,~1) has a cut along the negatxve real axis in the

—plane. So the ana.ly'tlcally contlnued quantxty is as follows

' 2 20 e ey , .
F, (p?) = T{ a Gy, (k(p? # ie)|.lr,0.—1) + _ - (2.20)

+ B Gy (x(p? +ie)e—t2m [1.0.-D1, S



rwhere a+ /3 =0 and wheré;"from the unitary cordition,  Re(a --8) -0,
As a result. we arrive again to (2.18) f : . :

The scalar particles scattermg amplitude is written as

£(p’ha’lp,a) =f(s) & £(1) +6(n), (2.21)

where . v o
f(a)-=---2(4.fn<Am)2 s §-———ifi—-—-[&l(ckse-"m)--lﬁ(n+l)—¢(n+2')-¢(n_+3)]'(2 22)
0 pl{a+D)!(n+2)! . =T

3. Unitarity, ‘Causality and. Locality of the Theory
(Second .Order of the Perturbation Theory)

 The expression (2.22) satisfies the  unitarity "condition. Really,
from the unitarity condition sst = 1 one easily obtains;: in the second

order of the perturbati‘on theory in Am (S = o‘:: (Am)"® S, ). the following:
- o

o+ Ex

au’(p +q° —p—q)ﬂmf(s)=2n9JQ © 0 o f}:<a a |Sllnb z><|> b nlSlla a2

where a:' (ap) is the production (annihilation) operator of a scalar
particle; bt (b, ) is the production (annihilation) operator of a spinor
particle; o is the energ'y of a scalar particle,:

The right=hand side of (3.1) contains the sum of invariant phase
volumes of particles Q _  5(k) ( n-particles are scalar and two-particles

are spinor)

e ——— ettt it . oo - .
2. Sy + .+ o+
2m \/wp,mq,mpwq f%(apaqlsxluhl b23<rbeb'nlsl|ap;aq; Sa

(3.2)
- Gream?® 89 Gragrmp-p 3 D 9 Gy o), “
where
Q, k) =2 _(TED bixron® .
(o +11(n +2)1 © (3i3)



- Comparing (3:2) with the imaginary part-of (2.22) we see that the
equation (3.1) is valid." Thus, we have proved that in the second order
of perturbation. expansion in Am | the theory is Lmitary. ‘

‘ Let us in\restigafe the asymptotic behavioui- of the scattering ampli-
"tude at s »= . in order to show that f(s) obeys also the locality and
causality corditions of field theory. »

It t@rns out that, at s » =, it grows as fol.lows/ 15/

o

1/3 .
f(s)='b k(Am)? expl3xs) ] (1+0‘(___..i_____)),.
s 1/3 -

(xs) 4 (k s)1/3

' (3.4) E

"Here b is the dimensionless constant. This behaviour of the scattering .

amplitude satisfies the cordition arising from the generaliZed causality

and locality principle of the lheor3/12’13/.

4, Sbectral Representation of the‘f”F‘unctions Yy (p) and ¢ (p)

In order to investigate the higher orders of perturbation expansion,

in addifion to the function I /(pz ). studied in 2,3, two more functions are

- needed, which we dénote by ¢ (p) and ¢(p). In this section we shall

obtain foi‘ them the necessary integral and spectral representations.‘ The

function - 11 (p?) has similar representations, but they are not written
down here, /

Let us conslder, first of all, the spinor Green function - ¥ (p)

‘I’(p)ufd‘xs° (x)expi[p).(i—(Zg)zA‘“(‘x)]. - (4.1)

Using .the method developed in the second section it is easy to obtain
the following- infegral representation for the regularized function ¥g(p):
2

‘ ’ T z -
‘ys(p)a—ip‘\ "2 fdaz © +ie) fa(z),(4.2)
L’ sinmzl(2) T (z + 1)

—lﬂz(p2

10



~where the contour L’ is shown in Fig. 3, p = p¥ yv/an'd fg (z)‘i_ﬁ, the

range 0g<Rez<2 has the r‘eprésent‘afion‘

o oo exp(‘—-—K—'——) exp ( K )
fs(z)m =L [ a1+ 10). A+id L (1-ia) A-15 1 (a.3)
‘ o A+ is) A=-i81° '

and can be analytically continued throughtout the whdllew'right half "z -
plane, ifo;' the exception of the real positive axis. Then the /fl.:lnction
.‘P(p) is a limit of ‘Ps(p) at 8-‘.' Q. In this case, in (4.3) it is neces-
sary-to perform beforehand rotations of the integration contours so that
the mirius sign appears in the exponential of the integrarxd. v
In the. integrél (4.2) the integration contour may be straightened so
that it'wiil be parallei to the iﬁnginary'éxis (Fxg 4), ‘In investigating higher
perturbe}tio'ri/ orders we use the Green function repreéentations of the type
of (4.2) with the straightened integration contour C. Then in order - to
go over to-the limit 8-0 we should firstly integrate. over all the 'momer{ta
and after that return again to the contour L ‘. 7
To eq.‘ (4.1) there may correspond anothér regularized function
\178(,5) Tt is obtained frqm b3 8(p) if we shift the infegratio_n contour
to -the right by unity, single out from (4.2) a term correspording to the
first order pole of the integrand at : = 1 and let §  terd to zero, In

the rémaining integral we straighten the integration contour. Thus ’

(4.4)
] A ' -1tz . -1 7 . o
¥stprampl e b1 © (p? +ie)©7 Pslze il
' . P otie 2c¢ stamzl(z + 1 [ (z+ 2) . i
Noticing that in the region, 0<Rez <1 . we have the integral equati?n
R ’ —-irry 00 2(e—1) 4.5 .
—17’(p2+ie')z_l __e_____uf dm? m : ,( ) .
E - sin 7w z oot m? —p e o
we: can rewrite (4.4) in‘ the form : . o Lo Coed

11
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: f50z+1) S G agee1) .
RIS PRy DU L N P Pl )
+ie  2mi G T(z+DF(z42) 0 - g2_ .3 4,

Eq. (a. 6) may be consxdered as a spectra.l representahon of the function '.

- o

8 (p) '
Now we con51der the scalar function ¢ (p)

'<1>'(p)-x’fd‘;expx[px‘+(zg)?A°(‘x)J; (4;7)"-'

Slmilar procedures lead’ to the followmg spectral representatxon of the re-, .

gulanzed functlon correspondmg to. P (p): ) ‘ IR
‘ {4.8)

£ ) o (z+1) © g 3z=1). .
b3 (p)=i(2n)‘8“’(p)+(4n) 1 . Sy Y balz+ fan?_® 277y
ak 2 u 2ni — "
. + M e TR+ DT(z+ 20 m3-p3-ie .
where ¢ s(z)  in the range 0<Rez'<? _is rebrése_nted' by the lntégral'

S e exp (=t '»e,p(_.;_";__) ] oo

¢8(z)-.12—-fd/\/\’{ A+ 18 RGNy NEY - R I (2.9)

o +18)% Coa-as?

We glve also another type of the regularized . function (D 8 (p) similar to
(4.2) for \P(p) R . :
Ty S a0t & (2)
Vo ds(peiem 8 A p) —iamdk3faa o (74 1e $gla)
: L c slgﬂzr' (2) T(z+1) = 1 (4.120)

The most essential difference of the function ‘D(P) _from ¥(p) and’
N(2) _consists in that. the scalar particle propagator in the exponential
has opposite sign. Due .to this fact, it is unnecessary ‘In the integral (4.9)

to rotate the contour m passing to the limit 5 - 0. as ‘we have tQ do in

12
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- A o0 ! B . ' X
Vs (p)mp f dn? ps(m®) [ _;_.;12_0._+ i278(m 3~ pH 0(P) ],
me—p2~-i2¢p ’

- and we do the same for (38 (p). Using the prope;‘ty

FatC 5 (? 35 (k- pr=o : (5.4)

it is easy to write (5.2) in the form (p°® >0):

eim'nefukq'!'g (k)c'l;a(p-k) «=2020)4 Re ¥ (p) Jm ¥ (p) ~

8+0 (5.5)
.4 : ’ 0 0 ]
-4 fd'%kRe Y (KN Im V(K G D p-KIx O(KVB(p =%k,
”
where
‘ = o PR : ‘
D (p) mD(p) = i(2m)* 8 (p) . , (5.6)

Intft;ducing the intermediate states between S, and S‘; we get

for the right-hand side of (5.1)

Re S <b |5 |a><n |8 bt aar 2028 (=5 )70 (v B (51:45.7)
[ 3 . 1 P -8 v M

o0 n A l‘” .
X fa'ERe T (0E /M g (3 =M g oy,
A n," 0 nt nt+l1 7" g _m! m

a : . ’ LA
where @, k) and @ (p-k)are the phase volumes of particles (in @ _ (k)
Con —par{icles_ are scalar and one is-spinor; in Q. =Kk al _particles

are scalar). Inserting the expressions for the imaginary parts of the - func-

tions ¥ (p) ard’ P (p-k) into (5.5) and for the phase .volumes into

14



) ;
(5. '7)/ 6/ it is easy to see that eq. (5 1) is valid. Thus, we have proved‘

that in the. third perturbatlon order in Am the theory is unitary. The
author' expects fhat the obtaihed' spect‘ral représentations ’fbr the two-
pomt Green functlons would prowde the validity of the umtanty in higher
order in Am ~as well,

b) Consider the 1ntegral contained in the right-hand side of (5. 2) l
-~ and - calculate- it usmg »the integral representations of the functions ¥g5(p)
and Pglp=k) (see (4.2) and (4.10)) o o

/
fd‘k‘l‘g(k) Os () mizn®k® [ [ [ dz, dz,dz “P[""‘”‘ vz )l igtz  Iglz, ) iz
a G Cy G sinmz ;sionz, siomz r(z )F(z )r(z )
1 2 1 2 528
N : - _ . v_z;
x 1 J i 27 (e ® 4ie 17 )
r(zl+l)l—‘(zz+l)r‘(z3+l) . ’ ]

The requirement that the mtegral over k must be free of ultra «

H

violet divergences xmposes the following restmctlons on the \anables z, 2

P
Tkl

Re(zl+z?~+zs)<3.' . ] ;(5'9)

Since the contours . C,; lie in the range 0 < Rez, < 1, Vt'his require-

ment is fulfilled, The integral over k is:

e

I Gok)? s el a (5.10)

Jd ek ? +ie)

LR PR P Mz, -1l (z;+z2,4~2)0 (3—z;—2z, ~z4)

=im 2 ps +ie) : _
: l"(l-'zs)l"(2—z =zl 4z k2 —1)

' Inserting (5.10) into (5.8) and rotating the contours C, so that they pass

) around the real posmve axes in the appropnate z | —planes"and using |

‘the residues at the poles we can exphcxtly calculate all the integrals., /16]
Let us prove that ultraviolet dwergences are absent in the n-th

- perturbation order in Am too, To this end we consider a diagram with

15



o wvertices, two external spmor l.lnes and an arbltrary number of ex-
ternal scalar lines (Fig. 6). _All the vertices are connected in pair by
lines each of which. correspords to one of the Green functions consi-—
dered by us and having the integral representation like (4.2) or (4.10)
We consider the case when a.].l the vertlces are connected by a conti-

nuous . spinor line corresponding to the n-—1 functions ¥ (x; ). Then,
(n=1)(n —~2)
® (x ;) will correspord to the diagram, The product of all these func-.

in aadition to ‘these functions, scalar»functions like

tion; will have the sign of 2(n—1)(a-2) fold ‘integral over’ k, . Then

the requirement of the absence of ultraviolet divergences is written as

n(n~1)

i
2(n~1)(n=2) + n-1=23(n =1) +2 f. z‘.<0, (5.11)
hence, it follows that aCam n
—La_
Re 3 z, <—3§——(n—l)'
' (5.12)
Assuming all z, to be equal, (z, =2} we get
Rez < 3o, '
ez " » (5.13)

Since the contour Cc in the integral representations of our Green
functions may exactly coincide with the imagmary axis, the conditxon
(5.13) is well satisfied. ' T

We prove in a similar manner the absence of ultraviolet divergen-
ces in higher orders in An in terms somewhat dlfferent To this erd,
following - the work by NN Bogolubov and DVthrkO\/ 18, » we introduce the
notion - of maximum vertex index and calculate it in the framework of our
‘model: '

) = — (r, +27 ) ~4 =3

! 2 g £ L T © (5.19)

int.



*',Here the summation is made ‘over internal lines, Tp “is unity for spinor
lines and zero for scalar lines ‘and. Z;= Rez) ~are assumed to be

zero, From the inequality m!"""

<0 it follows that if ultraviolet diver-
gences are absent in lower perturbat:on orders then they can not ap-
pear in hlgher orders too. - - -

Thus, it is proved that in the consndered model ultraviolet divergen-

ces are absent in any per‘turbatxon order in Am.

6. Generalization of the Model to Case of Massive

SpinorA Particles

In the previous sections the finite two-point Green functions were
found, in terms of which all physical qub.ntities of field theory are ex-
pressed, The spectra.l. representation f;n' these functions were const-ruc-
ted and the integi‘éls of their products were determined, 1t was shown that
our model of field theory was unitary and free’ of ultraviolet divérgences. o

A particular case was investigated: the rest masses of all ’particles
were assumed to be zero., This case is the most convenient for investiga-
tion since the propagators have a very simple form, However as fas as
the interaction Lagrangian includes the mass difference of nucleons in two

" different states it is interesting to generalize the model to the case of
spinor non-zero masses., This section is just devoted to tHis problem,

Let us discuss the spinor Green functibn L))

‘l:'m(p) =}f.d4x S;»(x)expi[px-—(2g)2A°(x)],( . (6.1)

wherV-e‘S':‘( x) and A%(kx) are the propagators of the spinof and -scalar
ﬁelds, respectively. The.ré;t mass of a scalar particle is zero, ‘while
that of a spinor ohe'differs from iefo. ' _ '
) In order to dlustrate our model by simpler example we conslder,
_instead of eq. (6 1), the function D (p)

S ‘ 6.2
D (p) =fd4_xA:(x)expi[px—(2g)2A°(x)] ( )

-



where A°m (x) is a scalar propagator with non<zero rest mass. The cal-

culation for eq. (6.2) is easily extended to the integral (6.2),

We' consider eq. (6.,2) in a physical domain p3>0. This integral re-

duces to an integral in.the momentum space of the - product of two func-
tlons A (p-k) and ’Ds(k) ’

{

' B (k) ~ (6.3)
Py D(p) =~ - d'r .
(2rm) (p—k1? —m®+ie
where
i
4 o aa*ﬂu —HT: .
Dy =itz 8 ) is(r)? [ a2 (k2 +1e) ® t5(z), (6.9

a=los sinmz [ (2) T (z +1)

, , , ) )
K= (%—)'A 0< e <1,T(z2) js the gamma function, f5(2) is the regu-

larized function (see (4.3)). Inserting eq. (6.4) into eq. (6.3) we obtain

- 2 a-iao iz ¢ (2)
D(p) = — - + =t f dz Z 8 d(z,p)(6 5)
m° - p “~ ie 27 apla  sinmz l"(z)r'(z+1)

where

d(zy,p) =fd‘k (k?4+je)z-2 [(p-—k‘)2 —-m? +ie] -1 (" (6.6)

In the region ¢ <, 2 < m? d(z,p) is as follows:

dlz.p) = = 1nd p3e=D o '7T (6.7)

sinmr 2z

)n (2 (z=-1). .
o ! o+ N (z=n) (z=n-1)

Lo

L eME
g
»

and inthe region p >m
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alz, p) mmin? ""‘"Elvr, oeml )ttt T T(e-1) 4 (6.8)
, "“"’ P al(n+13 T (z=0)T(z=n=1)

v

2 2g+n-1
+(l—,m)ln :

F'(a+2)(a+ zﬂ-'l\ - l
P R . a!T(n +27)

Substitute it into eq. (6.5) and rotate the integraﬁo}x contour so that it
passes arcund the real positive axis. Kotating the contours in f 5(z) so
that in the ->»xponential there apears the Sign'. minus we may go to the
limit 8§ +0 and then c.cilata eq. {6.5) as the sum of the reSi-dués‘_ at
the poles, The result has the’form of a  well *convergerit double series,

In the fcgion o0 < p? <m? p(,) may be written as

. -P’ n . 3
2 o 23,k k (=)
D(pla (km) < km’) '+ m? 1"2} V(K +3)+ (6.9)

D+t ¥ TG e Dik—a)! (bma s 1T

+ ¥ k=0+2) +7 (k—n+1)=[lalkm® )= W (k+3)= P(k—n+2)=Pik—n + ] WP e

+—-,-2-‘—’£E‘-iz(-2—) (a=EMamksD) ~xE _txphm __[fatcn®) = WarD) ~29(1) ] «
o k! k nl(n+1)! al{(n+1)2]2

O

Here we put a= O (in (4,3)) for simplicity.

For p2>0 we give only dm D(p). (Here P{p) is complex), .

ﬂm D(p)anid(p? cmBanh 4 a8 uaz———"?__—z pifk=o)tlk—a+ D!,
0 nlo+1)Yn+2)! 3n (k+ 3)! (k= 20)!

2 ' .
(h=1- _—,'%-,-,-)-~- ‘ (6,19)

From the unitarity condition it follows thét the imaginary part must be

g n
gmoip= - £ L&lD0g (p, + (6.19)
where: ;p) is the phase volume cf 'n + 1 particles, One particle’ has

non-zero rest mass and - . n -partu_lcs have zero rest masses, Such

19



phase volwﬁeé are calculated ‘in z'-ef.' 19‘ Substitutiﬁg thelr values: into
(6.11) we make sure of the validity of eq. (6.10). ’I‘hus, the function ob-
tained by us obeys the unitarity cordition. .

. . The functions D {p) - obeys also the locality and causality corditions
of the field theor}/ 12,13/ N 4

v . In conclusion we note that the integral (6.2) may be calculated not
going to the momentum _repz;esentation but simply using the following integral
rgf;resentatién for the propagator A”m (x):

2 .
2 ade . [BRI(x2oie)etm 23

A:(x)a B [ dz : (0<a<l),
2°n aHoo sin?mz M (2) (2=1)

(6.12)

.

‘7. Conclusion

Thus, on the basis of the model with unrenormalizable interacﬁon,
-we have constructed the local unitary quantun field theory free of the
ultravioiet divergenceé. The scattering amplitudes and the Green functi-
ons in this theory are nonanaiyﬁcal in the coupling constant g, This fact
forbids utilization of the ordinary perturbation theory with expansion in this
constant, The investigaﬁon'bf the asymptotic behaviour of the scattering
amplitude at higher energy shows that one has an essential _singularity' at
infinity, But the model belongs to the class of the local and causal the-
ories defined in the axiomatic methodllz’ 13/. _ ‘

From the spectral Green function representations it. follows the uni-
tary and the causality of our model. The Green function representations in
the ‘Mellin-Barnes integral forms permit to generalize the notion of the maxi-
mum vertex index so that our model can be described by a method close to
the renormalizable theory, and the ultraviolet divergence absence in any
perturbation order in ‘Am_ can be proved.’ 7

The dimensionless parameter C in (2.18) and (2.22) is a consequence
of the fact the scattering amplitude is not defined at the origin of the light

cone x = O,

i RS T
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. Similar sltuations often take place, when we work with the time-
ordered operator functlons (see e.g. /) But our method nges only one
arbitrary parameter. whereas the usual methods in the um"enormallzable
theories give ‘infinite number of them. | ' '

. The. method demonstrated here on the basis of field theoretxc model
can be applied to some real unrenormahzable mteractxons. For mstance,
. the Bethe—Salpeter amphtude n(x-y)=<o|T\P (x) ¥ Kl AKX > for the
scattering A + A A+A - Ads the _spinor partxcle) obeys, in the lad-

" ‘der approxlmahon, the equatton 1§ A (x)- ng(x)] B( x),

" t ! ] = = . B
(x) ‘l (i) y. ‘i' (x)z, m mB,o P pvl+p2’ 0) (2.2)
CORr (0 - ‘e '_ R{x).
: ,(X’ "'i(‘)a )
This equation has the'following solution
R(x) = aexpl '—E——-———-|+bexp{—-— ‘/8_______‘ (7-2)

x? - j¢ x2 -~ je -

This function is easily described by our method,
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