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1. The desc,..iption of properties of unstable particles in quantum 

theory meets with the difficulty that these properties are not defined exactly. 

This fact -nakes certain arbitrariness possible in choosing the wave 

functions describing the unstable particle, though their basic characteris

tics are well known1 .L, .t.t. The ~equirements such as an approximate loca-

lization or an approximate exponentiality of the decay law are lu!tilled by 

many functions and in this situation some additional restrictions are needed. 

We show that a simple condition (as far as we know nowhere used expli -

citely) that in the course of decay of some unstable particle only either 

unstable particle itself or outgoing decay products may be observed 

leads m the case ol the non-exponential decay law. to some relation bet

ween the number of wave functions describing unstable particle and. its 

decay laws. 

As has been shown in/
2

•
3

/ a strong non-exponentiality of the decay 

law is conceivable for unstable states corresponding to higher order 

poles in the S -matrix. Another reason of the non-exponentia!ity is the 

!ower energy bound : il we express a state 1 U > ol an . unstable particle 

U in the total Hamiltonian representatiorl
4

/ 

.. 
I u > - J dE c ( F.ll E > ' 

Eo 

then in consequence of the lower energy bound E 
0 

L(tl= la(tll 2 ·, 

a.(t) •< u I e -IHt 

3 

1 u >- J dE lc<EJr' 
Eo 

(1) 

the decay law 

-lEt 
e (2) 

...... 



necessarily must differ from an exponential in order that the inequality 

+ao 
f lfaL(Ill dl< .. 

1 + lg (3) 

may be satisfied/5-?/. Since these departures from an exponential are 

small for long-living states, they are usually neglected (by taking 

E • - .. in (2)). 
0 

In Sec, 4 we show that unstable particles connected with higher

order poles must be described by number N > 1 of wave functions and 

that the number N determines polynomial form of its decay laws. In 

Sec, 5 we briefly discuss the case of the non-exponentiality caused by 

lower bound E 0 • We show that in this case N • .. . 

2. Let us assume that there exists a state I U > corresponding to 

some unstable particle U in the moment of its production or detection. 

The decay of the state I U > may be written in the form 

e-IHtiU>aa(tliU>+Ilflt >, (4) 

where a(t) is a non-decay amplitude and 

l'l't >·~ O'n(lllo> 

<UI'I't >•O, llfl 0 >- 0. 

If the decay of the state I U > is no~exponential, Eq/4
/ implies the fol

lowing inequality 

<Uie-IHt' llfl
1 

>•a(l+l'l-ahla(l')-/0. (5) 

The nonzero matrix element (5) means that some states I o > "regenerate" 

partially the state I U > in the course of the decay. Just this "regenera-

tion" makes the non-exponentiality possible, for its contribution to the pro

bability L ( t) • I a ( 1) I ~ violates the phenomenological idea that the decay 

probability of an unstable particle is independent of its age, 
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Among the states I o > there · 1ust be states corresponding to free 

products of the decay. They are physical states described by outgoing 

waves, and thus cannot contribute to the "regeneration" of the localized 

state I U > as expressed by (5), Assuming that only particle U or its 

decay products can be observed we must admit, among states I o >. the 

occurence of other states corresponding to the macroscopically observed 

unstable particle U • Hence, if particle U decays no~exponentlally 
then there must exist the whole subspace .~ u of dimension N > 1 of 

states describing the particle U . 

Choosing so'Tie orthonormal system I ua > , complete in 

may write all decay laws of II in the general form 

-IHt 
Ilia>=}, a t:~!tliU{j>+ I<Pa > 

f-3= t af-l t a-= 1, ••. , N 
e 

I cp u > - l:' 0' u ( t) I D > • 
t n n a a{j(O) .t; a{j , 

.l{u• we then 

(6) 

here :r.: means summation over states of .the decay products, only, This, 
however, implies that 

y I -1 H t ' f A. a < II e 'I' t > -0 (7) 

must hold for arbitrary t , 1 '> o .These relationships represent conditions 

the states in J{ u 

them in the form 
must satisfy. With the use of Eq. (6) we may rewrite 

N 
a (t+t') .. I, af3(tlaR (1')•0. 

ay #•I a 1-'Y (a) 

On differentiating the above conditions with respect to t or t' and 

assuming, for the present time, N <.. we obtain in the matrix form: 

_d_A(tl•-iM+A(t), t>O, dt (9) 

where 
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+ 
maf3 

• i €1m _d__ a R ( t ) • 
t .. O+ dt at-' 

There exists at least one single-row matrix n + obeying the following 

equation 

D+ M + = m + D + . 
(10) 

Multiplication by the matrix o+ of eq. (9) yields 

d ~ + () .+.: + () --- "" d a R t • - 1m "" d a -R t 
dt a=-l a afJ a=l a u.p 

that is (11) 

d + a R ( t) a d + e -I nrl"t 
a at-' f3 , 

t > 0 . I. 
a 

Therefrom it follows that the decay of a state 

N 
u+ >• I. d+ IUa> 

ex a-=1 a 

is described by the equation 

-IHt ltJ+ 
ex 

-lm+t I + >•e u >+I¢> >,t>O 
ex t e 

(12) 

I ci> t > .1. .H. 
u -. 

This equation implies that in the space J{ u there exists at least one 

state which gives an exponential decay of particle U and conserves 

a constant direction in J{ u during the decay. 

3. If we apply the above considerations to the non-exponentiality 

due to the higher order pole (neglecting the effect of the lower energy 

bound), we find that to a pole of the order r > 1 in the s -matrix there 

corresponds a space .Ku of unstable states with the dimension N > 1. 
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(Kerler and Petzold drawn an analogous conclusion in Rer/
8

/). We may 

expect that N ~ r . Namely, if we write some orthonormal system 1 u a> 

in the space J{ u in the form (1), where 

ea (E)'" (E -EP )' 
I p a ( F. - E ) ~ a .. 1 , .. ,N 

k=O k P 

then the occurence of a state of the type (12) in J(u requires the equa

tion 

N 
I. d+pa =0 

a .. t a k 
for k. 0,1, ••• , r -2, (13) 

to be satisfied in order that the state 

of the first order only. In general, the 

may be found only for N ~ r . (States 

is stronger condition than (12)). 

I U + > .. I. d + I U a > has a pole 
ex a a 

coefficients d + satisfying Eq.(13) 
a 

I ua > are restricted by (8) which 

If N > 1 , then there exists a continuous variety of decay laws 

depending on the way of measuring and on the initial conditions under 

which the unstable particle has been generated. These decay laws are 

determined by the matrix A ( t ) . We shall examine its form for the case 

N • r z 2, which has been investigated on models in Refs.f9: 
10

/: 

Existence of the state 

I u + > .. 
ex 

1 Y 1 + I d+ I a [ I u I > + d + I u 2 >] 

obeying Eq. (12) leads to relations 

a 11 (t ) + d + a21 (t) = e-lm +t (14) 
t > 0. 

al2(t) + d+a22(t)=d+e-lm+t 

However, Eq. (6) holds formally for any t l ( -oo, +oo l .and then 

aaf3 (t) = a~a (-t) (15) 
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so that for t < O we obtain the equatic.n analogous to (9) 

__ d __ A(tl=-iM-A(t), t<O 
d t 

- ( + )* ma/3 m m{3a . 

Eq. ( 16) implies that such a state 

I u :X >- • [ I u I > + d ... I u 2 > J 

must exist that 

-IHt -lm-t -
>=e IUex u ex e >+l¢>

1 
>, t<O 

VVhence we obtain 

a 11 (t) + d-a
21

(t) •e 
-lm-t 

t < 0 

at2 (t) + d- a22 (t) •d-e-lm-t 

where in consequence of (17) 

+ - * m •(m) ep.-iy 

(16) 

(17) 

(18) 

(19) 

(20) 

Equations (14) and (19) simplify discussion of the condition {7) be

cause they allow, together with (15), to write the whole matrix A (t) in 

terms of one amplitude a af3( t) only. Writing 

a (tlee-IP.t_e-y!•la(t), 
II (21) 

where 

a "' ( -t) • a ( t) , a(O) ,. 1 
(22) 

8 
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I 

we obtain 

-yt ·[ • e 

!+ [ 1 - • < tl I 

• ( t) 

t > 0 I A( t) • e -tpt 

1- - 1 (23) 
d+(d-)• [ 1 -•(tl] 

1 
(d-)"' [ 1- • (t)j 

arrl the corrlition {7) leads to the equation 

( 1 + a ) • (t l • ( t ' l - a [ a (t ) + • ( t 'I. -1 ] • • ( t + t 'II a • ' • {24) 

On differentiating it with respect to t' we obtain 

d err- • (t) • • (tl (1 +a) p -ap 1 p • tt. _d_•< '). 
, .. 0+ dt 

For a.; -1 we have 

a h) • • [ (l+ailpt 
1+a • +a]. (25) 

In this case (as well in the p • 0 one) all •a{J are superpositions of 

pure exponen~ials, so this case corresporrls to a mixing of two single

pole particles. 

Only in the case a • -1 we obtain 

ahl•pt+1, t:>,O· 

which leads 

pole in the 

to the decay law to be expected 

S -matru/2/. So the corrlition (7) 

laws in the case N • r • 2 to the form 

1 + p t 
-•1'• -r•[ A (t l • e • e 

__ 1_p, 
d+ 

d +p t 

1-p t 

9 

in occurence of a do11ble 

restricts possible decay 

) • ., 0 • (26) 



. r 
Choos1ng P a y • -

2 
- and 

dels/9/. 

d+. -i we obtain results of dynamiCill mo-

We see that for to describe a particle connected with the third

order pole when the decay law of the form 

e -
1 1-' t • e - yt ( I + a t + {3 t 2 l 

is to be expected
2

•3 / we must have N > 2. 

4. However, taking into account the lower energy bound, we see 

that the condition ( 12) cannot be fulfilled, since for any arbitrary statE.> 

in }(u Eq.(3) must be satisfied, By requiring Eq.(7) to be satisfied, the 

considerations of Sec, 2 leading to (12) cannot be justified. This fact 

implies, however, that .the dimension N of the space }(u is infinite 

(which may, e.g., hinder interchanging of the operations of derivation 

and summation in Eq. (9)). F'inally, because of the lower energy bound the 

exact space of states describing an unstable particle has infinite dimen

sion with the de.cay laws obeying Eq. (8). 

The opinion that unstable particles observed macroscopically are 

associated with more states was mentioned in a number of papers / 1 •11/, 

where it is a natural consequence of the fact that no unique definition 

of properties of unstable particle is given. Such a sitUation would ~d 

to the violation of the symmetrization principle by unstabl.e Mrticles 12/. 

Though the experimental situation in this region is not cleaj13/, one would 

nevertheless prefer to have such a description of unstable particles in 

which the s.ynunetrization postulate is preserved. But because frle non

exponentiality of the decay law requires an internal degree of freedom, 

such a description seems in the present formalism impossible, 

We are indebeted to Prof, V.Votruba for his kind interest and to 

Prof. J.A.Smorodinsky an:i Dr. J.Stern for discussions, 
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