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I. Introduction 

The method of "infinite momentum frame of reference•j1 , 2/ is not 

only useful for a derivation of exact sum rules from the current algebras, 

but allows a purely algebraic discussion of it in terms of (perhaps infinite) 

multiplets of one-particle states with infinite momentum.i2•37 These conside

rations are of great interest promissing a deeper understanding of the 

origin of broken symmetries. 

The main dynamical assumption included in such a calculations is 

the possibility of exchanging the limit p .. .. with the suw over intermedi

ate states (SIS). Following the analo~y of the dlspersionf4/ and "p ... ... :' 

approaches one usually expects such exchange to be allowed at least for 

the case of the algebras of "~ood operators•l27 like the chiral and (or 

colinear) SU(3) x SU ( 3). Sum rules obtained from these algebras are 

then manifestly covariant and moreover, when saturated by low-lying 

one-particle states (at infinite momentum} they contain re~ults arising 

from the bad algebras like SU ( 6) considered at rest/5 • 6~ Because of 

this the restriction to the chiral algebra SU ( 3) x SU( 3) of good charge& 

(or its infinite-dimesional extension in the case of current densities) is 

considered to be sufficient and without any contradiction with relativity. 

However from a more general algebraic point of view the full in

corpohating of relativity means an inclusion of the whole Poincare al

gebra?/ and considering it together with the algebras generated by weak 

and electromagnetic currents. Once the Poincare algebra is included,_ 
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the consideration of algebras generated by bad components of currents 

(like SU ( 6) x SU ( 6 ) ) cannot be avoided arxi moreover the representa

tion space can hardly be restricted to the states of infinite momentum. 

ln this paper we want to make two remarks which, we hope, will 

be useful for an algebraic treatement of the symmetries generated by local 

currents and the Poincare algebra, in spite of the difficulties with the bad 

operators well-known in the dispersion approach to the algebra of cur-

·t· /8/ rent denst tes • 

We first show that a covariant limiting procedure exists, which is .. 
formally equivalent to p .... but need not a restriction to the states 

with infinite momentum. From this point of view we clarify the meaning 

of the possibility of exchanging the limit with the SIS (section 2 and 3). 

Then, using the covariant formalism of the section 2, we consider the 

saturation of an algebra containing bad operators by the same set of 

states at any momentum, We try to interpret the impossibility of exchanging 

the limit with the SIS as a non-vanishing contribution of Z -graphs, 

arising from disconnected intermediate states. We firxi Z -graphs to be 

not only relevant for the problem but even to possess a very good fei!l.

tures: they give rise to the results which are fully covariant and repre

sent a naturai extension of the static case. 

T~ough we restrict ourselves to the very simplified situation (fo!'-1 

ward commutators, saturation by finite number of states etc,) the same :can 

be in principle done for the general cases, 

.. 
2, The Covariant Analogue of the Limit P .... 

.. 
Here we shall show that the " p .... method" is formally equivalefnt: 

to the following covariant procedure: One first considers the commutator 

of two currents on the space-like hyperplane (n x) • 0 ( n positive, tirhe4 

like, but not unite) and then provides the limit 

hyperplane touching the light-cone, 

n' 1 .. n 4° .. 0 
a i.e, to ~ 

Let us consider e.g. the commutator of vector densities on the htpEbr-

plane ( n x ) = 0 ( n 
2 > 0 , n > 0 ) 

0 

4 

~
i. 

' 
.. 

' ' 

/, 

~ 

II ,l 

1 J I IJ It It It 
[V (x/2),V (-x/2)].S(nx)·--f [n Vl<l+ni':IV-

a {3 n2 a ,.., ,.., a 

(1) 
It 4 I l 

- g a,S( n V ) ] 8 ( x ) + Sa {3 

S
11 

contains terms antisymmetric in a {3 and the Schwinger terms, 
af3 1 

The factor -- in the right-hand side assures the invariance of equation 
n2 

(1) under the transformation n -+ A n • For our purpose it is sufficient to 

sandwich equation (1) by the states with the same momenta p and in

tegrate over x • This procedure corresponds to considering the forward 

commutator of integrated charges and elim;nates any effect of the Schwin

ger terms/9/: 

Writting .S(nx) = - 1
---fd>.et.\("'Hrrl using on the left-hand side of (1) 

the convolution rule wJ"have / 10/ 

1 +.. IJ 
- (d>. t {3(p,>.n) 

IT a 

i . I lit It 7 [naP f3 + p a n {3- gaf3(np) l f F 

I l 
where t a {3 ( p , k ) is the symmetric part of 

1 
2 

f d 4 x e 11t"<p!lV
1 (x/2), V

1 (-x/2)JliJ>. 
a {3 

For simplicity the state I p > is considered to be spinless and 

It . . It 
<p!V (O)!P>•P F. a a 

(2) 

(3) 

Our main task is to use equation (2) in any Lorentz frame that is 

to use it for an arbitrary time-like vector n • Let us introduce the 

usual expansion 

taf3( P, k) = a pap {3 + b ( p a k f3 + k a p f3) + c 1 g af3+ c 2 k a k f3 , (4) 

where the scalar structures a , b , c depend on ( p , k ) arrl k 2 

Putting (4) into equation (2) and considering the vector n to be arbitrary 

we get the set of sum rules 
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1
- fdA a

11 
( P A, n 2 A 2 ) .. 0 

"· (5' 

1 II 1 II k t 
{AdAb(PA,n 2 A2)•d--f F 

2 

" n 

" 
fA 

2 
dA c i. (P A , n 2 A 2) = 0 

1 II 2 2 p Ilk k 
-fdA cA (PA,n A ).,-i-

2 
f F , 

" "J- n 
where we have denoted P • (p,n).Jntroducing a new integration variable 

11 = P A and a parameter 

n 
t=---, 

p 
n~(n na)1/2 

a 

relations (5) can be written as 

_1_ f d II a II (II' f 2 II 2 ) .., 0 

" 
2 

_r_ Jvdy bii(Y, f211 2) =if Ill< Fk 

" 
-

1
- f v 2 d II c 11 

(II 1 l 2 II 2)"' 0 

" 1 

r 2 II II t t 
- {dil c (v, r2y2)..,-i f F 
" . 2 

(6) 

(7a) 

(7b) 

(7c) 

(7d) 

The dependence of the sum rules (7a-d) on the Lorentz frame (i.e. 

on the four-vector n) enters only through the parameter t which has a 

meaning of the mverse power of energy of the state I p >' in the frame 

where the commutator (1) is considered at equal times. 

The method P .. oc chooses from the whole family of a sum rules 

like (7a-d) those containing integration over the energy variable with the 

mass variable fixed. This corresponds to taking the limit t ... 0 which 

can be reached either by limiting P .. oo or by n 2 
.. 0 + for an ar- · 

bitrary fixed P . The equivalence of both is seen from the relations (6) 

and (7) but their interpretation is not exactly the same: The limit P .... 
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taken for a fixed n (say n .. (1,0,0,0))'means a special choice of the 

reference frame with e.g. P z .. 

done.On the other hand setting 

tator (1) taken at equal times to 

... This corresponds to what is usually 

n 2 
.. 0 we let the frame with the commu

+ 
be a "photon-like" frame. In such a frame 

~ state with non-zero mass has an infinite energy. Thus limiting n 2 .. 0 
+ 

allows to sandwich relation (1) by the states with any finite momenta. In 

this sence the procedure n 
2 

... 0 + is in contrary to the 

covariant, although both are formally equivalent, 

p .... 
E 

one, fully 

In neither of relations (7a-d) the limit t .. 0 can be exchanged with 

the integral over 11 • Allowing such an exchange in the relation (7a) 

we would obtain a superco~rgence relation 

fdy a11 
(11, 0) • 0 

which, though consistent with the reggeized dynamics/ 
11~ contradicts the 

Fubini sum rule/4
/ 

1 II Ilk t 
-Jdva (v,O)-if F. 

" 
{?l 

In the case of relations ( 7b, d) the exchange of the limit and the integral will 

contradict the non- zero right- hand side and the integral ( 7 c) is for f • 0 

probably divergent. 

This is not strange if we take into account that the set of relations 

(7a-d) is a part of what we would have obtained from the algebra of char

ges 

1 I 4 
Q a .. f V a (x) 8 ( n) d x (9) 

using Lorentz covariance of the starting commutator. Since (9) includes 

bad operators the impossibility of using the same dynamical ansatz for 

the whole set of relations (7a-d) is an analogue of what has been found 

in the reference/sf within the dispersive approach. 

On the other hand if we restrict ourselves to the algebra of good 

charges 

I a I 4 
Q .. fn Va(x)8(nx)d x 

(10) 
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we get, taking the n an {3 projection of relation (2), one sum rule 

r d11[ a 1'(11,t 2 11 2 ) + 2 i 2 11 b 1
' (ll,t 

2
11

2
) + t

4
11

2 c
1

' (11, t
2

11
2

) + 
. I 

(11) 
rr 

2 ll 2 2 ll k k 
+t c

2
(11,t 11 )] ~if F 

instead of the whole set (7a-d), The dynamical ansatz needed to obtain 

the Fubini sum rule (8) is the possibility of exchanging th~ limit t-+ 0 

and the integral in the relation (11) which is a linear combination of "the 

relations (?a-d), 

In the next section we shall, using the n 
2 

-+ 0 + interpretaion of the 

limit t ... 0 , discuss the meaning of exchanging this limit with the integral 

over 11 • In particular we shall see why one can expect such an ex- • 

change to be possible for the special combination (11) of the relations 

(7a-d) though it is impossible for each of them separately, 

3, Charges on the Light Cone 

The properties of the limit t -+ 0 of the relations like (7a-d) or 

(11) are closely related to the behavioUr' of the charges 

Qa- [ la(x)8 (nx)d
4

x (12) 

in the limit n 2 
... 0 ( J ( x ) is a local vector or axial-vector current). 

+ a 
First of all let us discuss matrix elements of (12) using the possibility 

of an explicit comparison of the limiting case n 
2 = 0 with the limit n 

2
-+ 0 . + 

(Note that such a comparison is impossible within the starxiart P-+ oo. 

method). Let us begin by considering the operators (12) for a light-like n. 

For any connected matrix element we have 

3 
< p I ('a I q > .. (2 rr) < p I J a (0) I q > 8 n (p - q ) '' (13) 

where (for n 2 
• o) 

• 8 

t 

5,i! 
i• 

.. 

1 l(p-q)z 
8.,(p-q)•-- fe 8(nx)d 

( 2 rr )3 

E m
2

- m
2 

P 3 -+ -+ I 2 
x=--8 (p-q +----

(p n ) 

; l (14) 

2 ( q n ) 

and m , m are the masses of the states I q >, I P >, respectively. From 
I 2 

(14) we see that (:13) vanishes unless (p- q )
2

"' 0. Thus in any frame of 

reference sum rules obtained from an algebra of the charges (12) for 
2 

n .. 0 will include matrix elements of currents with a constant (here 

zero) momentum transfer. Similarly one can firxi that (12) with n 
2 

- 0 -can never create pairs from the vacuum. This is because for n 
2 

• 0 

we have 

8 n ( P) "' 8 n ( -P ) e 0 (15) 

for any time-like p • In spite of the Coleman theorem/
12

/ we thUs have 

Q (n 2 .. 0)I0>•0 
a 

(16) 

provided the theory is free of massles.s particles, Relation (16) in par'.+ 

ticular implies vanishing of all Z -graph contributions to any commutator 

of the charges (12) taken for n 
2 

= 0 . 

This completes the discussion of connections between the procedures 

p.. .. and n 2 .. 0+ contained in the previous section. We see that the matrix 

elements of the "charges on the light-cone" (i.e, (12) for n 
2 

.. 0 ) have 

all essential properties generally attributed to the limit p -+ .. /
2

/. Here 

however these properties are relativized since they a"re no more conse

quences of a choice of the Lorentz frame, 

For a comparison let us consider matrix elements of (12) for time

like n arxi take the limit n 
2 

.. 0+.1t can be easily verified that for a 

connected matrix elements like (13) the limit n 2
-+ 0 + leads back to 

the n 2 • 0 case. This is however not the case for the disconnected matrix 

elements containing creation of pairs from the vacuum, Let us consider 

e.g. the connected part 
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3 
<p,q\Qa\0>=(2rr) <p,q\Ja(0)\0>8n(p +q), (17) 

where the state I p, q > contains a pair of particles, for simplicity with 

the same masses. For a time-like n we have 

E 
8 (p+q)= 

n ( q n ) 

3 .. .. 
8 [q+p -2 

(p n ) 

2 
n 

; I, 
(18) 

while for light-like n 8 n ( P + q ) vanishes identically. Since the limit 

n 2 
.. 0 .._ is not for the expression ( 18) well-defined we see that vanishing 

2 
of the Z -graph contributions in the limit n -+ 0 + will depend on the more 

detailed properties of the matrix elements of currents. From (18) we have 

for the invariant momentum transfer 

2 4 
(p + q) .. --2- ... ""' , (19) 

where t is given by (6). Consequently the result of the limit will depend 

on the asymptotic behaviour of the form-factors included in (17). This 

in principle need not to be sufficiently good for the case of the axial

vector form-factors. 

This constitutes a particular examples of the problems involved in 

compa.dng the n 2
-+ 0 + limit with the limiting case n 2 

- 0 and therefore 

concerns the limit t -+ 0 of the relations like (7a-d), The possibility of 

exchanging the limit with the integral will, in general, depend on the al

gebraic properties of the charges (12) for a light-like n . If they will 

close into the ~ algebra as (12) do for the case n 
2 > 0, we can start 

2 
all calculations with n .. 0 arrl according to (14) arrl (16) no limit need 

to be performed. In contrary any extra terms appearing in the commutator 
2 

of the "charges on the light cone" (comparing to the n > 0 case) will 

reflect the difference between the limit t-+ 0 inside and outside the in

tegrals like (7a-d). 

The algebraic properties of ( 12) for n 
2 

.. 0 cannot be <;iiscussed 

beyond a dynamical models since they involve a knowledge of the com

mutators of the underlying fields on the whole light-cone, As an illustra

tion let us considere the charges 

10 

I - I 4 Q (r)=f:'P(x)ra 'P(x):8(nx)d x, (20) 

where 'P ( x ) contains two free fields with different masses, Taking e.g. 

the commutator of the +, - isotopic components we find for n 2 
.. 0 

£Q
1
+

1<r ) . Q'-'<r 
I II 

3-+ 3-+ m
2 

) l = f d q d p [ 1 1/2 l 8n(p-q)x I 
E1(p) El(q) r' • 

1 x---
2(p,n) 

m 2 2 1-m 
2 " n] r 1 .. (21) 

2:'(pn) nu.(p)-
-1 .... 1 .... -· -+ " b (q) b (p) u (q) r [ p + m 2-

r e r I 

2 2 
m - m 

I 2 -1 .... 1 .... - .... " 
-d (p)d (q) v1(q)ri[p-m-

a r r 2 

1 ... 
n l rll v (p) 1-(1,1 ... 2,ll). 

• 0 2 (p n ) 

where b 
1 

, d
1 are annihilation operators of the I -the particle a1.d anti

particle, respectively. Concerning· r = y a , or y a y 
5 

we find that only for 

" 
ri,II=n or nys (22) 

the algebra of operators (20) closes into the chiral SU (2) x SU ( 2 ) • 

(The same is true for the case of SU ( 3 ) ) Since the remaining commu

tation relations of the chiral SU ( 4) x SU ( 4 ) algebra are not maintained 

in the case n 2 
.. 0 even for the free fields, one can hardly expect 

them to hold for the case of interacting currents. This can be considered 

as an explanation why in the whole set of sum rules obtained from the 

chiral SU ( 4) x SU ( 4) algebra (like (7a-d)) the limit n 
2 

.. 0+ (or generally 

t -+ 0 ) cannot be interchanged with the integration over 11 • On the 

other hand since the chiral SU ( 2 ) x SU ( 2) algebra is maintained for 

a light-like n one may expect this exchange to be possible for the cor

responding sum rule like (11), 

4. ~aturation and · ? .::-NCi~s~ 

The previous discussion suggests that once we saturate the whole 

set of relations like (7a-d) by the same set of states, we must take into 
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accou"lt the impossibility of exchanging the limit E .. 0 and the integral 

over v In this section we examine the simple possibility that this fact 

is due to a non-vanishing contribution of Z -graphs. This aS:sumption 

seems to be reasonable because of the analoW between the saturation 

of current algebra sum rules and the old-fashioned (non-covariant) per

turbation theod13/. Like here we will consider together with any connected 

contribution of an intermediate state (Figure 1a) its Z -graph counterpart 

(Figure 1b). 

We shall restrict ourselves to considering the simplest case: SU ( 4) 

algebra in the limit of SU ( 2 ) symmetry, sandwiched by nucleons and 

saturated according, to the Figures 1a, 1b, with 1 n > being again a one

nucleon state, Without Z-graph contribution the answer is well known: 

for the states at rest predictions of the static SU ( 4) are reproducect/
14

/ 

while no consistent result exists for an arbitrary momenta/
15

/. 

Because of the SU (2) symmetry only commutators between the axial 

charges are relevant, Following the lin~? of the section 2 we can write 

(n
2

>0) 
(+) (-) 4 2 

[A (x/2),A (-x/2)]8(nx)-8 (x)--
2 

U V(S) + n V(Sl_(23a) 
ll IJ IJ ll ~ v n 

( s l ( O) 
g (n V ) - i t {3 n a A 13 I'V j.(Va 

(23b) 
C+) (O) 4 2l C+) 

[A (x/2),A (-x/2)]8(nx) .. -8 (x)--t 
13

naA{3 
I' IJ · n2 j.(Va 

We shall treat the relation (23a), the remaining one can be considered 

analogously. Sandwiching (23a) by the one-proton states with momentum 

P and integrating over x we have 

1 1 -- (n p + p n - P g ) -
m ll 11 ll IJ ~~~ (24) JRil

11
(p, >.n) d A .. 

n2 17 

- l g ( 0 ) t {3 n y/3 y I , I'll a a s 

where P - ( p n ) , g (0 ) is the isoscalar axial-vector form-factor and 

Rllv(p,k) is defined by 

12 

1 
2 

c+ l 1-1 . ' 11: ,. 4 
J<p,fJ[ A (x/2), A (-x/2)]Jp,l> e d x. 

~ IJ 

1 m u (p)R (p,k)u (p) 
f j.(IJ ' ( 2 17 )

3 E 

(25) 

' J Considering the SU ( 4) algebra means to take the e ll e IJ -projection of 

relation (24) where e ~ ( i • 1,2,3) are arbitrary vectors satisfying 

(n e
1 )=0, ( e 

1 
, e )--8,1 

Let us introduce the most general expansion of Rl' 11 (p, k ) 

R, .. (p, k) ., a p p + b p k + b k p + c 
r-Y ll IJ I ll IJ 2 ,.,. IJ 

k k + c 
,.,. IJ g,.,. v + 

" +f , [ap,k k+(/3 p +/3 kp)y,]y
6 

+ 
I'YI\p " p 1 p 2 " 

(26) 

+ [ f ( 8 p + 8 k ) + f \ ( 8 p + 8 4 k ) ] p k y, y ' 
ll A p u 1 v 2 v 11" p u s ll ll p u " s 

where the scalar structures a , b , c , a , {3 , 8 depend on variables 

( p k ) and k ~ respectively. Taking the e 1 e 
1 

. I' y 

(24), comparing the spin non-flip and the spin-flip 

rariness of the vectors n and p we get the 

-projection of relation 

parts and using arbit

set of five sum rules 

1 
Ja(v,t 2 v 2 )d11-=0 , 

t 2 a a 1 --Jc (v, f v ) dv----
rr 2 m (27) 

1 

, J I t [ f 
2 v 2 a ( IJ , t 2 v 2 ) - {3 

1 
( 11 , t 2 

11 
2 ) ] _, 11 8 

3 
( 11 , f 

2 
11 

2 
) I d 11 .. 0 

-
1

- (II [ 8 
1 

(II, t
2 v 2

) + 8 S ( Y, f 
2 

II 
2

) ] d Y- 0 , 
• f 2 22 22 22 2 2 2 

--J[m f3t(v,t v )+v{3(v,tll )+(1-t m )II a(v,f v )]dv=ig. 
17 2 

Relations (27) represent an analogue of the sum rules (7a-d) discussed 

roughly in the section 2. As in that case the whole dependence on the 

Lorentz frame is contained in the parameter f given by (6). 
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The contribution of the two graphs indicated by Figures , 1a and 

1b (I it> being a one-nucleon state )to the scalar structures introduced by 

(26) is 
22 22\ 22 1 

a(ll,£ II )e2b
1

(Y,£ Y /"'2b (ll,t II )m---{3 (11,£ 2 112) e 
2 i m I 

C2(11ot
2

JJ 
2

) 2 
{32 ( "· (211 2) =-

11/ 2 + m 
2 i m 

(28) 
IT 2 2 2 -I G

1
(t v )\ .1(t,ll) 

m 

22 IT II ,1, 222 22 22 
c

1
(v,t II )e--l--:-alu 2 (t II ll -2Re[G 1 (11 f )G"' (II t )]l.1(t,JJ) 

4 m 2m 2 

where 

2 2 2 2 2 2 a(v,t 11 )=8
1
(v,£ v \=8

3
(v,t v )=0, 

~ ( t. y) 
2 

Blv'-B(v+--r 
( (29) 

and G 1 , G 2 are the isovector axial-vector form-factors. The contribu-

tion of the Z -graph corresponds to the second 8 -function term of 

relation (29). In the case this term is not present we find the system of 

relations (27) to be overdefined, This corresponds to the contradiction 

found in the reference/lB/, where the saturation at any momentum by 

means of the diagramm 1a only was considered, Including Z -graphs, 

i.e. putting (28) into (27), we get the following three relations 

2 4 2 
G -1 (0) =I G I ( 7) I 

(3oJ 
I G (-4-)12,1 

I 2 
£ 

4 2 
IG (--)1 ,g, 

I t 2 

Thus the inclusion at z, -graphs not only removes the mentioned con-

tractlctlon, but 1eacts to the reswts at tne stattc ::.u ( 4) reproctucect tor 

any mc:mentum p • Moreover in the limit t-+ 0 relations (30) imply the 

non-van1sh1ng asymptottcs tor the ax1a1-vector tormtactors, ret!ecttng the 

relevance of the Z -graphs for the problem/16/, 

14 

For a comparison it is interesting to treat in the same manner the 

chiral algebra SU ( 2 ) x SU ( 2 ) 

lation (24) we get 

Taking the n /l n 11 -projection of the re-

1 (31) f d 11 I a + t 2 11 ( b 1 + b 2 ) + t 
4

11
2 

c 1 + f 
2 

c 1 1 .. 
m IT 

Putting ( 28) into the sum rule ( 31 we have. 

2 2 2 2 2 
G

1
(0)(1-£ m )+t m 

2 1 2)12 
G (4/t )+--G2(4/t elr32) 

I 2 2 \ 
£ m 

We see that even in the case of the chiral algebra of the good charges the vanish

ing of the z ,-graph contributions in the limit t -+ 0 still depends on the asymptotic 

behaviour of the axial- vector form- factors, The predictions ( 32) of the chiral al

gebra SU ( 2 ) x SU ( 2) are in the limit n 2 .. 0 +consistent with the more detailed 

predictions of the algebra SU ( 4) only if the form- factor G fulfils certa~n 2 

asymptotic constraint. 

5, C o n c l u s o n 

Let us recapitulate the results contained in the previous sections, 

Q We have shown that a covariant limiting procedure exists, which 

has all good properties of the limit P -+ eo but need not to restrict the 

algebra of currents to the space of states with _lr:!fi~~~~9~n!I;!!Tl· 
·-----·~-.. ·----- ---- __ ,.. __ . _____....,. 

2, Since the limiting procedure considered here in principle allows 

an explicit comparison of the limiting case with the result of the limit, it 

is appropriate for discussing the problems concerning the possibility of 

exchanging the limit with the sum over intermediate states, It thus appears 

that such a possibility hinges on the algebraic properties of the "charges 

on the light-cone" (discussed in the section 3) which can generally dif

fer from the usual algebras of currents. 

3, This was demonstrated for the currents built up from a free fields : 

15 



L_ 

only the chiral algebra SU ( 3) x SU ( 3 ) is reproduced by the charges on 

the light-cone and consequently only in the sum rules corresponding to 

this case one may expect an exchange of the limit and the Integral to be 

allowed. 

4. Concerning the saturation of the algebras containing a bad opera

tors we have tried to interpret the impossibility of exchanging the limit 

with the sum over intermediate states as a contribution of Z -graphs. 

On the simplest example of the SU ( 4 ) algebra saturated by nucleons in 

the case of SU ( 2) symmetry we have shown that inclusion of Z 

graphs a) re'lloves the well-known contradiction of saturating algebras of 

this type at any momentum by the same set of intermediate states and 

b) leads to the results of static SU ( 4 ) plus conditions on the asym

ptotics d axial-vector form-factors. This indicates the relevant role of the 

Z -graphs, which can have a good influence on the result whithout 

introducing new form-factors or parameters. 

Though nothing unexpected is contained in these results we would 
2 

like to point out the relevance of the limit n .. 0 + considered in this 

paper, for a simultaneous treatment of the Poincare algebra and the 

algebra of currents, The fact that operators (20) (for r • ; , ; y
5 

) , 

generated by local (non-conseved) currents, form for n 
2

., 0 an algebra 

and are exactly represented in the space of one-particle states with dif

ferent masses and arbitrary finite momenta is a simple example of a non

trivial avoidrng of the Cole'llan theorem.l
17

' whithout losing the possibility 

of incorporating the full space-time symmetries, From this point of view 

a non-trivial binding of the Poincare symmetry with a internal symmetry 

generated by a local currents still seems to be possible, This would 

represent a natural way out the ambiguity of constructing the Infinite-di

mensional relativistic algebraic structures generating (besides other) the. 

spectrum of hadron masses/iS/~ We hope to return to this question else

where. 

In conclusion we would like to acknowledge the stimulating discus

sions with J,Jersak and the critical remarks of Professors J,A.Smorodinsky 

and Nguyen Van Hieu. 
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