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11. Resonance Scattering Problem



Summary

In paper I of this series the physical particles and re
were described as bound states (by the help of the quasipa
ximation applied to a 4-fermion interaction). In the present p:
study the resonance scattering of the physical particles of I

The first chapter defines field operators in the x-space
free motion of the physical particles and the interior motion v
Simple interactions between the physical particles are written
a simple finite nonperturbational renormalisation of certain 4-f
teractions results,

The second chapter gives the calculation of the K(reac
matrix and the S-matrix for resonance scattering, using eithe:
Schwinger or Weidenmlllers recent formulation. This leads to
- Wigner formula with resonances just at the masses of that
ticles {resonances) which are possible intermediate states of
ing process, The corresponding graph scheme describes th
scattering of physical (compound) particles, with formfactor a
ces, as in dispersion relation frames,

In the approximation performed our field theory of comp

contains no divergences and so disentangles the problem of

from the divergency problem, It shows interesting connections

Newton- Wigner localisation problem,



1. Introduction

In the present situation of particle physics there is a strong need
for a simple quantum field theory of the interior region (core) of the phy-
sical particles, where the main mass is concentrated — even if it would be
oversimplified in many respects, The present author made such an attempt
in17™ , using the qausiparticle method, in considering the interior region
with its high mass concentration as a system of many (virtual) particles.

This leads to an _independent particle model plus additional pairing inte-
~~~*~-3 of all physical particles and resonances, Paper I contains the

first half of the full problem , the calculation of the masses of the phy-
sical particles in a bound state approximation. It resulted in the deter-
mination of the field operation O, M etc, of each physical particle

or resonance in its rest system, Further it gave the right type of sym-

metry breaking in the strong coupling limit,

Now we attack the second half, the scattering of these physical
particles one another, with creation of a resonance during the process.
In this way the (idealized) stable resonance states of paper 1 are now
embedded into the continuum of scattering states. We proceed in two
steps: Chapter II treats in the main the free motion of the physical par-
ticles, chapter Il the calculation of the K- and S-matrix.

It is important to remark already now, that a large part of the pre-
sent paper is not bound to the simple quasiparticle approximation of |
because often we shall not use, how the field operator of a physical
particle was constructed in paper ] but only that he was constructed,

So far the methods of the present paper Il meet essentially all field theore-

tical compoind system treat—~-*~ of particles, Esgpecially both our de-

rivations of the resonance formula are completely independent of the

quasiparticle approximation.

x)
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IL.x- Space Properties

a) f‘ields
We shall work always in the Schr(;dinger picture, and write
X=X, p=p.
From paper I we have destruction operators Nv' ﬁyof independent
("bare" ) barions and antibarions or quarks and antiquarks of mass

on the orbits of a central potential,

y-ET}j Yy

m oa i i
vV v v v sviy v
From them we get destruction operators of free (first order) quasiparticles

at rest

Q =u N —~v N*
v vy v~y

the corresponding vacuum being defined by
0 [0>=0 |0>=0 -
v v
The states of one quasiparticle at rest are
1 >=0%* |0> |1 )=0*% |0)
v v v v
with mass @, . We consider them as our approximation of the physi-

cal states. Similar but somewhat more complicated formulas we have

written down for second order quasiparticles (measons) etc.

Free Motion of Physical Particles

According to our program we cohsider now the operators Qu ,
FV(M a etc.), destroying one physical particle in its rest system,
as given, How -to construct from them the field operators in the x-space?

Certainly we can write down

@p X = —tpX: o 2 2 2
0,(X) =3 3y Cx(P)e™ 0 +x ()e”7708 D, B =p +a , (1)

m
v P EVP



';v are free Dirac spinors, for jv=3/2 free
s etc. The problem is only, how to calcuate the

of a physical particle with momentum p

vp
»article at rest: Oy; . For this we have to
mation A corresponding to p

B

— A(B )=A U(A )= U
Vp vy vp

Ve

)

-1
UGA )0 UT (A, ). (2a)

. confine to special lLorentz transformations along

ore also to such momenta p, k ). Using plane

(ok
Iil) = r(k) (with the same SU3 quantum

(A mN L (A =) ARk

Ax,
0

- * x)
k,r)N“ N“ f ¢y(k,r)Nv ,
N* , one gets easily
-y
v N* N =U N u'
v -vp Vp vy vy

v v = (2b)
u/\(p)N At vl\(p)N; )

v v ;*
x)\(p)Q)‘+ yA(p). )‘)

v v v
y,\(P) YA (p)=vvyl\(p)

v v
4y v oy - - -V %
L VA rIhr (@) y, (P) uyv,\y_)\(p)+ vy, ()

€ sum means, that it runs only about the energies
n v-E;jvmvi i y LA . We neglect
e set of states v i1s not complete,
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correspondingly

(2¢)
[1,) =0, 11,) =02 [0)

vp
~2Z N* + 3 N*, N* .
v Vp(l v’ yvv' v'p N—»v'p + )| o>
The ;2: in (2b) mean, that our Lorentz transformation mixes into

the state or particle v other states A with the same SU3 pro-
arties, but with other masses and "spins". The degree of admixture is

given (comp, (2b)) essentially by

v

- 3 k,r)é* (A k,r). 2d

v, () 2 ¢, () er (A k) (24)

This remarcable formula shows, that our Lorentz transformation causes a
2

momentum transfer (Ak) = (Avpk -k) 2 from state v to A ac-

companying the admixture, which determines the deviation from the case

of no admixture: y; (p) =35 v

N
One gets
kin
E
2 2 3
(Ak) am — X2 (k <k )y,
@ 0 z

v
pointing out the different factors determining the admixture, According
v
to (2d) the )'A (p) can be considered as known and indeed can be
calculated numerically (though not easily), because the Fourier coeffi-

cients qSV (k) are known.

Intrinsic Motion Within Physical Particles

Besides the exterior motion of the physicél particles as a whole we
consider the x-space properties of the intrinsic motion of our states

(particles ). From I, ch,ll d:



- O *
llv) ~9vl0)=ZvN:(l+vz’ }'VV,NV,N:V,+....)‘0>

one gets the x-space representation of this state:
Wv(xx .. ) = ZVA wv(x)(] 1 >v +E' yvv'wv'<x )w__V,(x )|3vv)+.._),

where wv(x)(\;v(x)) is a solution of the central field Dirac equation

the antisymmetrizer. w and

corresponding to Nv(Nv ) and A Y

WV are normalized. So we have first a polylocal field
O(xx’...) = b3 (W (xx"...)¢ +W (xx’...)0% )59+(xx’...)+Q—'(xx'...).
v 1 4 v v v

Sometimes it is useful to derive from this a local field by averaging about

the pairs, where WV(X) is not included into the antisymmetrization
in (3):

W (xx”...)=2Z w ()P > |P >=P (x’x”. .. )=A(l1>+3y o, (x)w (x]3 >+
v vy v v v vo e Tw - v

+..4)
0(x)=5(Z % ()0 +2 7 (00%) =07 (x)+0 " (x)
v v v v v v ()

; = <P |P >= * ‘dx” ... = =z}
, z <P |F > z,[ Py P dxdx Z,e, =2,

a =Z2=3% (14+]y R T

v v ’ vy
v
Q (x) can be called average guasiparticle field, because it describes

(in the c.ms,) the intrisic motion as that of one bare particle within the

average "pair medium” (whereby it is neglected that the Pauli principle
acts between the one particle and identical ones in the medium),

It is interesting to ask for the connection between O (x) and

the ‘bare field
0 - (5)
¢;(x)=§ (wy(x)Ny+;v(x)N:):—:;,/;—(x)+\,l/+(x)).

Using



0 =Z (% (D0 (x)dx ( pair medium approximation)
v v v

(6)

N =J(w, (x)¥=(x))dx, (exact),
one finds easily the x-form of the Bogolubov transformation connecting
Q , and N :

+ - (7)
O(x)=fF (x,x)¢T(xVdx" + [F (x,x) ¢~ (x) dx*,
whare the 4 x 4 matrices F consist out of expressions like
U—(x,x') = 2 u, w, (x") L (x) . This shows, that the Bogolubov
transformatio; is a non-local (unitary, canonical) transformation between
the bare and the average quasiparticle field, The extension of the non-
locatily is given by the extension of the correlated barion-antibarion
pairs ( correlation length! ), which decisively determine the intrinsiec mo-
tion within our quasiparticles,
Rejecting the (partial) average about the pairs, the full x-space
form of the Bogolubov transformation can be written down in a similar

way, connecling now O(xx’...) with ¢(x) in a nonlocal way.

Combined Free and Intrinsic Motion

If we introduce (6) into (1), (2) we get the field operator

——

w - —
0 (Xx)=3 I Vet (y (e tw (087 (x))+....)
v my, P E v v ve
ve
- - -1
QV(X)=IOV (xx)dx' QUp(X)EprD (x')uypx

containing the combined exterior and intrinsic motion. That we were led
in this way to a bilocal field operator Q,(Xx) , is only for the
first moment an astronishing fact., For such field operators are clearly

typical and unavoidable in a field theory of compound i.e. extended,

systems: Already in standard quantum electrodynamics one gets them, if






upon one distinguished system of coordinates, the rest system o
particle, by starting with the levels of some central potential

we work in a bound state representation ( Furry) and have ne
translation invariance:
ty (1), v*(x)) = s, (xx") 00, 0%(x"V =5

(x,:
v

Fur the motion of the particles as _a whole, one gets easily f

te 0%, ,i<0,

vy v

2
so that Ov =0 and therefore our particles behave like or
P

2
mions occupying each state only once: 9: |0>v =0.
v

On the other hand

{0 O* } =

, =1B ,(g-q')=
ve v’ A R
=1 LA (q-q° * -
(uvuv vv(q g )+vvvv’A~v—u’(q
@
P
q BT er—— P.::P. , = ¥
“ vy w ‘o,
. p’ , , @y
Qs ——  w=p = =
M v

This anticommutator is a number, but not the usual § L8 (p—1
v

Instead we have the non - 8§ ~ functions A, + depending
difference of the "reduced" momenta gq -~ q’

AW,(p, p’)=3%

k,r

-1 =1 -]
¢, (AL 1) (AL, k,r)= l::’ ¢, lngr (A L !

[
= 3 ¢ (k,1)e* (A, . _.k,1) . 4
k,r v v V,py'-p

= App,(Pp ~-p')= App,(q-—q ).
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FHere we used, that A depends only on B , =o that

P
P v
A =A(B Y=A(B, N =A , . - - - .
vy By B, pv) v (BW " Bv’,' - )
v e v v'p;
and the group properties of the A’s, The deviation from 8vv’8 (p~p"

produces a nonorthogonality

- -1 - =
(1”l1v,p,)-~(1vluwu,,llv,p,) <1VIUWV 't )

VeE
- —n’ , —_p’).
~fw,(q Q) £ 5w,8(p p’)

With the help of Schmidt's orthogonalisation procedure one-easily gets
orthogonal states, but they mix different momenta, i.e. they are wave pakets,
What are the commutition relations in the X-space? For the moment let us

suppress the spinor properties and work with

0,003 5 y-L (0 setrxge ),
p m E Ve vp
v vp.

This leads to

Y-y
. ,
Pe(x),0%, (x Wetw L ( )
luw A (—=)+v v, A% (e )al,. ., )
v 14 vv v bl At 4
'y
TQY —‘—QR
Y e :
ww‘(T = J a0 Aw'(‘;i\ =/ “‘————-e z A, 4040
VE R M gt v
vy vy’ m, .




if we approximate (M =w +o ,).

1 1 1

VE, E ., pp’ \‘/ (M24 q%) (M2 + ¢’ %) pu’ Y (M24(q+q”)? Y (M34+ (q—-qOD)

in order to get separability in q+q’ and q9-q° .+) With these
simplifications we get a simlpe interpretable result, The first factor is the
Newton- Wigner function T , expressing the fact that relativistic particles
have localized states of a certain spread. Clearly this produces a spread

in the localization of X and X, expressed by W{( Y-y

) . Remarkably
the difference of the "reduced" coordinates Y appears. Further we have
the functions A(—l-;-) giving a similar spread in the total center of mass
coordinate R, That means, that we are not exactly in the total c.n.s. with
8§ (R) , but instead the total c.m. itself has a Newton-Wigner spread:
Indeed the behaviour of A for large R is determined by Avv,(0)=8vy, ’
so that AW for R+ w « In this connection two remarks are ne-
cessary, First it is well known from nuclear physics, that in a shell mo-
del approach the center of mass cannot be fixed completely, because shell
model states are not exact eigenstates of the total momentum,, The same
is true for our "shell model of elementary particles", Secondly in the
resonance scattering of particles v and v’ the total center of mass
is identical with the center of mass of the intermediate resonance state, So
considering the resonance state as a particle too - as we did - again a
Newton-Wigner spread. of the localized state has to appear for this particle,
i.e. in R, In this sense the present formulation is most convenient for our

purpose, Without both simplifications one gets

+) The difference between the exact and the approximate denominator
is w~q? and q’2 . So it vanishes for q,q '+ 0 , e, X, X'sw

++) Newton, Wigner, Rev.Mod.Ph.) 21, 400 (49).
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L (X), 0%, (X))} =1F ,(X,X"}

oo Up Xeup X) ,
\f_____ (X . x*’ , e P ’B Kp’p )_,_X X*; , -
m E E ., , Ve vp w vp vp
v’ Vp V'p
’ LpX +p %" , . ~ 4 ,
ne )X X, e D (p,p)+x x* et®X+teXp (g
Vp Vrp vy Ve l/’p’ vy

0
, ( , Nes Y v’ s,
oy (PP Hv o C O (pp?) € fpip) : ra@ysy (e

Y -y’ and Y +Y° are not separated, becaus
ndent, The result is a dependency on X and X’
mainly a dependency on Y -Y’ ; because R is

e above sence, Finally we note

i ,0 J==-20 (B (0) =1).
v vy

P

dinary destruction operator in each subspace v, p

ades v,p:¥%P', .. . . are not independent, But
» need, because physical particles are never indeper
sne particle state), as expressed already by the nor

ites (val ly,p,) .
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Interactions

1@ treatment of interactions is possible along two different ways.
t "orthodox" way, writes down one single H between the

e particles, something like

B =g f(3(OPy (0 ()Te(x))dx,

int

) like (5), but with free spherical (or .plane) Dirac solutions

, v =Ejmnai is y , E continuous, One then has to re-
corresponding operators N, with our N, and by this with
-ators of the physical particles Qv , M etc,

our case-already having field operators describing approximately
sical particles -it is more natural to go another "pragmatic' way,
1 write down effective interactions expressing directly, that phy-
rticles are scattered one another, In order to be concrete,

© the octet barion case of paper 1, xTv = 8v , where the PV

» 8-barions, and the special case of nucleon-antinucleon scat-

hen we have

34
$... 1 2 4

23 oclclogeel roorel @@l (oreTs () dX+he . (9)
1 N N Ny N
s and C's means the proper coupling of isospins, Taking
(X) from (1), (2) gives overall momentum conservation.
:cording to (2b) the incoming plane waves QNF ,(5Np) contain
admixtures of particles (resonances) A with the SU, quantum
of the nucleon (antinucleon), but with other masses and spins.
s are N*(1490) and N*(1520) , but not the decuplet resonar-
2 same is true clearly for the outgoing waves too, Such effects
cal for the scattering of compound systems,
NN- scattering meson resonances can appear as intermediate sta-
sider for this e.g. the operator QgQ N contained in (9)
> of (1) and (2b). The same operator is contained in the meson

= M (L24). So with I a%-p%,e8 & ,- we can write
a 2 NN VN Cv'N

15



Ql5=2% ag¥,
a

=
is we get for H the "resonance" form

~ 0% 0* M~ +h.c,

N N @ (10)

indeed to resonance denominators at the meson masses o, as
01 see, It is not difficult to repeat this for =N - scattering, where
* . . . -
LA LN is easily shown to contain e.g. QN a0, .

t this is a part of a decuplet-barioh, so that resonances like As/z o/2
pear in #N - scattering, Obviously this method of producing reso-
is essentially common to all. theories building all particles out of a

. material, as barions, or quarks, or Urmaterie.

) Renormalization

oncerning coupling constants, there are really three: the depth of
ential V(r) , the G of ~H Int (paper 1) and the ¢ of
:ctive scattering interaction Hlm (9). The first two need no re-
zation at all, because there is no experiment to measure them directly,
>y determine together with the range of the potential and m .,
serties of the bound states, like masses, magnetic moments etc.,, but
appear singly. Only & can be measured directly by scattering

> allowes (and requires) a renormalization, We perform

ogous to the Chew-Low-model, taking the ratio of the quasiparticle

> bare particle nmatrix element of ?l it . Suppressing already

umber factors equal in numerator and denominator, we define

(1. 1 o @ & o |1 ,1 )
Np

Np Ny Np° Np” Np Np Np
x - - g
— - - el
<1 1 ox Ox 0 Q 1 1 >
Ny Np'l Np pr Np” }l"”[ Np” Np’”

16



This is a reasonable definition, because one gets eas

a number independent of the states p;p’, ... .
g o=v g e=z e>¢e, (r

So we have a finite renormalization with the numerica,

taken from table 1.

Table 1

Numerical values of u : for paper I, case B
2 2
u u
v
N 0,77 0,81
840 N*
N* 0,23 1820 0,19
1480
A 0,74 0,81
ms A% {
* 1320
Alees 0,26 0,19
2"" 0,72 s 0,78
3 0,28 100 0,22
1740
= 1318 0,70 = 0,76
Ex 0,30 1818 0,24
1845

This shows, that the problem of resonances can be d

that of the divergencies along our way of a field theo)

systems, It seems, that the divergencies are connected
non-resonance part of the scattering. Our coupling coi
sation  z,, is simply related to the wave function re
of paper I, chapt.llld:

17



= * L] »
) z Nyp(1+§’ Yy ND. NI+ ]0>

U =<0]0)=u_ ....... u o,z =u"t
1 1

- )
210 19 , therefore ZN=9,3 . 10_"’x

. The
ation constants is Ul =<0[0), ie, the decisive

3 the "overlapping" of both Hilbert spaces. We

1ss and coupling constant renormaliéations resulting

ction H i,e, from the transition from bare
int 4

o
The scattering interaction H again causes such

int
r two-step proceeding (bound problem- scattering
already the first step gives about the right masses

of the particles, So it is a necessary condition

~
renormalization effects of Hyne are small,

in more detailed calcwations. The very small nu-

. 107 by the way allowes a remark about boot-

limit Z -0 ("no elementary particle" ) is es-

particle standpoint indeed z, can be very
ull.

:‘ause according to paper I, chlll d, Z = - n

u
<. v
mber N1 of resonances finite) and all u, are

It seems therefore interesting not to omit the case
nite, in bootstrap ("hnearly no elementary particle" ).
» be studied cautiously, because our Zv refers to
‘eady "feel" a large part of the total interaction:

‘ining the orbits v = E- m ii 7.
g v»ijrysyyy:V

1e is due to the fact, that U consists out of
w)+1(A)+3(Z)+2(F))+4(2+1 + 3+ 2)= 48,

18



I, K- and S-matrix

We are now prepared to solve the main task of this paper, the
eimnbedding of the discrete states of paper l into the continuum of free
particle scattering states of the preceding chapter, From nuclear reactions
it is well known how to solve this task:The scattering waves filling out
the full space and the stable state of a resonance within its small volume

v (cim.s,) have to be linked together at the surface of this small volu
me, so making this state quasistable (point 7 of our list in paper I}, The
mathematical instrument for this is the reactance matrix K SR—matric.
derivation matrix), as well known, Recently Weidenmih.ler * gave a new
treatment of the same problem, avoiding the intermediate step of a K-mat-
rix, We give a short account of this method too, because it avoides the
noncovariant device of a small radius or volume, *%X/ Both derivations
of resonance formulas are completely independent of the quasiparticle

approximation,

a) Resonance formula 1

Weidenmuller directly diagonalizes the Hamiltonian H with the
help of the states ll/: s E, and ¢a s W, . For simplicity we confine
to the case of one state ¢, only, 1=0 and elastic scattering, Weiden-

ml':dlers chapter 3, One starts from

+ -~ .
(67,0, )=8(a=b) (4 ,Hy[)=E_5(a=b)

x) WeidenmUller, Nucl.Phys., 75, 189 (1966)

%) e author is indebted to Prof.Rosenfeld for the hint to this method.

19



(¢a,¢a)=l (an,Hqﬁa):(a
= +
(w:"ba):gua (dlc’qua):yua

One determines the asymptotic form of

+
Voo=fC (E)y dE wec é

« @
Hyd < EV
a a 4a
+ 1
which is found to be (¢ (ea)-s—-—r sin (kct+8 ))
a a
Y (o0) wmm— e (z (E JY+inm)sin (k r+8 +A )
o« T aa a a a aQ

From this one gets directly the S-matrix

=ezu8ﬂ+A )

N aa
aa
2
2ri |y |
ezlAca=1~ aaa
. 2
Eu—wa—Gua(Eu)+l"ly'uﬂal
ycba=yba~Eugba GGG(EG)-FGa(E¢)+‘a_wa
2
1Y !
ba
F (E P z =¢ -E -
a( u)ﬂ f - E dEab ¢ Eu zua(Ea)lycua
a b

20






@usld;:>=]¢c>+P

K a=<¢,b|H

1
. Ly >.

int a

Besides we need incoming and outgoing waves

Lk 1 - *
ly=™>=f¢ >+ - H 1y~ >=
a a nt a
E —H, +ic

+
=3 (6 4 - Rp-
¢ ac Rcu)I¢c>

F-E +ice¢
a € -

1 +
¢ =ty >= E: (8apy Im8(E _~EDK, )| ¥T > full sp

Here b
~ IEE (bc
b
H0|¢.>=Eu|¢a>.
Define
yua=(¢a,H¢'u)-(H®a,d>u)-=(Eu-wa)(<I>a,tba).
Developing ¢, wivt vV in terms of the b, , we get tt
(b-‘ p Nnama Nlag(q)a’q‘l):
3
y
.3 S in
a E -w, a
The both expressions of ®_ , (12), and (13), have to be e

the surface of the small volume for each channel. More precisel
surface is really a hypersurface in the configuration space of |y
because according to (11) the latter contains all channels e

with its own variables, So we choose the channel radius for ceb

9 ’¢b>‘° , for chb so "t | ¢ >=0
<

axb

so that

X)Rea]ly these conditions can be fulfilled only for either the "larg
the "small' Dirac components, So in the following some '"leakage'
are neglected,

22



and call this set of channel radii { R lb » defining our hypersurface.

We require for each channel b

b
(!)ﬂ(inV)R -d)q(outslde V)

b trl,
y & (R)
a a b o F
ET:T—-—=(5.h:ina(1-:.-l-:b)xh)|¢;->Rl) )
a a b

+
where Iw'; >1al ,  -according to (11) and the above conditions for the

|'¢>e > ~contains only |¢,> . Mutiplying now with g < ¢b | from
the left, we get b

+
y ) + +

5 -3 b =+1i785(E ~E )K= ws+ 1K~
ab a E -w - « b ba - ba

R:qsblq’a)R

.

ab
L S8y 1 ¥y

b nl,

So the necessity to use either the + or the - system of orthogonal

L+ -
states | \b‘; > leads primarily to two K-matrices, But K is connected
with standing waves and therefore has to be symmetrical in outgoing and

ingoing waves: The right K-~matrix is

ycay ab

(14)

1 + -
Kbc(E)->T (Kbe+ Kbl)-i £

a E-'a

);_b-(fba,Hd)c )--»(H‘ba,‘ba)-(‘ba,(l-l-—l-l)tb-)
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* yo ).

Y '_(yab- ab

ab 2

First we observe the resonance denominator at w a ’ appearing in K as
a real pole, as it must be (nuclear reactions: real pole of first order).
Let us assume, that the resonances are well separated,. Then it is easy to
show according to the appendix, that the corresponding S-matrix has a

Breit- Wigner form, so getting a formula for tne width Fa of resonance a

2t T

aab

S (E)=8 =% c——
be ba a E--wa-(-ll"‘z

FGE r‘ r‘ =y b4

a aGaa aab aa ‘ab

As well known, for definitely overlapping resonances K does not
change its simple form (1), while S gets a more complicated non BW—form.x)

Secondly a resonance term in K appears only if the numerator does
not vanish, y., ,containing essentially the quotients of amplitudes an /v b
at the surface of V, is finite in general. For a non-vanishing Yea the

difference H -~ H ~ie. that "rest" part of the full space Hamiltonian
~
H » not respected in our bound state calculation in paper I - has to
make transitions between ¢, and @, . We have seen in (10),

that indeed ;lu“ of e.g. NI\T—scatter'mg can be brought into the form
creating and destroying a meson resonance, so giving definitely a nonva-
nishing numerator in (14). Analogous considerations can be have for
other examples, so our "pragmatic" choice of effective interactions plus

our K reproduces the usual (lowerst ordér) graph scheme, but for
(approximately) physical particles, quite independently of the quasiparticle
approximation of paper L Concrete applications will be made in the next paper

of this series,

x) Two strongly overlapping resonances: Wigner, Phys,Rev., 70,606 (46).
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We have written down only the resonance scattering. Besides there

iists a nonresonance contribution, which can be calculated without the

termediat ) of K-matrix, Another neglected effect are cloud contribu-
ns, For ted only the core, though we know that-in our picture-
s dense article cloud of .order 10 14 cm is surrounded by a di-
e "coro; thich presumably the fermions (barions, quarks etc.)

ndensate to mesons., The scattering contributions from this cloud are
imately connected with that transient effects (Einschwingvorgglnge) and

akage effects already mentioned,

c) Orientative calculation ~ matrix elements Y.a

As am example let us consider Y o of formula II,

is useful to divide Y,, H

1‘ =
¥ = (0 ,H 0 ) y® s (® ,(H ~H)® )
aa a int a aQ « 4] a

re H, is the free energy of the physical particles: example NR- scatte-
=H
H =H =3 E_(0* 0 +0% Q
P Np Np

[ oN Np Np Np *

snd H is the free energy of the (stable) states a at trest: example

IN- scattering: H= X o, My M, . So besides the "exterior" re-

a =
onance scattering by H _ , we .have an "intrinsic" resonance contribution
y l-l0 - H . For Hn or H -though formally energies of free par-
icles contain the intrinsic interactions H o ar or H o already
espected in paper ], which begin to act in scattering too, as soon as the

L]

articles begin to penetrate, Indeed the diagonal operator Ho . H non
1eless connect a and a , hamely the common part 0 N QN'
oontained in a and a .

We calculate now Yoa in quasiparticle approximation orientatively,
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First the pure exterior contribution to K is

N N * o
Tag, X x (0)x,,(=P) x3.(p7) %) (=P ") @iy oors
aa AT

]

where p and p’ are the center of mass momenta before and after

the scattering. On the other hand with the approximation (M |0 ) =0)
a

oy "Uz|0)+--~-'U2|O)» ( orientatively),
we get
*
V" aQow -0 Yp®_ n* U " =8 +P———-!-———K
aa N a "NN ga 2 ce €« E -E °°
(-4 -a

cm0:p_ =p'=0

So both parts of the vertex function y_, in our ( quasiparticle) resonance

approximation separate in the form f () £ (0) f (p”) . This is the

direct expression for the three step character of our approximation:

00 - M,-00Q . Therefore we can state that not only the lines in

Fig, 1

but the vertices too are the physical ones. Altogether we were Jled to

a scheme of compound system resonance scattering, which can be des-
cribed by a graph scheme resembling that of dispersion relations, Based

on this , one can develop a bootstrap scheme, e.g. for the graph of

Fig.1and its crossing transform,
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Appendix

In matrix form we hawve for one single resonance
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a y Xy N

(E-&) B AE yagyca yaEyaa *

i}

Furthen:

S=(1~1i K) (1+ik) ' a1 o2iK(1+iK)"!

=1-2N(a +N)?! a=-iAE.

It is easily shown, that the Kronecker product N has the property

N.NeoN c=TrN=Zy y
a a

a
Therefore

=N(a+o0) ! =
a+ N (a+N)(a+o)

=N(a+N) ! N
(a+N)(a + o) a+ o
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